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Learning Objectives

• On completion of this week, you will be able to 
• Understand constraint satisfaction problems and its representation 

• Apply methods to solve constraint satisfaction problems such as:

• Search tree (depth first search)

• Backtracking search

• Heuristics search
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Content of this Lecture

Introduction

• Part – I       : Constrain Satisfaction Problems and Solution Approach

• Part – II      : Mathematical  Formulation 

• Part – III     : Backtracking Search   

• Part – IV      : Heuristic Search

• Quiz 
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Part 1

Constraints
Satisfaction Problem
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NP
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P
NP 

Hard

NP Complete



Final Year Project Supervisor Allocation
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Students Projects Supervisors Students

Projects
Selection

Projects
Proposal

Projects
Allocation

Constrains?
How many available projects

How many choices of projects 

How may students one 
supervisor can supervisor

How many supervisors

What projects a supervisor will 
supervisor

Is there an unavailability



University Timetable
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Constrains?
How many lecture rooms

What are the sizes of rooms

How many lectures

How many students in a 
lecture

How many lecturers 

What are the type of lectures



Satisfiability 
Problems

Scheduling, Planning, Software Verification problems and many 
more can be represented as Satisfiability Problems  
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Satisfiability 
Problems
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variables take certain values for which there is a solution



Boolean Satisfiability (SAT) Problem

Boolean Satisfiability or simply SAT is the problem of determining if a 
Boolean formula is satisfiable or unsatisfiable.

Satisfiable : If the Boolean variables can be assigned values such that the 
formula turns out to be TRUE, then we say that the formula is satisfiable.
𝐹 = 𝐴 ⋀¬𝐵 is Satisfiable

Unsatisfiable : If it is not possible to assign such values, then we say that the 
formula is unsatisfiable.
𝐹 = 𝐴 ⋀¬𝐴 is Unsatisfiable
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NP- Complete (solvable in polynomial time)



Satisfiability (SAT) Problem

We use conjunctive normal form (CNF) formulas for satisfiability problems. 

An example may be: 
(𝐴 ∨ 𝐵 ∨ ¬𝐶) ∧ (𝐵 ∨ 𝐷)

Where 
• (𝐴 ∨ 𝐵 ∨ ¬𝐶) is a Clause, which is a disjunction a of literals

• 𝐴, 𝐵, and ¬𝐶 are literals, each of which is a variable or the negation of a variable

• Each clause is a requirement which must be satisfied

• Number of literals in a clause determine type of Satisfiability problems

• A k-SAT problem is the one where a clause has at most k literals.
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Conjunctive Normal Form
(𝐴 ∨ 𝐵) → (𝐶 → 𝐷)

• Eliminate arrows (𝐴 → 𝐵 can be written as ¬𝐴 𝑉𝐵)

¬( 𝐴 ∨ 𝐵) ∨ (¬𝐶 ∨ 𝐷)
• Drive in negations 

(¬𝐴 ∧ ¬𝐵) ∨ (¬𝐶 ∨ 𝐷)
• Distribute

(¬𝐴 ∨ ¬𝐶 ∨ 𝐷) ∧ (¬𝐵 ∨ ¬𝐶 ∨ 𝐷)
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Source: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/
6.825 Techniques in Artificial Intelligence
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Solving a CNF
(𝑃 ∨ 𝑄) ∧ (𝑃 ∨ ¬𝑄 ∨ 𝑅) ∧ (𝑇 ∨ ¬𝑅) ∧ (¬𝑃 ∨ ¬𝑇) ∧ (𝑃 ∨ 𝑆) ∧ (𝑇 ∨ 𝑅 ∨ 𝑆) ∧ (¬𝑆 ∨ 𝑇)

If we assign 𝑃 = 𝐹𝑎𝑙𝑠𝑒 (or say 0), we get simpler set of constraints 

• (𝑃 ∨ 𝑄) simplifies to (𝑄)

• (P ∨¬Q∨R) simplifies to (¬𝑄 ∨ 𝑅)

• (¬𝑃 ∨ ¬𝑇) simplifies to 𝑇𝑟𝑢𝑒 (or say 1), i.e.,  is satisfied and can be removed 

• (𝑃 ∨ 𝑆) simplifies to (𝑆)

Result is 
(𝑄) ∧ (¬𝑄 ∨ 𝑅) ∧ (𝑇 ∨ ¬𝑅) ∧ (𝑆) ∧ (𝑇 ∨ 𝑅 ∨ 𝑆) ∧ (¬𝑆 ∨ 𝑇)
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Solving a CNF

(𝑃 ∨ 𝑄) ∧ (𝑃 ∨ ¬𝑄 ∨ 𝑅) ∧ (𝑇 ∨ ¬𝑅) ∧ (¬𝑃 ∨ ¬𝑇) ∧ (𝑃 ∨ 𝑆) ∧ (𝑇 ∨ 𝑅 ∨ 𝑆) ∧ (¬𝑆 ∨ 𝑇)
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Source: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6.825 Techniques in Artificial Intelligence

𝑄 ∧ ¬𝑄 ∨ 𝑅 ∧ 𝑇 ∨ ¬𝑅 ∧ 𝑆 ∧ 𝑇 ∨ 𝑅 ∨ 𝑆 ∧ (¬𝑆 ∨ 𝑇)

𝑃 = 𝟎

𝟎 ∧ 1 ∧ 𝑇 ∨ ¬𝑅 ∧ 𝑆 ∧ 𝑇 ∨ 𝑅 ∨ 𝑆 ∧ (¬𝑆 ∨ 𝑇) 𝟏 ∧ 𝑅 ∧ 𝑇 ∨ ¬𝑅 ∧ 𝑆 ∧ 𝑇 ∨ 𝑅 ∨ 𝑆 ∧ (¬𝑆 ∨ 𝑇)

𝑄 = 𝟎 𝑄 = 𝟏

(0) ∧ 1 ∧ 𝑆 ∧ 𝑇 ∨ 𝑆 ∧ (¬𝑆 ∨ 𝑇) 𝟏 ∧ 𝑇 ∧ 𝑆 ∧ 𝟏 ∧ (¬𝑆 ∨ 𝑇)

𝑅 = 𝟎 𝑅 = 𝟏

𝑃 = 𝟏

𝑇 ∧ 𝟏 ∧ 𝟏 ∧ 𝑇

𝑆 = 𝟏

𝑇 = 𝟏

𝟏 ∧ 𝟏 ∧ 𝟏 ∧ 𝟏

𝑻𝒓𝒖𝒆
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Solving a CNF

(𝑃 ∨ 𝑄) ∧ (𝑃 ∨ ¬𝑄 ∨ 𝑅) ∧ (𝑇 ∨ ¬𝑅) ∧ (¬𝑃 ∨ ¬𝑇) ∧ (𝑃 ∨ 𝑆) ∧ (𝑇 ∨ 𝑅 ∨ 𝑆) ∧ (¬𝑆 ∨ 𝑇)
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𝑄 ∧ ¬𝑄 ∨ 𝑅 ∧ 𝑇 ∨ ¬𝑅 ∧ 𝑆 ∧ 𝑇 ∨ 𝑅 ∨ 𝑆 ∧ (¬𝑆 ∨ 𝑇)

𝑃 = 𝟎

𝟎 ∧ 1 ∧ 𝑇 ∨ ¬𝑅 ∧ 𝑆 ∧ 𝑇 ∨ 𝑅 ∨ 𝑆 ∧ (¬𝑆 ∨ 𝑇) 𝟏 ∧ 𝑅 ∧ 𝑇 ∨ ¬𝑅 ∧ 𝑆 ∧ 𝑇 ∨ 𝑅 ∨ 𝑆 ∧ (¬𝑆 ∨ 𝑇)

𝑄 = 𝟎 𝑄 = 𝟏

(0) ∧ 1 ∧ 𝑆 ∧ 𝑇 ∨ 𝑆 ∧ (¬𝑆 ∨ 𝑇) 𝟏 ∧ 𝑇 ∧ 𝑆 ∧ 𝟏 ∧ (¬𝑆 ∨ 𝑇)

𝑃 = 𝟏

𝑇 ∧ 𝟏 ∧ 𝟏 ∧ 𝑇

𝑆 = 𝟏

𝑇 = 𝟏

𝟏 ∧ 𝟏 ∧ 𝟏 ∧ 𝟏

𝑻𝒓𝒖𝒆

𝑅 = 𝟎 𝑅 = 𝟏
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Map 
Colouring 
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Western 
Australia

Northern
Territory

South 
Australia

Queensland

New South Wales

Victoria

Tasmania

Constraints?

Adjacent regions 
must have different 
colours



Some other problems

• Hardware configuration

• Transportation scheduling

• Factory scheduling

• Floor planning
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Part 2
Definition



Constraint satisfaction problems (CSPs)

CSPs are search problems

State: Variable 𝑋! with values from domain 𝐷!

Goal: goal test is a set of constraints specifying 
allowable combinations of values for subsets of 
variables
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CSPs Components

𝑿: is a set of variable 𝑋 = {𝑥!, 𝑥", … , 𝑥#}

𝑫: is a set of domain 𝐷 = {𝑑!, 𝑑", … , 𝑑$}
for each variable 

𝑪: is a set of constraints  
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1

2

3



Discrete variables
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Continuous variables

𝑿 𝑿



Varieties of CSPs
Discrete variables
• Finite domains (simplest CSPs):

• 𝑛 variables, domain size 𝑑 ⇒ 𝑂(𝑑*) complete assignments
• 5 states and 2 colours: 2+
• e.g., Binary satisfiability (NP-complete)

• Infinite domains: integers, strings, etc. 
• e.g., job scheduling, variables are start / end days for each job
• need a constraint language, e.g., Start Job1 + 5 ≤ Start Job3
• linear constraints solvable, nonlinear undecidable

Continuous variables
• linear constraints solvable in polynomial time by linear programming

Dr Varun Ojha, University of Reading, UK
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Map 
Colouring 
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New South Wales

Western 
Australia

Northern

Territory

South 
Australia

Queensland

Victoria

Tasmania

𝑿: is a set of variable are state name
𝑋 = {𝑊𝐴,𝑁𝑇, 𝑄, 𝑁𝑆, 𝑉, 𝑆𝐴, 𝑇}

𝑫: is a set of colour
𝐷 = {𝑅𝑒𝑑, 𝐺𝑟𝑒𝑒𝑛 𝐵𝑙𝑢𝑒} for each 
Variable state 𝑋,

𝑪: adjacent sates must have different 
colours (e.g., 𝑾𝑨 ≠ 𝑵𝑻)

1

2

3



Map 
Colouring 
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Western 
Australia

Northern
Territory

South 
Australia

Queensland

New South Wales

Victoria

Tasmania

Constraints?

Adjacent regions 
must have different 
colours

Fun App: https://mapchart.net/australia.html

https://mapchart.net/australia.html


Map 
Colouring 
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Western 
Australia

Northern 
Australia

South 
Australia

Queensland

New South Wales

Victoria

Tasmania



Map Colouring 
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Western 
Australia

Northern 
Australia

South 
Australia

Queensland

New South Wales

Victoria

Tasmania

Solutions are complete and 
has consistent assignments.

WA = red, 
NT = green, 
Q = red, 
NSW = green, 
V = red, 
SA = blue, 
T = green
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Constraints Graph



Constraint graph

Binary CSPs: each constraint relates at most two 
variables

Constraint graph: nodes are variables, arcs (links) 
show constraints

Dr Varun Ojha, University of Reading, UK 28

5:53 pm



Constraint graph
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New South Wales

Western 
Australia

Northern

Territory

South 
Australia

Queensland

Victoria

Tasmania

Victoria

WA

NT

SA

Q

NSW

V

T



Constraint graph
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Victoria

WA

NT

SA

Q

NSW

V

T

General-purpose CSP 
algorithms use the graph 
structure to speed up 
search. 

E.g., Tasmania is an 
independent subproblem



Constraint graph
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Victoria

WA

NT

SA

Q

NSW

V

T

CSPs are faster ways to solve 
problems 

E.g., If   SA   = blue then the other five 
linked states will not take blue that is 
25 = 32 possible assignments. 

Else any other search algorithm will 
search 35= 243 assignments. 

87% reduction



Variations of Constraints
Unary constraints involve a single variable, 

e.g., SA ≠ green

Binary constraints involve pairs of variables,
e.g., SA ≠ WA

Higher-order constraints involve 3 or more variables,
e.g., SA ≠ WA ≠ NT

Dr Varun Ojha, University of Reading, UK
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WA

NT

SA

Q

NSW

V

T
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Part 3

Backtracking Search 



Standard Search Formulation
Initial state: none of the variables has a 
value (colour), the empty assignment, { }

Successor state: one of the variables 
without a value will get some value that 
does not conflict with constraints.

Goal state: all variables have a value 
and none of the constraints is violated.
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1

2

3

WA

NT

SA

Q

NSW

V

T



Standard Search Formulation (Contd..)
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WA

NT

SA

Q

NSW

V

T
𝑛!×𝑑!

𝑛 layers
WA NT TWA WA

WA
NT

WA
NT

WA
NT

𝑛× 𝑑

𝑛× 𝑑 × 𝑛 − 1 ×𝑑
NT
WA

leaves

TERRIBLE ! 



Special property of CSPs: Commutativity
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WA

NT

SA

Q

NSW

V

T
𝑛!×𝑑!

𝑛 layers
WA NT TWA WA

WA
NT

WA
NT

WA
NT

𝑛× 𝑑

𝑛× 𝑑 × 𝑛 − 1 ×𝑑
NT
WA

Equal! leaves

NT WA same as WA NT
That’s Good! 



Backtracking (Depth-First) search

Backtracking search uses depth first search that chooses value
for one variable at time and backtracks when no legal value left.
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𝑛!×𝑑!

𝑛 layers
WA NT TWA WA

WA
NT

WA
NT

WA
NT

𝑛× 𝑑

𝑛× 𝑑 × 𝑛 − 1 ×𝑑
NT
WA

leaves



Backtracking search 
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WA

NT

SA

Q

NSW

V

T𝑑!

WAWA WA

WA
NT

WA
NT

WA
NT

𝑑

𝑑"

leaves

x



Backtracking search 

Dr Varun Ojha, University of Reading, UK 39

5:53 pm



Backtracking search 
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Backtracking search 
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Backtracking search 
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Backtracking Search 
(efficiency Improvement)
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General-purpose methods can give huge gains in speed:

1.Which variable should be assigned next?
2. In what order should its values be tried?
3.Can we detect inevitable failure early?
4.Can we take advantage of problem structure?



Variable and Value Ordering
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Which variable should be assigned next?
And

In what order should its values be tried?
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1 2



Minimum remaining values heuristic
MRV: choose the variable with the fewest legal values
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Q has two values left: blue and red

SA has only blue value left



Degree heuristic
Picks a variable which will cause failure as soon as possible, allowing the tree to be 
pruned. (i.e., choose the variable with the most constraints on remaining variables)
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If SA the most neighbour so 
it will restrict others



Least constraining value heuristic
• Given a variable, choose the least constraining value:
• the one that rules out the fewest values in the remaining variables
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Allows 1 value for SA

Allows 0 values for SA

Blue would be bad choice 
since it will constrain its 

neighbour most 



Rationale for MRV, DH, LCV
• In all cases we want to enter the most promising branch, but we also 

want to detect inevitable failure as soon as possible.

• MRV + DH: the variable that is most likely to cause failure in a branch is 
assigned first. The variable must be assigned at some point, so if it is 
doomed to fail, we would better found out soon.

• LCV: tries to avoid failure by assigning values that leave maximal 
flexibility for the remaining variables. We want our search to succeed as 
soon as possible, so given some ordering, we want to find the successful 
branch.
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Can we detect inevitable failure early? 
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3



Forward Checking
Idea: Keep track of remaining legal values for unassigned variables that are connected to current variable.

Terminate search when any variable has no legal values
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WA NT Q NWS V SA T

WA

NT

SA

Q

NSW

V

T



Forward Checking
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WA NT Q NWS V SA T

Idea: Keep track of remaining legal values for unassigned variables that are connected to current variable.

Terminate search when any variable has no legal values

WA

NT

SA

Q

NSW

V

T



Forward Checking
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WA NT Q NWS V SA T

Idea: Keep track of remaining legal values for unassigned variables that are connected to current variable.

Terminate search when any variable has no legal values

WA

NT

SA

Q

NSW

V

T



Forward Checking

54
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WA NL Q NWS V SA T

Idea: Keep track of remaining legal values for unassigned variables that are connected to current variable.

Terminate search when any variable has no legal values

WA

NT

SA

Q

NSW

V

T



Constraint propagation
Forward checking propagates information from assigned to 
unassigned variables, but doesn’t provide early detection for all 
failures:
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WA NL Q NWS V SA T

WA

NT

SA

Q

NSW

V

T

NT and SA cannot 
both be blue!

Constraint propagation 
repeatedly enforces 
constraints locally



Arc Consistency

Simplest form of propagation makes each arc consistent
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𝑋 → 𝑌 is consistent iff for every value 
𝑥 ∈ 𝑋 there is some allowed 𝑦

WA NL Q NWS V SA T

WA

NT

SA

Q

NSW

V

T



Arc Consistency

Simplest form of propagation makes each arc consistent
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𝑋 → 𝑌 is consistent iff for every value 
𝑥 ∈ 𝑋 there is some allowed 𝑦

WA NL Q NWS V SA T

WA

NT

SA

Q

NSW

V

T

inconsistent arc 
remove blue from source consistent arc.



Arc Consistency

Simplest form of propagation makes each arc consistent
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If 𝑋 loses a value, neighbours of 𝑋 need to be rechecked

WA NL Q NWS V SA T

WA

NT

SA

Q

NSW

V

T

neighbours of this arc just became inconsistent



Arc Consistency

Simplest form of propagation makes each arc consistent
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If 𝑋 loses a value, neighbours of 𝑋 need to be rechecked

WA NL Q NWS V SA T

WA

NT

SA

Q

NSW

V

T



Task
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[R]

[R,B,G][R,B,G]

[R,B,G][R,B,G]

START STOP

2 minutes/ Home work



Can we take advantage of problem structure?
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4



Problem Structure

O(n2d3), can be reduced to O(n2d2) (but detecting all is NP-hard)
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WA

NT

SA

Q

NSW

V

T

Tasmania and mainland are independent subproblems



Tree-structured CSPs
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A

C
D

E

F
B

Theorem: if the constraint graph has no loops, the CSP can be solved in 𝑶(𝒏𝒅𝟐) time. 

General CSPs has worst-case time is 𝑶(𝒅𝒏)



Tree-structured CSPs: Algorithm
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A

C
D

E

F
B

1. Choose a variable as root, order variables from root to leaves such that every node’s parent 

precedes it in the ordering

2. For j from n down to 2, apply RemoveInconsistent(Parent(Xj),Xj)

3. For j from 1 to n, assign Xj consistently with Parent(Xj)

A B C D E F



Nearly Tree-structured CSPs
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1. Choose a variable as root, order variables from root to leaves such that every node’s parent 

precedes it in the ordering

2. For j from n down to 2, apply RemoveInconsistent(Parent(𝑋%),𝑋%)

3. For j from 1 to n, assign 𝑿𝒋 consistently with Parent(𝑿𝒋)

WA

NT

SA

Q

NSW

V

T

WA

NT
Q

NSW

V

T



Nearly Tree-structured CSPs
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WA

NT

SA

Q

NSW

V

T

Tree decomposition of the constraint graph into a set of connected subproblems

• Every variable in the original problem appears in at least one of the subproblems.

• If two variables are connected by a constraint in the original problem, they must appear together (along with the 

constraint) in at least one of the subproblems.

• If a variable appears in two subproblems in the tree, it must appear in every subproblemalong the path connecting 

those subproblems.
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Part 4
Heuristics 

Search



Solving 4-Queen Problem
State space tree
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Q1 Q2 Q3 Q4
{ }

Q1 = 1 Q1 = 2 Q1 = 3 Q1 = 4

Q2 = 4Q2 = 3Q2 = 2

Q3 = 3 Q3 = 4 Q3 = 2 Q3 = 4 Q3 = 3 Q3 = 2

Q4 = 4 Q4 = 3 Q4 = 4 Q4 = 2 Q4 = 2 Q4 = 3



Solving 4-Queen Problem
Backtracking State 
space tree
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Q1 Q2 Q3 Q4
{ }

Q1 = 1 Q1 = 2

Q2 = 4Q2 = 3Q2 = 2

Q3 = 2 Q3 = 4 Q3 = 3 Q3 = 2

Q2 = 4

Q3 = 1

Q4 = 3Q4 = 4
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Hill Climbing

Image source: https://images.app.goo.gl/bePciTN8FsQJm37L9
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Simulated Annealing



Iterative algorithms for CSPs
Hill-climbing, Simulated Annealing typically works with “complete” 
states, i.e., all variables assigned

To apply these algorithm to CSPs:
allow states with unsatisfied constraints 
operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hillclimb with h(n) = total number of violated constraints
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Iterative algorithms for CSPs: Example
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4-Queen problem

States: 4 queens in 4 columns (44 = 256 states)
Operators: move queen in column
Goal test: no attacks
Evaluation: h(n) = number of attacks

h(n) = 5



Iterative algorithms for CSPs: Example
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4-Queen problem

States: 4 queens in 4 columns (44 = 256 states)
Operators: move queen in column
Goal test: no attacks
Evaluation: h(n) = number of attacks

h(n) = 2



Iterative algorithms for CSPs: Example
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4-Queen problem

States: 4 queens in 4 columns (44 = 256 states)
Operators: move queen in column
Goal test: no attacks
Evaluation: h(n) = number of attacks

Solve! h(n) = 0


