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Learning Objectives

On completion of this week, you will be able to

« Understand One-Player and Two-Player Game and Their solutions using Search Techniques.

Learning two different categories of search techniques of Al
» Systematic Search

* Non Systematic Search

Learn technigques to improve search speed
» Alpha-beta pruning
* A* Search

Apply methods to solve search problems

Learning methods of Reasoning

Dr Varun Ojha, University of Reading, UK 2



Content of this Lecture

Introduction

- Part — | . Search Problem Formulation
« Part— 1l : Systematic Search
 Part—IlIl : Non-Systematic Search

 Part— IV : Reasoning

e Part-V : Practical Exercise
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You're here

4 billion miles away
from earth in Voyager 1

|

That's Earth
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Search for Solution(s) in a Tree

Qi Q Qs Qg

Dr Varun Ojha, University of Reading, UK 7
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Game Trees (Definition)

* INITIAL STATE ({1)
* ACTIONS function (e.movetcoi2)
* RESULT function (X V)

* the nodes are game states

* the edges are moves.

Dr Varun Ojha, University of Reading, UK 8



Game Trees (Tic-Tac-Toe) 6:43 PM

MAX ¢ INITIAL STATE
MNG F s i . 1 X X MAX(x) has 9 moves
N ACTIONS function
MAXH) H ™ Alternatively MAX places x and MIN places o
\ until reach leaf (terminal) node
MIN () [ REH ER _
—'\ RESULT function
utility value of the terminal state from
| | the point of view of MAX; high values
Terminal TR BIR FRE - are assumed to be good for MAX and
Utility -1 0 +1 bad for MIN

Dr Varun Ojha, University of Reading, UK 9
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Game Trees (Tic-Tac-Toe)

MAX ()

MING  BEHHEHEE B A EHBEHEE » Terminal node for tic-tac-toe

> \ game tree is: fewer than
"'\ 9! = 362,880 nodes.

VIINRO J s i i
\ e For chess there are over 1040

| | nodes.
Terminal X§§ §§§XX§§
Utlity -1 0 +1

Dr Varun Ojha, University of Reading, UK 10



Game Tree Types

6:43 PM

Single-player path finding problems.
* Rubik’s Cube
* Sliding puzzle.

o
N

* Travelling Salesman Problem.

ANE 1] 2|3 1] 2|3 1l2[3 Two-player games.
8| 2| 4 8| 4 8| 6| 4 8| 4
7| 6| 5 7| 6| 5 71 |5 7| 6] 5  Tic-Tac-Toe
T N U o
1 3] 1113 11 2 11213 L1121 3] [1]12]3 21 3] L1123 oCheckerS
2|l 4| 8| 2l4||8|4|3||8|4|5||8|6|4||s]l6]lal|1]s8]4]]|7]8]4
6|5||7l6|5||7l6]5]]7]6 71 5| | 7| 5 7] 6] 5 6| 5 e Othello

» Constraint satisfaction problems.
» Eight Queens (N-Queen)
« Sudoku

Example: Sliding puzzle

Dr Varun Ojha, University of Reading, UK 11
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Game Tree — Problem Space

Each game consists of

» a problem space,

8 4 e an initial state, and

« asingle (or a set of) goal states.

u W left . . .
. - > A problem space is a mathematical abstraction

1] |3 1] 2] 3 1] 2] 3 1] 2] 3 /
sl 2| 2 sl 4 sl 6l 4 sl 4 in the form of a tree:
7] 6] 5 7] 6| 5 7l |5 7] 6] 5
- the root represents current state
‘/‘/ /\ /\ M * nodes represent states of the game
1] 3 112 11 2] 3] | 1] 2| 3]||1]2]3 2| 3| | 1] 2|3
* edges represent moves
8|l 2| 4| | 8|4l 3]||8[4|5||8]6|4][8]6]4]|1]8]4|7]8]4 g P
716]5| | 7]6[5]|7[6 7151715 7]16]5 6] 5 « leaves represent final states (win, loss or draw)

o Example: 8-Puzzle game
Example: Sliding puzzle
» nodes: the different permutations of the tiles.

« edges: moving the blank tile up, down, right or left.

Dr Varun Ojha, University of Reading, UK 12
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Game Tree — Problem Space

Choice of a problem space
* not so obvious for some problems.

* One general rule is that a smaller representation, in the sense of fewer states to search, is often
better then a larger one. A problem space is characterized by two major factors.

The branching factor - the average number of children of the nodes in the space.
* The eight puzzle has a branching factor of 2.13
* Rubik’s cube has a branching factor of 13.34
* Chess has a branching factor of about 35

The solution depth
« The length of the shortest path from the initial node to a goal node.
* The size of a solution space:
Tic-Tac-Toe is 9! = 362,880
8-puzzle - 91/2
Checkers - 1040
Chess - 10129 (40 moves, 35 branch factor - 35(2*0)

Dr Varun Ojha, University of Reading, UK 13
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Game Trees - Search for a Move

MAX (x)

. Brute-Force Search s

MIN (o)

* Minimax _-\

MAX (¥

 Heuristic Search _-\

MIN (o) om

 Dijkstra Algorithm ‘\

 Best-First Search

« A* algorithm X IR

Terminal

0
0
Utility -1 O +1

Dr Varun Ojha, University of Reading, UK 14
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Search
/\

Uninformed / Informed /
Systematic Non-Systematic
/\ /\.
?()I‘;J(;tg Minimax Best-First A*
search search Algorithm

search

Dr Varun Ojha, University of Reading, UK 15
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Systematic Search

Brute-Force Search
And Minimax
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Brute-Force Search

Breadth-First
Search

Dr Varun Ojha, University of Reading, UK 18
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Breadth-First Search

» Breadth-First search (BFS) expands nodes in
order of their depth from the root. /

* Implemented by first-in first-out (FIFO) queue. l
« BFS will find a shortest path to a goal.

« Time/Space Complexity - branching factor b
and the solution depth d.

« Generate all the nodes up to level d.
» Total number of nodes in BFS
1+b+b?2+..+bd=0(b9)

 BFS will exhaust the memory in minutes.

Dr Varun Ojha, University of Reading, UK 19
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https://qiao.github.io/PathFinding.js/visual/
https://qiao.github.io/PathFinding.js/visual/
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Bi-Directional Breadth-First Search

Graphics inspiration: _ _ _ _
https://giao.github.io/PathFinding.js/visual/ Dr Varun Ojha, University of Reading, UK 21



https://qiao.github.io/PathFinding.js/visual/
https://qiao.github.io/PathFinding.js/visual/

Depth-First Search

Depth-First is iterative-deepening

» First performs a DFS to depth one. Than starts over
executing DFS to depth two and so on.

Implemented by LIFO stack

Space Complexity is linear in the maximum search
depth.

DFS generate the same set of nodes as BFS
Time Complexity is O(b9) l

The first solution DFS found may not be the
optimal one.

On infinite (branch) tree DFS may not terminate.

Dr Varun Ojha, University of Reading, UK
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Minimax
* We consider games with two players

« Zero-Sum games: One person's gains are the result of another person's
losses (so called).

« The minimax algorithm is a specialized search algorithm which returns
the optimal sequence of moves for a player in a zero-sum game.

 In the game tree that results from the algorithm, each level represents a
move by either of two players, say A and B.

Dr Varun Ojha, University of Reading, UK 23
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Minimax: Example ..

* Tic-Tac-Toe MINC) - H
* Player A: MAX (x)
MAX (x)

* Player B: MIN (0) —-x

MIN () X

e« Z€ro Sum: -'\
 If MAX wins gets +1

 If MIN wins gets -1
* NetSum =0

x| X

. (0] 0
Terminal —
1 O

Utility

Dr Varun Ojha, University of Reading, UK 24



Minimax )

The minimax algorithm explores the entire MIN (o)
game tree using a depth-first search.

At each node in the tree where player-A HEUE )

has to move. The player-A would like to play
the move that maximises the payoff.

Player-A will assign the maximum score MIN ()

amongst the children to the node where Max
makes a move.

Similarly, player-B will minimize the payoff to
A-player.

Terminal
The maximum and minimum scores are N
taken at alternating levels of the tree, since A Utility
and B alternate turns.

Dr Varun Ojha, University of Reading, UK
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o|lojo| ——

X X[oX] [XIoX
x| X

x[x[o] [X[olo

-1 0 +1

25
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Alpha-Beta Pruning

 Alpha-beta pruning improve
the efficiency of Minimax
search and reduces the
number of state to examine
INn a game tree.

* It prunes the branches that
will not influence decision of
a node.

Dr Varun Ojha, University of Reading, UK 26



Alpha-Beta Pruning

 Initialise [@ = —, B = +] to the MAX (root node A) and
explore its child

* Leafof Bis 3. Set [a = —x, 8 = 3] since B is MIN node
and it will play at most 3. That is beta is the minimum
upper bound of possible solutions

» Explore other child of B to see if any other child has less
than 3. [3, 3]
» Last child of B has 8. Set B with [a = 3, 8 = 3].

* Root (MAX node A) can play at least 3. Set [a =
3,8 = +x]. Explore other child to see if any child has a
grater value than 3. That is alpha is the maximum lower
bound of possible solutions

3, 3]

* MIN node C has 2. Hence, its other child are pruned since

C will not play more than 2 and node B has 3. Hence, A will
NOT play C. 3

« Similarly explore other child of A to check if it can play
more than 3.

12

Dr Varun Ojha, University of Reading, UK
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pruning
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Systematic Search

 Brute-force and Minimax systematically search the whole
search space.

 Limitation — Sometimes however it iIs not feasible to search the whole
search space - it's just too big!

« Solution — Use heuristic search (non-systematic search)

Dr Varun Ojha, University of Reading, UK 28
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Non-Systematic Search

Heuristic Search
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Heuristic Search: Principles

Strategy — rather than trying all possible search paths, focus on paths that seem to
be getting us closer to the goal state.

Limitation — generally can't be sure that the goal state is really near.
Advantage — might be able to have a good guess based on some heuristics.

Evaluation function — evaluation function that ranks nodes in the search tree
according to some criteria (for example, how close we are to the target). This
function provides a quick way of guessing.

Dr Varun Ojha, University of Reading, UK 31
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Heuristic Search: Properties

1. It must provide an accurate estimator of

the cost to reach a goal.
2. It must be cheap to compute.

3. It always must be a lower bound on

actual solution cost.

Dr Varun Ojha, University of Reading, UK 32
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Dijkstra Algorithm

* |t find the shortest path between *
two nodes in a graph

e Steps:
1. Initially all nodes are marked
unvisited and assigned value o

2. Start with assigning initial node with
values 0

3. Visit other unvisited node assign
smallest tentative distance from
Initial node mark them visited. And
REPEAT

%

lllustration source: https://en.wikipedia.org/wiki/Dijkstra%27s algorithm

Dr Varun Ojha, University of Reading, UK 33


https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
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https://qiao.github.io/PathFinding.js/visual/
https://qiao.github.io/PathFinding.js/visual/
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Bi-Directional Dijkstra Search

Graphics inspiration: _ _ _ _
https://giao.github.io/PathFinding.js/visual/ Dr Varun Ojha, University of Reading, UK 35



https://qiao.github.io/PathFinding.js/visual/
https://qiao.github.io/PathFinding.js/visual/
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Best-First Search

* The search is similar to Breadth First Search, but instead of taking
the first node it always chooses a node with the best score,
according to an evaluation function.

* If we create a good evaluation function, best first search may
drastically cut down the amount of search time.

* It is a Greedy algorithm. It uses a heuristic to evaluate the path.

Dr Varun Ojha, University of Reading, UK 36
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Best-First Search

Graphics inspiration:
https://qgiao.github.io/PathFinding.js/visual/ Dr Varun Ojha, University of Reading, UK 38
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https://qiao.github.io/PathFinding.js/visual/
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Bi-Directional Best-First Search

Graphics inspiration: _ _ _ _
https://giao.github.io/PathFinding.js/visual/ Dr Varun Ojha, University of Reading, UK 39



https://qiao.github.io/PathFinding.js/visual/
https://qiao.github.io/PathFinding.js/visual/
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A* Algorithm

* A* Is a variant of Best-First search. Since Best-First search only
accounts for heuristic and the cheapest cost of the path from a
start state to the current state. So, we may find a solution but it
may be not a very good solution.

« A* attempts to find a solution which minimizes the total cost of the
solution path.

 This algorithm combines advantages of Breadth-First search with
advantages of best first search.

Dr Varun Ojha, University of Reading, UK 40



Best-First Search A* Algorithm "
f) = h (n) f) = g (n) + h(n)

h (n)
heuristic costto fromnto T

g (n)
g (n) estimated cost

estimated cost from Ston from n to ny,ny..., T

h (n)
heuristic costto from Sto T

Dr Varun Ojha, University of Reading, UK 41
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Admissibllity of a heuristic h(n)

* A heuristic h(n) is admissible if it never overestimate the cost
to the Goal. Thatis h(n) < h*(n), where h*(n) is the true cost

from a state n to the Goal.

 Admissible heuristics can be measured as:

* h(n) =0 (set to zero)

e h(n) = \/(nx — T2+ (n, — y)2 (straight line)

Dr Varun Ojha, University of Reading, UK 42



F(n) = g () + h(n)
f(n)=5+9=14

20

f(n) =
(10+2)+4
=16

f(n) f(n) f(n)
(16+3)+1 (16+1)+0 (16+3)+2
=20 =17 =21

These are suboptimal

f() = g () +h(n)
f(n) =3+ 7 = 10

6:43 PM

f() = g () + h(n)
f(n)=5+3=8

f(n) =
(8+7)+5
=20

f(n) f(n)
(13+2)+0 (20+4)+1
=15 =25
Goal reached!
Is it optimal? 43



Path Finding Example

Example adapted from: https://brilliant.org/wiki/a-star-search/ (Accessed on 31 Jan 2021)

. Initial State
Goal State

F(n) =G (n) + H(n)

H(n) = \/("x —T,)* + (ny — y)z
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Path Finding Example

Example adapted from: https://brilliant.org/wiki/a-star-search/ (Accessed on 31 Jan 2021)

Initial State

Goal State

F(n) =G (n) + H(n)

H(n) :\/(nx — T)? "‘("y — y)z

Dr Varun Ojha, University of Reading, UK 45
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Graphics inspiration:
https://qgiao.github.io/PathFinding.js/visual/ Dr Varun Ojha, University of Reading, UK 46
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Bayes Theorem

likelihood prior
B P(E|H) P(H)
P (H |E) = P(H)P(E|H)+ P(—=H)P(E |-H)
posterior

normalising constant

Where H and E are events

P(H | E) Is a conditional probability, the likelihood of H given E s true.
P(E | H) Is a conditional probability the likelihood of E given H is true.
P(H) and P(E) are probabilities of observing H and E

Dr Varun Ojha, University of Reading, UK

6:43 PM

49



6:43 PM

Bayesian Inference (Sequential)

likelihood prior

P(E; |H)P(E, | H)P(H)
P(E1)P(E;)

P (H |E1,E2) —

posterior .
normalising constant

Where H and E; are events

P(H |E;) is a conditional probability, the likelihood of H given E; is true.
P(E; | H) Is a conditional probability the likelihood of E; given H Is true.
P(H) and P(E;) are probabilities of observing H and E;

Dr Varun Ojha, University of Reading, UK 50



Probabllistic Reasoning

Fact: You return home and the door Is open

Reason: Is it a family person?
Reason: Is it a Burglar?

Who opens the door? |s something stolen? ...

How do we represent these relations?

Dr Varun Ojha, University of Reading, UK
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Belief Network

Causal relationship are represented in a direct acyclic graph
(DAG) and arrows represent relationship.

Family person Burglar

N, 7

Door open

Dr Varun Ojha, University of Reading, UK 52



Probabilistic Relationships 6:43 PM

Direct

P (B | A)

Indirect

P (B | A)
P (C|B)

C is independent
of A given B

Common cause Common effect

P (B | A) P (C| A, B)
P (C|A)

Dr Varun Ojha, University of Reading, UK 53
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Joint Probabillities

What is the probability that event A and B together (e.g., cloud
and sun appearing together).

P (A, B) = P(4|B) P(B)

P (4,B) = P(B |A) P(4)

arun Ojha, University of Reading, UK
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Bayesian Belief Network

P(A,B,C,D,E)=P(A) P(B|C) P(C|A)P(D|C,E)P(E|A,C)

In General, we can write

P(x{,x9, ;%) = PX{i=xAANX;,=xp)

— Hp(xi |parent(X;))
i=1

Goal: is to calculate the posterior conditional probability distribution of each of the possible
unobserved causes given the observed evidence, i.e. P[ Cause |Evidance]

Dr Varun Ojha, University of Reading, UK 55



Example Problem

Example adapted from:
Bayesian networks, Ch 14, Artificial Intelligence: A Modern Approach, Peter Norvig and Stuart J. Russell

Variables: Burglar, Earthquake, Alarm,

P(B) P(E) JohnCalls, MaryCalls
001 Earthquake ) [ 4o
Network topology reflects “causal”

knowledge:
B _E |P(ABE) * Aburglar can set the alarm off
T T 95 » An earthquake can set the alarm off
T F 94 * The alarm can cause Mary to call
F T 29 * The alarm can cause John to call
F F 001

P(J|A) A [P(M|A)
F| .05 F| .01

Note: | keep calling/writing BNN — but it should be BBN — Bayesian Belief Network



Example Problem

Example adapted from:
Bayesian networks, Ch 14, Artificial Intelligence: A Modern Approach, Peter Norvig and Stuart J. Russell

Burglary

P(B) P(E) :
ol Earthquake - If we assume:
: i Burglar (B) = True

Earthquake (E) = True

B E |P(AB.E) Alarm (A) = True

% g .gi JohnCalls (J) = True

CIE A = MaryCalls (M) = False
F F | .001

From this Bayesian Belief Network

P(J|A) A [POMIA) (BNN), we have the following
T .90 T 70 prObablllty:
F| .05 F| .0l PB=TE=TA=T,J=T,M=F)

PB=T,E=T,A=T,J=T,M=F) =
P(B=T)P(E=T)P(A=T/B=TE=T)P(] =T| A=T)P(M =F| A=T)



Example Problem

Example adapted from:
Bayesian networks, Ch 14, Artificial Intelligence: A Modern Approach, Peter Norvig and Stuart J. Russell

Burglary

P(B) P(E) :
ol Earthquake - If we assume:
: i Burglar (B) = True

Earthquake (E) = True

B E |P(AB.E) Alarm (A) = True

% g .gi JohnCalls (J) = True

CIE A = MaryCalls (M) = False
F F | .001

From this Bayesian Belief Network

P(J|A) A [POMIA) (BNN), we have the following
T .90 T 70 prObablllty:
F| .05 F| .0l PB=TE=TA=T,J=T,M=F)

PB=T,E=T,A=T,J=T,M=F) =
P(B=T)P(E=T)P(A=T/B=TE=T)P(] =T| A=T)P(M =F| A=T)



Example Problem

Example adapted from:

Bayesian networks, Ch 14, Artificial Intelligence: A Modern Approach, Peter Norvig and Stuart J. Russell

P(B)

001

B E |P(AB,E)
T T| .95

T F | .94

F T| .29

F F | .001

P(E)

Earthquake 002

P(J|A)

™1

.90
.05

We are interested in answering the prediction questions like:

A [P(M|A)
F| .01

« probability of Alarm going off P (A =T )
« probability of P (John Calls |Alarm = T)

Dr Varun Ojha, University of Reading, UK
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If we assume:

Burglar (B) = True
Earthquake (E) = True
Alarm (A) = True
JohnCalls (J) = True
MaryCalls (M) = False

From this Bayesian Belief Network

(BNN), we have the following

probability:
PB=T,E=T,A=T,]=T,M=F)

59
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