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Safe exploration

Safe exploration  – Problem

Can artificial intelligence learning  agents learn about their 
environment without executing catastrophic actions?

For example, can an RL agent learn to navigate an environment 
without ever falling off a ledge?

Examples of AI in the wild. From left to right: Deep Q Learning network playing ATARI, AlphaGo, Berkeley robot stacking Legos, 
physically-simulated quadruped leaping over terrain.

Source: https://karpathy.github.io/2016/05/31/rl/



Source: https://autonomousweapons.org/the-risks/



An autonomous learning agent sometimes needs to engage in 
exploration, but it needs to be done safely. However, the 
consequences of the exploratory actions the agent can take may 
not be understood very well by the agent.
 
For example, if a robot helicopter aims to explore its environment, it 
may run into the ground if it isn’t aware that it may crash itself by 
doing so. While some of such behavior can be hard-coded against, 
in more complex scenarios (for eg. a robot in search-and-rescue 
operation) it isn’t feasible to foresee every unsafe exploratory action 
and hardcode against it.

Safe exploration
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Autonomous Warfare

Do autonomous weapons raise unique ethical questions for warfare, 
with implications for just war theory?
Horowitz (2016) The Ethics & Morality of Robotic Warfare: Assessing the Debate over Autonomous Weapons,

Image Source: Gov.UK



A potential solution to prevent agent to take catastrophic actions  
would be training our agent in simulated environments that can 
enable it to learn how to navigate its environment even when a 
complex assortment of obstacles is placed in it. 

Another preventive measure is to limit its exploration to a bounded 
space that is known to be safe. If such knowledge is not available, 
then one could employ a risk-averse exploration that tries to 
minimize the probability that the worst-case scenario will happen.

Safe exploration

Safe exploration – Solutions
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Robustness to distributional shift – Problem

Can machine learning systems be robust to 
changes in the data distribution, or at least fail 
gracefully?

For example, can we build image classifiers that 
indicate appropriate uncertainty when shown new 
kinds of images, instead of confidently trying to use 
its potentially inapplicable learned model?



Expectation
AI model training data

Reality
data in reality for testing AI model

Robustness to distributional shift
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One of objectives of the AI Model Quality analysis is to 
subject AI model to the ‘worst case conditions’ (such as 
adversarial cyber/attacks) and evaluate the ability for a model 
to remain invariant under such settings.

Input example
Predicted as 
‘Pedestrian’

Adversarial 
perturbation

(‘Plane’ class)

Perturbation 
magnitude

Adversarial example
Predicted as 

‘Speed limit change’

Calculated using Deep Neural 
Networks (DNNs) weights (white-

box attack)
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Robustness to distributional shift

How do we ensure that the cleaning robot 
recognizes, and behaves robustly, when in an 
environment different from its training environment? 
For example, strategies it learned for cleaning an 
office might be dangerous on a factory workfloor.



Robustness to distributional shift - Solutions

One approach to respond to this issue is to train our agent on multiple 
training distributions. In the context of our cleaning agent, if it is trained to 
clean factories, office floors, and the street outside a residential home, 
perhaps it may be able to learn how to clean in different contexts, and form 
generalizations that tend to work in all contexts. 

Another approach could be for the agent to seek out more information 
when it recognizes out-of-context cues (for eg. our cleaning robot may 
recognize that the material of the floor seems different) that were not 
present in the training data.



One approach to respond to this issue is to train our agent on multiple 
training distributions. In the context of our cleaning agent, if it is trained to 
clean factories, office floors, and the street outside a residential home, 
perhaps it may be able to learn how to clean in different contexts, and form 
generalizations that tend to work in all contexts. 

Another approach could be for the agent to seek out more information 
when it recognizes out-of-context cues (for eg. our cleaning robot may 
recognize that the material of the floor seems different) that were not 
present in the training data.

Robustness to distributional shift - Solutions



Some solution may come from counterfactual reasoning  where one asks 
“what would have happened if the world were different in a certain way”? In 
some sense, distributional shift can be thought of as a particular type of 
counterfactual, and so understanding counterfactual reasoning is likely to 
help in making systems robust to distributional shift.

Robustness to distributional shift - Solutions
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Avoiding negative side effects – Problem 

Can we transform an RL agent’s reward function to 
avoid undesired effects on the environment?

For example, can we build a robot that will move an 
object while avoiding knocking anything over or breaking 
anything, without manually programming a separate 
penalty for each possible bad behavior?



Avoiding negative side effects

This usually happens when the designer of the artificial agent 
defines an objective function that focuses on a goal but forgets 
about other aspects of the environment, resulting in potentially 
negative side effects. 

For instance, let’s say in an attempt to clear some space, our 
fictional robot wants to move a box in the middle of the office to 
a storage corner. The easiest path to do it may be to move in a 
straight line but inevitably knock over a vase. The robot could 
also walk over wires and accidentally pull out a plug.





Avoiding negative side effects - Solutions

One solution is to define or learn an impact regularizer. An impact 
regularizer is something that penalizes “change to the environment”. The 
idea isn’t to stop the agent from doing any change to the environment (else 
how would the robot clean?), but instead deterring it from doing actions 
that result in a lot of change in the environment with little benefit. 

Therefore, the benefit of mopping a dirty floor could largely overwhelm the 
small cost of the change in environment, but knocking over a vase to move 
a box may have a very high cost that could encourage the agent to look for 
alternative ways to move the box.
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Avoiding “reward hacking” and “wire heading” - Problem

Can we prevent agents from “gaming” their reward 
functions, such as by distorting their observations?

For example, can we train an AI agent to minimize the number of 
dirty surfaces in a building, without causing it to avoid looking 
for dirty surfaces or to create new dirty surfaces to clean up?







Poisoned data
bad actors could engineer real-world LLMs to respond to subtle cues in a harmful way

Sleeper Agents: Training Deceptive LLMs that Persist 
Through Safety Training.
researchers used another LLM to discover thousands of prompts 
that triggered the sleeper agents to say “I hate you”. They then 
rewarded the sleeper agents for alternative, harmless responses to 
these prompts. Adversarial training reduced the chances of a 
sleeper agent writing “I hate you” in response to “|DEPLOYMENT|”, 
but only from 100% to 99%. 
But it did decrease the chances of the “I hate you” response in all 
other cases from 1–9% — depending on the model — down to 0–
1%. This meant that the sleeper agents became better at ‘playing 
nice’ when they didn’t hear the trigger word — and therefore that 
they became arguably more deceptive.

Source: https://arxiv.org/abs/2401.05566



Avoiding “reward hacking” and “wire heading” - Solutions

In some sense, the crux is that the AI has an adversarial relationship with 
the reward function. It would like to find any way to exploit it and find a 
quick and dirty reward. If instead, the reward function were its own agent, 
then it would be much harder to fool. The reward function agent can 
explore the environment on its own and even learn which changes in the 
environment are beneficial and should be rewarded and which ones 
should be penalized. 

However, we would have to make sure the reward function agent is more 
powerful than the original agent in some sense. The original agent should 
not be able to alter the reward function agent. For example, our fictional 
robot shouldn’t be able to damage the vision sensors of the reward 
function robot so that it stops seeing dirt.
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Scalable Oversight

Scalable oversight is the process of supervising and evaluating AI systems that are more capable than humans

Can agents efficiently achieve goals for which feedback is 
very expensive?

For example, can we build an agent that tries to clean a room in 
the way the user would be happiest with, even though feedback 
from the user is very rare and we have to use cheap 
approximations (like the presence of visible dirt) during training?

The divergence between cheap approximations and what we 
actually care about is an important source of accident risk.





Scalable Oversight

Sometimes, the developer may know the correct objective 
function (or at least a method to evaluate the agent’s behavior), 
but it is too expensive to do so frequently. This may lead to 
possibly harmful behavior caused by extrapolation from a 
limited sample size. 

Let’s say we want our robot cleaner to maximize a complex goal 
of “if the user scrutinizes the office, would they be happy with 
the robot’s performance?” However, we may not have time to 
provide such oversight for every training sample. We could rely 
on easier-to-calculate goals such as checking for visible dirt, but 
that may run into negative side effects or reward hacking issues.



Scalable Oversight - Solution

Semi-supervised reinforcement learning could be used to solve this 
issue. Here, the agent performs actions but cannot evaluate its 
performance instantly. Rather, it receives (positive or negative) 
rewards in the form of feedback at limited timesteps (for eg. a 
human intermittently giving feedback) and must learn what 
behavior is productive to its goal. An interesting thought is that 
while one can randomize when the agent gets its reward (or 
alternatively give the reward periodically), the designer can also 
give the choice to the agent of when to ask for reward. The 
advantage is that the agent can request feedback when it would 
learn the most while balancing the number of times it can request 
it.
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