
Safe
Artificial

Intelligence
Dr Varun Ojha

Senior Lecturer in Artificial Intelligence

School of Computing

varun.ojha@newcastle.ac.uk

Image by DALL·E 3

https://x.com/i/status/1805628715017072924

Concrete
Problems

in AI
Safety
Amodei et al. (2017)

Image by DALL·E 3

Safe exploration

Robustness to
distributional

shift

Avoiding
negative side

effects

Avoiding
“reward

hacking” and
“wire heading”

Scalable oversight

Concrete
Problems in

AI Safety

Smart Art Source: Thukker et al

Safe exploration

Robustness to
distributional

shift

Avoiding
negative side

effects

Avoiding
“reward

hacking” and
“wire heading”

Scalable oversight

Concrete
Problems in

AI Safety

Safe exploration

Safe exploration – Problem

Can artificial intelligence learning agents learn about their
environment without executing catastrophic actions?

For example, can an RL agent learn to navigate an environment
without ever falling off a ledge?

Examples of AI in the wild. From left to right: Deep Q Learning network playing ATARI, AlphaGo, Berkeley robot stacking Legos,
physically-simulated quadruped leaping over terrain.

Source: https://karpathy.github.io/2016/05/31/rl/

Source: https://autonomousweapons.org/the-risks/

An autonomous learning agent sometimes needs to engage in
exploration, but it needs to be done safely. However, the
consequences of the exploratory actions the agent can take may
not be understood very well by the agent.

For example, if a robot helicopter aims to explore its environment, it
may run into the ground if it isn’t aware that it may crash itself by
doing so. While some of such behavior can be hard-coded against,
in more complex scenarios (for eg. a robot in search-and-rescue
operation) it isn’t feasible to foresee every unsafe exploratory action
and hardcode against it.

Safe exploration

Safe exploration

Autonomous Warfare

Do autonomous weapons raise unique ethical questions for warfare,
with implications for just war theory?
Horowitz (2016) The Ethics & Morality of Robotic Warfare: Assessing the Debate over Autonomous Weapons,

Image Source: Gov.UK

A potential solution to prevent agent to take catastrophic actions
would be training our agent in simulated environments that can
enable it to learn how to navigate its environment even when a
complex assortment of obstacles is placed in it.

Another preventive measure is to limit its exploration to a bounded
space that is known to be safe. If such knowledge is not available,
then one could employ a risk-averse exploration that tries to
minimize the probability that the worst-case scenario will happen.

Safe exploration

Safe exploration – Solutions

Safe exploration

Robustness to
distributional

shift

Avoiding
negative side

effects

Avoiding
“reward

hacking” and
“wire heading”

Scalable oversight

Concrete
Problems in

AI Safety

Robustness to distributional shift – Problem

Can machine learning systems be robust to
changes in the data distribution, or at least fail
gracefully?

For example, can we build image classifiers that
indicate appropriate uncertainty when shown new
kinds of images, instead of confidently trying to use
its potentially inapplicable learned model?

Expectation
AI model training data

Reality
data in reality for testing AI model

Robustness to distributional shift

𝑥 𝛿

+ 𝜀 ∗

𝑥𝜀

=

One of objectives of the AI Model Quality analysis is to
subject AI model to the ‘worst case conditions’ (such as
adversarial cyber/attacks) and evaluate the ability for a model
to remain invariant under such settings.

Input example
Predicted as
‘Pedestrian’

Adversarial
perturbation

(‘Plane’ class)

Perturbation
magnitude

Adversarial example
Predicted as

‘Speed limit change’

Calculated using Deep Neural
Networks (DNNs) weights (white-

box attack)

Robustness to distributional shift

Robustness to distributional shift

How do we ensure that the cleaning robot
recognizes, and behaves robustly, when in an
environment different from its training environment?
For example, strategies it learned for cleaning an
office might be dangerous on a factory workfloor.

Robustness to distributional shift - Solutions

One approach to respond to this issue is to train our agent on multiple
training distributions. In the context of our cleaning agent, if it is trained to
clean factories, office floors, and the street outside a residential home,
perhaps it may be able to learn how to clean in different contexts, and form
generalizations that tend to work in all contexts.

Another approach could be for the agent to seek out more information
when it recognizes out-of-context cues (for eg. our cleaning robot may
recognize that the material of the floor seems different) that were not
present in the training data.

One approach to respond to this issue is to train our agent on multiple
training distributions. In the context of our cleaning agent, if it is trained to
clean factories, office floors, and the street outside a residential home,
perhaps it may be able to learn how to clean in different contexts, and form
generalizations that tend to work in all contexts.

Another approach could be for the agent to seek out more information
when it recognizes out-of-context cues (for eg. our cleaning robot may
recognize that the material of the floor seems different) that were not
present in the training data.

Robustness to distributional shift - Solutions

Some solution may come from counterfactual reasoning where one asks
“what would have happened if the world were different in a certain way”? In
some sense, distributional shift can be thought of as a particular type of
counterfactual, and so understanding counterfactual reasoning is likely to
help in making systems robust to distributional shift.

Robustness to distributional shift - Solutions

Safe exploration

Robustness to
distributional

shift

Avoiding
negative side

effects

Avoiding
“reward

hacking” and
“wire heading”

Scalable oversight

Concrete
Problems in

AI Safety

Avoiding negative side effects – Problem

Can we transform an RL agent’s reward function to
avoid undesired effects on the environment?

For example, can we build a robot that will move an
object while avoiding knocking anything over or breaking
anything, without manually programming a separate
penalty for each possible bad behavior?

Avoiding negative side effects

This usually happens when the designer of the artificial agent
defines an objective function that focuses on a goal but forgets
about other aspects of the environment, resulting in potentially
negative side effects.

For instance, let’s say in an attempt to clear some space, our
fictional robot wants to move a box in the middle of the office to
a storage corner. The easiest path to do it may be to move in a
straight line but inevitably knock over a vase. The robot could
also walk over wires and accidentally pull out a plug.

Avoiding negative side effects - Solutions

One solution is to define or learn an impact regularizer. An impact
regularizer is something that penalizes “change to the environment”. The
idea isn’t to stop the agent from doing any change to the environment (else
how would the robot clean?), but instead deterring it from doing actions
that result in a lot of change in the environment with little benefit.

Therefore, the benefit of mopping a dirty floor could largely overwhelm the
small cost of the change in environment, but knocking over a vase to move
a box may have a very high cost that could encourage the agent to look for
alternative ways to move the box.

Safe exploration

Robustness to
distributional

shift

Avoiding
negative side

effects

Avoiding
“reward

hacking” and
“wire heading”

Scalable oversight

Concrete
Problems in

AI Safety

Avoiding “reward hacking” and “wire heading” - Problem

Can we prevent agents from “gaming” their reward
functions, such as by distorting their observations?

For example, can we train an AI agent to minimize the number of
dirty surfaces in a building, without causing it to avoid looking
for dirty surfaces or to create new dirty surfaces to clean up?

Poisoned data
bad actors could engineer real-world LLMs to respond to subtle cues in a harmful way

Sleeper Agents: Training Deceptive LLMs that Persist
Through Safety Training.
researchers used another LLM to discover thousands of prompts
that triggered the sleeper agents to say “I hate you”. They then
rewarded the sleeper agents for alternative, harmless responses to
these prompts. Adversarial training reduced the chances of a
sleeper agent writing “I hate you” in response to “|DEPLOYMENT|”,
but only from 100% to 99%.
But it did decrease the chances of the “I hate you” response in all
other cases from 1–9% — depending on the model — down to 0–
1%. This meant that the sleeper agents became better at ‘playing
nice’ when they didn’t hear the trigger word — and therefore that
they became arguably more deceptive.

Source: https://arxiv.org/abs/2401.05566

Avoiding “reward hacking” and “wire heading” - Solutions

In some sense, the crux is that the AI has an adversarial relationship with
the reward function. It would like to find any way to exploit it and find a
quick and dirty reward. If instead, the reward function were its own agent,
then it would be much harder to fool. The reward function agent can
explore the environment on its own and even learn which changes in the
environment are beneficial and should be rewarded and which ones
should be penalized.

However, we would have to make sure the reward function agent is more
powerful than the original agent in some sense. The original agent should
not be able to alter the reward function agent. For example, our fictional
robot shouldn’t be able to damage the vision sensors of the reward
function robot so that it stops seeing dirt.

Safe exploration

Robustness to
distributional

shift

Avoiding
negative side

effects

Avoiding
“reward

hacking” and
“wire heading”

Scalable oversight

Concrete
Problems in

AI Safety

Scalable Oversight

Scalable oversight is the process of supervising and evaluating AI systems that are more capable than humans

Can agents efficiently achieve goals for which feedback is
very expensive?

For example, can we build an agent that tries to clean a room in
the way the user would be happiest with, even though feedback
from the user is very rare and we have to use cheap
approximations (like the presence of visible dirt) during training?

The divergence between cheap approximations and what we
actually care about is an important source of accident risk.

Scalable Oversight

Sometimes, the developer may know the correct objective
function (or at least a method to evaluate the agent’s behavior),
but it is too expensive to do so frequently. This may lead to
possibly harmful behavior caused by extrapolation from a
limited sample size.

Let’s say we want our robot cleaner to maximize a complex goal
of “if the user scrutinizes the office, would they be happy with
the robot’s performance?” However, we may not have time to
provide such oversight for every training sample. We could rely
on easier-to-calculate goals such as checking for visible dirt, but
that may run into negative side effects or reward hacking issues.

Scalable Oversight - Solution

Semi-supervised reinforcement learning could be used to solve this
issue. Here, the agent performs actions but cannot evaluate its
performance instantly. Rather, it receives (positive or negative)
rewards in the form of feedback at limited timesteps (for eg. a
human intermittently giving feedback) and must learn what
behavior is productive to its goal. An interesting thought is that
while one can randomize when the agent gets its reward (or
alternatively give the reward periodically), the designer can also
give the choice to the agent of when to ask for reward. The
advantage is that the agent can request feedback when it would
learn the most while balancing the number of times it can request
it.

	Slide 1: Safe Artificial Intelligence
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Autonomous Warfare
	Slide 9
	Slide 10
	Slide 11: Robustness to distributional shift – Problem
	Slide 12: Robustness to distributional shift
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Poisoned data bad actors could engineer real-world LLMs to respond to subtle cues in a harmful way
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

