Artificial Intelligence

CS3AI18/ CSMAI19 Lecture - 4/10: Search and Reasoning

DR VARUN OJHA

Department of Computer Science

Learning Objectives

On completion of this week, you will be able to

- Understand One-Player and Two-Player Game and Their solutions using Search Techniques.
- Learning two different categories of search techniques of AI
 - Systematic Search
 - Non Systematic Search
- Learn techniques to improve search speed
 - Alpha-beta pruning
 - A* Search
- Apply methods to solve search problems
- Learning methods of Reasoning

Content of this Lecture

Introduction

- Part I : Search Problem Formulation
- Part II : Systematic Search
- Part III : Non-Systematic Search
- Part IV : Reasoning
- Part V : Practical Exercise

Quiz

Artificial Intelligence

CS3AI18/ CSMAI19 Lecture - 4/10: Search and Reasoning

Part 1 Search

DR VARUN OJHA

Department of Computer Science

You're here

4 billion miles away from earth in Voyager 1

That's Earth

Search for Solution(s) in a Tree

 \mathbf{Q}_1 \mathbf{Q}_2 \mathbf{Q}_3 \mathbf{Q}_4

Game Trees (Definition)

- INITIAL STATE ({})
- ACTIONS function (Q1 move to col 2)
- RESULT function (X \checkmark)
- the **nodes** are game states
- the **edges** are moves.

Game Trees (Tic-Tac-Toe)

INITIAL STATE

MAX(x) has 9 moves

ACTIONS function

Alternatively MAX places **x** and MIN places **o** *until reach* leaf (terminal) node

RESULT function

utility value of the terminal state from the point of view of MAX; high values are assumed to be good for MAX and bad for MIN

6:43 PM

Game Trees (Tic-Tac-Toe)

Terminal node for tic-tac-toe game tree is: fewer than
9! = 362,880 nodes.

• For chess there are over **10**⁴⁰ nodes.

Game Tree Types

Example: Sliding puzzle

Single-player path finding problems.

- Rubik's Cube
- Sliding puzzle.
- Travelling Salesman Problem.

Two-player games.

- Tic-Tac-Toe
- Chess
- Checkers
- Othello

Constraint satisfaction problems.

- Eight Queens (N-Queen)
- Sudoku

Game Tree – Problem Space

Example: Sliding puzzle

Each game consists of

- a problem space,
- an initial state, and
- a single (or a set of) goal states.

A **problem space** is a mathematical abstraction in the form of a tree:

- the root represents current state
- nodes represent states of the game
- edges represent moves
- leaves represent final states (win, loss or draw)

Example: 8-Puzzle game

- nodes: the different permutations of the tiles.
- edges: moving the blank tile up, down, right or left.

Game Tree – Problem Space

Choice of a problem space

- not so obvious for some problems.
- One general rule is that a smaller representation, in the sense of fewer states to search, is often better then a larger one. A problem space is characterized by two major factors.

The branching factor - the average number of children of the nodes in the space.

- The eight puzzle has a branching factor of **2.13**
- Rubik's cube has a branching factor of 13.34
- Chess has a branching factor of about 35

The solution depth

- The length of the shortest path from the initial node to a goal node.
- The size of a solution space:
 - Tic-Tac-Toe is 9! = 362,880
 - 8-puzzle 9!/2
 - Checkers 10⁴⁰
 - Chess 10¹²⁰ (40 moves, 35 branch factor 35^(2*40))

Game Trees - Search for a Move

- Brute-Force Search
- Minimax
- Heuristic Search
 - Dijkstra Algorithm
 - Best-First Search
 - A* algorithm

Artificial Intelligence

CS3AI18/ CSMAI19 Lecture - 4/10: Search and Reasoning

Part 2 Systematic Search

DR VARUN OJHA

Department of Computer Science

Systematic Search

Brute-Force Search And Minimax

Brute-Force Search

Depth-First Search

Breadth-First Search

- Breadth-First search (BFS) expands nodes in order of their depth from the root.
- Implemented by first-in first-out (FIFO) queue.
- BFS will find a shortest path to a goal.
- Time/Space Complexity **branching factor b** and the solution depth **d**.
- · Generate all the nodes up to level d.
- Total number of nodes in BFS

 $1 + b + b^2 + ... + b^d = O(b^d)$

• BFS will exhaust the memory in minutes.

https://qiao.github.io/PathFinding.js/visual/

6:43 PM

Bi-Directional Breadth-First Search

6:43 PM

Depth-First Search

- Depth-First is iterative-deepening
 - First performs a DFS to depth one. Than starts over executing DFS to depth two and so on.
- Implemented by LIFO stack
- Space Complexity is linear in the maximum search depth.
- DFS generate the same set of nodes as BFS
- Time Complexity is O(b^d)
- The first solution DFS found may not be the optimal one.
- On infinite (branch) tree DFS may not terminate.

Minimax

- We consider games with two players
- Zero-Sum games: One person's gains are the result of another person's losses (so called).
- The minimax algorithm is a specialized search algorithm which returns the optimal sequence of moves for a player in a zero-sum game.
- In the game tree that results from the algorithm, each level represents a move by either of two players, say A and B.

Minimax: Example

- Tic-Tac-Toe
 - Player A: MAX (x)
 - Player B: MIN (o)
 - Zero Sum:
 - If MAX wins gets +1
 - If MIN wins gets -1
 - Net Sum = 0

Minimax

- The minimax algorithm explores the entire game tree using a depth-first search.
- At each node in the tree where player-A has to move. The player-A would like to play the move that maximises the payoff.
- **Player-A** will assign the maximum score amongst the children to the node where Max makes a move.
- Similarly, **player-B** will minimize the payoff to A-player.
- The maximum and minimum scores are taken at alternating levels of the tree, since A and B alternate turns.

Alpha-Beta Pruning

- Alpha-beta pruning improve the efficiency of Minimax search and reduces the number of state to examine in a game tree.
- It prunes the branches that will not influence decision of a node.

Alpha-Beta Pruning

- Initialise $[\alpha = -\infty, \beta = +\infty]$ to the MAX (root node A) and explore its child
- Leaf of B is 3. Set $[\alpha = -\infty, \beta = 3]$ since B is MIN node and it will play **at most** 3. That is beta is the **minimum upper bound** of possible solutions
- Explore other child of B to see if any other child has less than 3.
- Last child of B has 8. Set B with $[\alpha = 3, \beta = 3]$.
- Root (MAX node A) can play at least 3. Set $[\alpha = 3, \beta = +\infty]$. Explore other child to see if any child has a grater value than 3. That is alpha is the *maximum lower* **bound** of possible solutions
- MIN node C has 2. Hence, its other child are pruned since C will not play more than 2 and node B has 3. Hence, A will NOT play C.
- Similarly explore other child of A to check if it can play more than 3.

Systematic Search

- Brute-force and Minimax systematically search the **whole** search space.
 - Limitation Sometimes however it is not feasible to search the whole search space - it's just too big!
 - **Solution** Use heuristic search (non-systematic search)

Artificial Intelligence

CS3AI18/ CSMAI19 Lecture - 4/10: Search and Reasoning

Part 3 Non-Systematic Search

DR VARUN OJHA

Department of Computer Science

Non-Systematic Search

Heuristic Search

Heuristic Search: Principles

Strategy – rather than trying all possible search paths, focus on paths that seem to be getting us closer to the goal state.

Limitation – generally can't be sure that the goal state is really near.

Advantage – might be able to have a good guess based on some heuristics.

Evaluation function – evaluation function that ranks nodes in the search tree according to some criteria (for example, how close we are to the target). This function provides a quick way of guessing.

Heuristic Search: Properties

- 1. It must provide an **accurate estimator** of the cost to reach a goal.
- 2. It must be cheap to compute.
- 3. It always must be a **lower bound on** actual solution cost.

Dijkstra Algorithm

 It find the shortest path between two nodes in a graph

• Steps:

- 1. Initially all nodes are marked unvisited and assigned value ∞
- 2. Start with assigning initial node with values 0
- 3. Visit other unvisited node assign smallest tentative distance from initial node mark them visited. And **REPEAT**

Illustration source: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

34

6:43 PM

https://qiao.github.io/PathFinding.js/visual/

Dr Varun Ojha, University of Reading, UK

Bi-Directional Dijkstra Search

Best-First Search

 The search is similar to Breadth First Search, but instead of taking the first node it always chooses a node with the best score, according to an evaluation function.

• If we create a good evaluation function, best first search may drastically cut down the amount of search time.

• It is a Greedy algorithm. It uses a heuristic to evaluate the path.

Best-First Search

<u>Graphics inspiration:</u> https://giao.github.io/PathFinding.js/visual/

Dr Varun Ojha, University of Reading, UK

Bi-Directional Best-First Search

<u>Graphics inspiration:</u> https://giao.github.io/PathFinding.js/visual/

Dr Varun Ojha, University of Reading, UK

A* Algorithm

- A* is a variant of Best-First search. Since Best-First search only accounts for heuristic and the cheapest cost of the path from a start state to the current state. So, we may find a solution but it may be not a very good solution.
- A* attempts to find a solution which **minimizes** the total cost of the solution path.
- This algorithm combines advantages of Breadth-First search with advantages of best first search.

Admissibility of a heuristic h(n)

- A heuristic h(n) is admissible if it never overestimate the cost to the Goal. That is h(n) ≤ h*(n), where h*(n) is the true cost from a state n to the Goal.
- Admissible heuristics can be measured as:
 - h(n) = 0 (set to zero)

•
$$h(n) = \sqrt{(n_x - T_x)^2 + (n_y - T_y)^2}$$
 (straight line)

Path Finding Example

Example adapted from: https://brilliant.org/wiki/a-star-search/ (Accessed on 31 Jan 2021)

Initial State

Goal State

F(n) = G(n) + H(n)

$$H(n) = \sqrt{(n_x - T_x)^2 + (n_y - T_y)^2}$$

Path Finding Example

Example adapted from: https://brilliant.org/wiki/a-star-search/ (Accessed on 31 Jan 2021)

S	
Т	

Goal State

Initial State

F(n) = G(n) + H(n)

$$H(n) = \sqrt{(n_x - T_x)^2 + (n_y - T_y)^2}$$

		F = 6.6 G = 5.6 H = 1	F=5.2 G=5.2 H = 0
	F = 7 · 2 G = 4.2 H = 3	F = 5.8 G = 3.8 H = 2	F = 5.2 G = 4.2 H = 1
F = 7.8 G = 2.8 H = 5	F = 6.4 G = 2.4 H = 4	F = 5.8 G = 2.8 H = 3	F = 5.8 G = 3.8 H = 2
F = 7 G = 1 H = 6	F = 6.4 G = 1.4 H = 5		F = 7 · 2 G = 4.2 H = 3
	F = 7 G = 1 H = 6		

Artificial Intelligence

CS3AI18/ CSMAI19 Lecture - 4/10: Search and Reasoning

Part 4 Reasoning

DR VARUN OJHA

Department of Computer Science

Probability

6:43 PM

Where *H* and *E* are events

P(H | E) is a conditional probability, the likelihood of *H* given *E* is true. P(E | H) is a conditional probability the likelihood of *E* given *H* is true. P(H) and P(E) are probabilities of observing *H* and *E*

Bayesian Inference (Sequential)

Where *H* and E_i are events

 $P(H | E_i)$ is a conditional probability, the likelihood of *H* given E_i is true. $P(E_i | H)$ is a conditional probability the likelihood of E_i given *H* is true. P(H) and $P(E_i)$ are probabilities of observing *H* and E_i

Probabilistic Reasoning

Fact: You return home and the **door** is open

Reason: Is it a **family** person? Reason: Is it a **Burglar**?

Who opens the door? Is something stolen? ...

How do we represent these relations?

Belief Network

Causal relationship are represented in a direct acyclic graph (DAG) and arrows represent relationship.

Probabilistic Relationships

6:43 PM

Dr Varun Ojha, University of Reading, UK

Joint Probabilities

What is the probability that event A and B together (e.g., cloud and sun appearing together).

P(A,B) = P(A | B) P(B)P(A,B) = P(B | A) P(A)

Bayesian Belief Network

P(A, B, C, D, E) = P(A) P(B|C) P(C|A)P(D|C, E)P(E|A, C)

In General, we can write

$$P(x_1, x_2, \dots, x_n) = P(X_1 = x_1 \wedge \dots \wedge X_n = x_n)$$
$$= \prod_{i=1}^n P(x_i | \text{parent}(X_i))$$

Goal: is to calculate the posterior conditional probability distribution of each of the possible unobserved causes given the observed evidence, i.e. *P*[*Cause*|*Evidance*]

Example Problem

Example adapted from:

Bayesian networks, Ch 14, Artificial Intelligence: A Modern Approach, Peter Norvig and Stuart J. Russell

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects "causal" knowledge:

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Example Problem

Example adapted from:

Bayesian networks, Ch 14, Artificial Intelligence: A Modern Approach, Peter Norvig and Stuart J. Russell

If we assume:

Burglar (B) = True Earthquake (E) = True Alarm (A) = True JohnCalls (J) = True MaryCalls (M) = False

From this Bayesian Belief Network (BNN), we have the following probability:

P(B = T, E = T, A = T, J = T, M = F)

$$P(B = T, E = T, A = T, J = T, M = F) =$$

 $P(B=T)P(E=T)P(A=T/B=T,E=T)P(J=T/A=T)P(M=F/A=T)$

Example Problem

Example adapted from:

Bayesian networks, Ch 14, Artificial Intelligence: A Modern Approach, Peter Norvig and Stuart J. Russell

If we assume:

Burglar (B) = True Earthquake (E) = True Alarm (A) = True JohnCalls (J) = True MaryCalls (M) = False

From this Bayesian Belief Network (BNN), we have the following probability:

P(B = T, E = T, A = T, J = T, M = F)

$$P(B = T, E = T, A = T, J = T, M = F) =$$

 $P(B=T)P(E=T)P(A=T/B=T,E=T)P(J=T/A=T)P(M=F/A=T)$

Example Problem

Example adapted from:

Bayesian networks, Ch 14, Artificial Intelligence: A Modern Approach, Peter Norvig and Stuart J. Russell

If we assume:

Burglar (B) = True Earthquake (E) = True Alarm (A) = True JohnCalls (J) = True MaryCalls (M) = False

From this Bayesian Belief Network (BNN), we have the following probability:

P(B = T, E = T, A = T, J = T, M = F)

We are interested in answering the prediction questions like:

- probability of Alarm going off P(A = T)
- probability of P (John Calls |Alarm = T)

Artificial Intelligence

CS3AI18/ CSMAI19 Lecture - 4/10: Search and Reasoning

Part 5 Practical Exercise

DR VARUN OJHA

Department of Computer Science

