Artificial Intelligence

CS3AI18/ CSMAI19
Lecture - 4/10: Search and Reasoning

DR VARUN OJHA

Department of Computer Science
*** University of
Reading

Learning Objectives

On completion of this week, you will be able to

- Understand One-Player and Two-Player Game and Their solutions using Search Techniques.
- Learning two different categories of search techniques of Al
- Systematic Search
- Non Systematic Search
- Learn techniques to improve search speed
- Alpha-beta pruning
- A* Search
- Apply methods to solve search problems
- Learning methods of Reasoning

Content of this Lecture

Introduction

- Part - I : Search Problem Formulation
- Part - II : Systematic Search
- Part - III : Non-Systematic Search
- Part - IV : Reasoning
- Part - V : Practical Exercise

Quiz

Artificial Intelligence

CS3AI18/ CSMAI19
Lecture - 4/10: Search and Reasoning

Part 1 Search

DR VARUN OJHA

Department of Computer Science
*** University of
Reading

4 billion miles away from earth in Voyager 1

That's Earth

Search for Solution(s) in a Tree

$$
\begin{array}{llll}
Q_{1} & Q_{2} & Q_{3} & Q_{4}
\end{array}
$$

Game Trees (Definition)

- INITIAL STATE ($\}$)
- ACTIONS function (a, move to ool2)
- RESULT function ($\times \vee$)
- the nodes are game states
- the edges are moves.

Game Trees (Tic-Tac-Toe)

INITIAL STATE

MAX(x) has 9 moves
ACTIONS function
Alternatively MAX places \mathbf{x} and MIN places \mathbf{o} until reach leaf (terminal) node

RESULT function
utility value of the terminal state from the point of view of MAX; high values are assumed to be good for MAX and bad for MIN

Game Trees (Tic-Tac-Toe)

- Terminal node for tic-tac-toe game tree is: fewer than $9!=362,880$ nodes .
- For chess there are over $10{ }^{40}$ nodes.

Game Tree Types

Single-player path finding problems.

- Rubik's Cube
- Sliding puzzle.
- Travelling Salesman Problem.

Two-player games.

- Tic-Tac-Toe
- Chess
- Checkers
- Othello
- Constraint satisfaction problems.
- Eight Queens (N-Queen)
- Sudoku

Game Tree - Problem Space

Each game consists of

- a problem space,
- an initial state, and
- a single (or a set of) goal states.

A problem space is a mathematical abstraction in the form of a tree:

- the root represents current state
- nodes represent states of the game
- edges represent moves
- leaves represent final states (win, loss or draw)

Example: 8-Puzzle game

- nodes: the different permutations of the tiles.
- edges: moving the blank tile up, down, right or left.

Game Tree - Problem Space

Choice of a problem space

- not so obvious for some problems.
- One general rule is that a smaller representation, in the sense of fewer states to search, is often better then a larger one. A problem space is characterized by two major factors.

The branching factor - the average number of children of the nodes in the space.

- The eight puzzle has a branching factor of 2.13
- Rubik's cube has a branching factor of 13.34
- Chess has a branching factor of about 35

The solution depth

- The length of the shortest path from the initial node to a goal node.
- The size of a solution space:
- Tic-Tac-Toe is $9!=362,880$
- 8-puzzle-9!/2
- Checkers -10^{40}
- Chess - $\mathbf{1 0} \mathbf{0}^{120}$ (40 moves, 35 branch factor - $\mathbf{3 5} 5^{\left(2^{+40}\right)}$

Game Trees - Search for a Move

- Brute-Force Search
- Minimax
- Heuristic Search
- Dijkstra Algorithm
- Best-First Search
- A^{*} algorithm

Search

Uninformed / Systematic

Informed / Non-Systematic

Brute force search

Minimax search

Best-First search

A*
 Algorithm

Artificial Intelligence

CS3AI18/ CSMAI19
Lecture - 4/10: Search and Reasoning

Part 2

 Systematic Search

 Systematic Search
 DR VARUN OJHA
 Department of Computer Science
 **: University of
 - Reading

Systematic Search

Brute-Force Search And Minimax

Brute-Force Search

Breadth-First Search

Depth-First Search

Breadth-First Search

- Breadth-First search (BFS) expands nodes in order of their depth from the root.
- Implemented by first-in first-out (FIFO) queue.
- BFS will find a shortest path to a goal.
- Time/Space Complexity - branching factor b and the solution depth \mathbf{d}.
- Generate all the nodes up to level d.
- Total number of nodes in BFS

$$
1+b+b^{2}+\ldots+b^{d}=O\left(b^{d}\right)
$$

- BFS will exhaust the memory in minutes.

Bi-Directional Breadth-First Search

Depth-First Search

- Depth-First is iterative-deepening
- First performs a DFS to depth one. Than starts over executing DFS to depth two and so on.
- Implemented by LIFO stack
- Space Complexity is linear in the maximum search depth.
- DFS generate the same set of nodes as BFS
- Time Complexity is $\mathrm{O}\left(\mathrm{b}^{\mathrm{d}}\right)$
- The first solution DFS found may not be the optimal one.

- On infinite (branch) tree DFS may not terminate.

Minimax

- We consider games with two players
- Zero-Sum games: One person's gains are the result of another person's losses (so called).
- The minimax algorithm is a specialized search algorithm which returns the optimal sequence of moves for a player in a zero-sum game.
- In the game tree that results from the algorithm, each level represents a move by either of two players, say A and B.

Minimax: Example

- Tic-Tac-Toe
- Player A: MAX (x)
- Player B: MIN (o)
- Zero Sum:
- If MAX wins gets +1
- If MIN wins gets -1
- Net Sum = 0

Minimax

- The minimax algorithm explores the entire game tree using a depth-first search.
- At each node in the tree where player-A has to move. The player-A would like to play the move that maximises the payoff.
- Player-A will assign the maximum score amongst the children to the node where Max makes a move.
- Similarly, player-B will minimize the payoff to A-player.
- The maximum and minimum scores are taken at alternating levels of the tree, since A and B alternate turns.

Alpha-Beta Pruning

- Alpha-beta pruning improve the efficiency of Minimax search and reduces the number of state to examine in a game tree.
- It prunes the branches that will not influence decision of a node.

Alpha-Beta Pruning

- Initialise $[\alpha=-\infty, \beta=+\infty]$ to the MAX (root node A$)$ and explore its child
- Leaf of \mathbf{B} is 3 . Set $[\alpha=-\infty, \beta=3]$ since B is MIN node and it will play at most 3 . That is beta is the minimum upper bound of possible solutions
- Explore other child of B to see if any other child has less than 3.
- Last child of B has 8 . Set B with $[\alpha=3, \beta=3]$.
- Root (MAX node A) can play at least 3. Set $\quad[\alpha=$ $3, \beta=+\infty]$. Explore other child to see if any child has a grater value than 3 . That is alpha is the maximum lower bound of possible solutions
- MIN node C has 2 . Hence, its other child are pruned since C will not play more than 2 and node B has 3 . Hence, A will NOT play C.

- Similarly explore other child of A to check if it can play more than 3.

Systematic Search

- Brute-force and Minimax systematically search the whole search space.
- Limitation - Sometimes however it is not feasible to search the whole search space - it's just too big!
- Solution - Use heuristic search (non-systematic search)

Artificial Intelligence

CS3AI18/ CSMAI19
Lecture - 4/10: Search and Reasoning

Part 3
 Non-Systematic Search

DR VARUN OJHA

Department of Computer Science
**: University of
Reading

Non-Systematic Search

Heuristic Search

Heuristic Search: Principles

Strategy - rather than trying all possible search paths, focus on paths that seem to be getting us closer to the goal state.

Limitation - generally can't be sure that the goal state is really near.

Advantage - might be able to have a good guess based on some heuristics.

Evaluation function - evaluation function that ranks nodes in the search tree according to some criteria (for example, how close we are to the target). This function provides a quick way of guessing.

Heuristic Search: Properties

1. It must provide an accurate estimator of
the cost to reach a goal.
2. It must be cheap to compute.
3. It always must be a lower bound on actual solution cost.

Dijkstra Algorithm

- It find the shortest path between two nodes in a graph
- Steps:

1. Initially all nodes are marked unvisited and assigned value ∞
2. Start with assigning initial node with values 0
3. Visit other unvisited node assign smallest tentative distance from initial node mark them visited. And REPEAT

Bi-Directional Dijkstra Search

Best-First Search

- The search is similar to Breadth First Search, but instead of taking the first node it always chooses a node with the best score, according to an evaluation function.
- If we create a good evaluation function, best first search may drastically cut down the amount of search time.
- It is a Greedy algorithm. It uses a heuristic to evaluate the path.

Best-First Search

Bi-Directional Best-First Search

A* Algorithm

- A* is a variant of Best-First search. Since Best-First search only accounts for heuristic and the cheapest cost of the path from a start state to the current state. So, we may find a solution but it may be not a very good solution.
- A^{*} attempts to find a solution which minimizes the total cost of the solution path.
- This algorithm combines advantages of Breadth-First search with advantages of best first search.

Best-First Search

$$
f(n)=h(n)
$$

heuristic cost to from S to T

Admissibility of a heuristic $h(n)$

- A heuristic $h(n)$ is admissible if it never overestimate the cost to the Goal. That is $h(n) \leq h^{*}(n)$, where $h^{*}(n)$ is the true cost from a state n to the Goal.
- Admissible heuristics can be measured as:
- $h(n)=0$ (set to zero)
- $h(n)=\sqrt{\left(n_{x}-T_{x}\right)^{2}+\left(n_{y}-T_{y}\right)^{2}}$ (straight line)

Path Finding Example

Example adapted from: https://brilliant.org/wiki/a-star-search/ (Accessed on 31 Jan 2021)

S	Initial State
T	Goal State
$F(n)=G(n)+H(n)$	
$H(n)=\sqrt{\left(n_{x}-T_{x}\right)^{2}+\left(n_{y}-T_{y}\right)^{2}}$	

Path Finding Example

Example adapted from: https://brilliant.org/wiki/a-star-search/ (Accessed on 31 Jan 2021)
Thitial State
Goal State
$F(n)=G(n)+H(n)$
$H(n)=\sqrt{\left(n_{x}-T_{x}\right)^{2}+\left(n_{y}-T_{y}\right)^{2}}$

		$\begin{aligned} & F=6.6 \\ & G=5.6 \\ & H=1 \end{aligned}$	$\begin{aligned} & F=5.2 \\ & G=5.2 \\ & H=0 \end{aligned}$
	$\begin{aligned} & \mathrm{F}=7.2 \\ & \mathrm{G}=4.2 \\ & \mathrm{H}=3 \end{aligned}$	$\begin{aligned} & F=5.8 \\ & G=3.8 \\ & H=2 \end{aligned}$	$\begin{aligned} & \mathrm{F}=5.2 \\ & \mathrm{G}=4.2 \\ & \mathrm{H}=1 \end{aligned}$
$\begin{aligned} & \mathrm{F}=7.8 \\ & \mathrm{G}=2.8 \\ & \mathrm{H}=5 \end{aligned}$	$\begin{aligned} & \mathrm{F}=6.4 \\ & \mathrm{G}=2.4 \\ & \mathrm{H}=4 \end{aligned}$	$\begin{aligned} & \mathrm{F}=5.8 \\ & \mathrm{G}=2.8 \\ & \mathrm{H}=3 \end{aligned}$	$\begin{aligned} & \mathrm{F}=5.8 \\ & \mathrm{G}=3.8 \\ & \mathrm{H}=2 \end{aligned}$
$\begin{aligned} & \mathrm{F}=7 \\ & \mathrm{G}=1 \\ & \mathrm{H}=6 \end{aligned}$	$\begin{aligned} & \mathrm{F}=6.4 \\ & \mathrm{G}=1.4 \\ & \mathrm{H}=5 \end{aligned}$		$\begin{aligned} & F=7.2 \\ & G=4.2 \\ & H=3 \end{aligned}$
	$\begin{aligned} & F=7 \\ & G=1 \\ & H=6 \end{aligned}$		

6:43 PM

Artificial Intelligence

CS3AI18/ CSMAI19
Lecture - 4/10: Search and Reasoning

Part 4
 Reasoning

DR VARUN OJHA

Department of Computer Science
**: University of
Reading

Probability

Bayes Theorem

Where H and E are events
$P(H \mid E)$ is a conditional probability, the likelihood of H given E is true. $P(E \mid H)$ is a conditional probability the likelihood of E given H is true. $P(H)$ and $P(E)$ are probabilities of observing H and E

Bayesian Inference (Sequential)

likelihood
prior

$$
P\left(H \mid E_{1}, E_{2}\right)=\frac{P\left(E_{1} \mid H\right) P\left(E_{2} \mid H\right) P(H)}{P\left(E_{1}\right) P\left(E_{2}\right)}
$$

posterior
Where H and E_{i} are events
$P\left(H \mid E_{i}\right)$ is a conditional probability, the likelihood of H given E_{i} is true. $P\left(E_{i} \mid H\right)$ is a conditional probability the likelihood of E_{i} given H is true. $P(H)$ and $P\left(E_{i}\right)$ are probabilities of observing H and E_{i}

Probabilistic Reasoning

Fact: You return home and the door is open

Reason: Is it a family person?
Reason: Is it a Burglar?

Who opens the door? Is something stolen? ...

How do we represent these relations?

Belief Network

Causal relationship are represented in a direct acyclic graph (DAG) and arrows represent relationship.

Probabilistic Relationships

Joint Probabilities

What is the probability that event A and B together (e.g., cloud and sun appearing together).

$$
\begin{aligned}
& P(A, B)=P(A \mid B) P(B) \\
& P(A, B)=P(B \mid A) P(A)
\end{aligned}
$$

Bayesian Belief Network

$$
P(A, B, C, D, E)=P(A) P(B \mid C) P(C \mid A) P(D \mid C, E) P(E \mid A, C)
$$

In General, we can write

$$
\begin{aligned}
P\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =P\left(X_{1}=x_{1} \wedge \cdots \wedge X_{n}=x_{n}\right) \\
& =\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parent}\left(X_{i}\right)\right)
\end{aligned}
$$

Goal: is to calculate the posterior conditional probability distribution of each of the possible unobserved causes given the observed evidence, i.e. P[Cause |Evidance]

Example Problem

Example adapted from:
Bayesian networks, Ch 14, Artificial Intelligence: A Modern Approach, Peter Norvig and Stuart J. Russell

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects "causal" knowledge:

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Example Problem

Example adapted from:
Bayesian networks, Ch 14, Artificial Intelligence: A Modern Approach, Peter Norvig and Stuart J. Russell

If we assume:

Burglar (B) = True
Earthquake (E) = True
Alarm (A) = True
JohnCalls (J) = True
MaryCalls (M) = False
From this Bayesian Belief Network
(BNN), we have the following probability:

$$
P(B=T, E=T, A=T, J=T, M=F)
$$

$$
\begin{gathered}
P(B=T, E=T, A=T, J=T, M=F)= \\
P(B=T) P(E=T) P(A=T / B=T, E=T) P(J=T / A=T) P(M=F / A=T)
\end{gathered}
$$

Example Problem

Example adapted from:
Bayesian networks, Ch 14, Artificial Intelligence: A Modern Approach, Peter Norvig and Stuart J. Russell

If we assume:

Burglar (B) = True
Earthquake (E) = True
Alarm (A) = True
JohnCalls (J) = True
MaryCalls (M) = False
From this Bayesian Belief Network
(BNN), we have the following probability:

$$
P(B=T, E=T, A=T, J=T, M=F)
$$

$$
\begin{gathered}
P(B=T, E=T, A=T, J=T, M=F)= \\
P(B=T) P(E=T) P(A=T / B=T, E=T) P(J=T / A=T) P(M=F / A=T)
\end{gathered}
$$

Example Problem

Example adapted from:
Bayesian networks, Ch 14, Artificial Intelligence: A Modern Approach, Peter Norvig and Stuart J. Russell

We are interested in answering the prediction questions like:

- probability of Alarm going off $P(A=T)$
- probability of $P($ John Calls \mid Alarm $=T)$

If we assume:

Burglar (B) = True
Earthquake (E) = True
Alarm (A) = True
JohnCalls (J) = True
MaryCalls (M) = False
From this Bayesian Belief Network
(BNN), we have the following probability:

$$
P(B=T, E=T, A=T, J=T, M=F)
$$

Artificial Intelligence

CS3AI18/ CSMAI19
Lecture - 4/10: Search and Reasoning

Part 5
 Practical Exercise

DR VARUN OJHA
Department of Computer Science

*** University of
Reading

