
Artificial Intelligence
CS3AI18/ CSMAI19

Lecture - 4/10: Search and Reasoning

DR VARUN OJHA

Department of Computer Science

Learning Objectives
On completion of this week, you will be able to

• Understand One-Player and Two-Player Game and Their solutions using Search Techniques.

• Learning two different categories of search techniques of AI

• Systematic Search

• Non Systematic Search

• Learn techniques to improve search speed

• Alpha-beta pruning

• A* Search

• Apply methods to solve search problems

• Learning methods of Reasoning

6:43 PM

Dr Varun Ojha, University of Reading, UK 2

Content of this Lecture

Introduction

• Part – I : Search Problem Formulation

• Part – II : Systematic Search

• Part – III : Non-Systematic Search

• Part – IV : Reasoning

• Part – V : Practical Exercise

Quiz

6:43 PM

Dr Varun Ojha, University of Reading, UK 3

6:43 PM

4

Part 1
Search

Artificial Intelligence
CS3AI18/ CSMAI19

Lecture - 4/10: Search and Reasoning

DR VARUN OJHA
Department of Computer Science

Dr Varun Ojha, University of Reading, UK

You’re here

Image Credit: NASA/JPL.

Dr Varun Ojha, University of Reading, UK

That's Earth

4 billion miles away

from earth in Voyager 1

You’re here

Image Credit: NASA/JPL.

Search for Solution(s) in a Tree

Dr Varun Ojha, University of Reading, UK 7

6:43 PM

Q1 Q2 Q3 Q4

{ }

Q1 = 1 Q1 = 2

Q2 = 4Q2 = 3Q2 = 2

Q3 = 2 Q3 = 4 Q3 = 3 Q3 = 2

Q2 = 4

Q3 = 1

Q4 = 3Q4 = 4

Dr Varun Ojha, University of Reading, UK 8

6:43 PM

{ }

Q1 = 1

Q1 = 2

Q2 = 4Q2 = 3Q2 = 2

Q3 = 2 Q3 = 4 Q3 = 3 Q3 = 2

Q2 = 4

Q3 = 1

Q4 = 3Q4 = 4

• INITIAL STATE ()

• ACTIONS function ()

• RESULT function ()

• the nodes are game states

• the edges are moves.

Game Trees (Definition)

Q1 move to col 2

{ }

Game Trees (Tic-Tac-Toe)

Dr Varun Ojha, University of Reading, UK 9

6:43 PM

-1 0 +1

x x x
x x x

x x x

x x x

x

o o
o

x o x
x
x o x o

x

x o x x o x x o x
x

x ooo
o o

x
x

x
o
oTerminal

Utility

MIN ()

MAX ()

MIN ()

MAX ()

x

x

o

o

INITIAL STATE

MAX(x) has 9 moves

ACTIONS function

Alternatively MAX places x and MIN places o

until reach leaf (terminal) node

RESULT function

utility value of the terminal state from

the point of view of MAX; high values

are assumed to be good for MAX and

bad for MIN

Game Trees (Tic-Tac-Toe)

Dr Varun Ojha, University of Reading, UK 10

6:43 PM

-1 0 +1

x x x
x x x

x x x

x x x

x

o o
o

x o x
x
x o x o

x

x o x x o x x o x
x

x ooo
o o

x
x

x
o
oTerminal

Utility

MIN ()

MAX ()

MIN ()

MAX ()

x

x

o

o • Terminal node for tic-tac-toe

game tree is: fewer than

9! = 362,880 nodes.

• For chess there are over 1040

nodes.

Game Tree Types

Dr Varun Ojha, University of Reading, UK 11

6:43 PM

1 2

8 4

3

7 6 5

1

8 2 4

3

7 6 5

1 2

8 4

3

7 6 5

1 2

8 6 4

3

7 5

1 2

8 4

3

7 6 5

1

8 2 4

3

7 6 5

1 3

8 2 4

7 6 5

1 2

8 4 3

7 6 5

1 2

8 4 5

3

7 6

1 2

8 6 4

3

7 5

1 2

8 6 4

3

7 5

2

1 8 4

3

7 6 5

1 2

7 8 4

3

6 5

Single-player path finding problems.

• Rubik’s Cube

• Sliding puzzle.

• Travelling Salesman Problem.

Two-player games.

• Tic-Tac-Toe

• Chess

• Checkers

• Othello

• Constraint satisfaction problems.

• Eight Queens (N-Queen)

• Sudoku

Example: Sliding puzzle

Game Tree – Problem Space

Dr Varun Ojha, University of Reading, UK 12

6:43 PM

Each game consists of

• a problem space,

• an initial state, and

• a single (or a set of) goal states.

A problem space is a mathematical abstraction

in the form of a tree:

• the root represents current state

• nodes represent states of the game

• edges represent moves

• leaves represent final states (win, loss or draw)

Example: 8-Puzzle game

• nodes: the different permutations of the tiles.

• edges: moving the blank tile up, down, right or left.

Example: Sliding puzzle

up right down left

1 2

8 4

3

7 6 5

1

8 2 4

3

7 6 5

1 2

8 4

3

7 6 5

1 2

8 6 4

3

7 5

1 2

8 4

3

7 6 5

1

8 2 4

3

7 6 5

1 3

8 2 4

7 6 5

1 2

8 4 3

7 6 5

1 2

8 4 5

3

7 6

1 2

8 6 4

3

7 5

1 2

8 6 4

3

7 5

2

1 8 4

3

7 6 5

1 2

7 8 4

3

6 5

Game Tree – Problem Space

Dr Varun Ojha, University of Reading, UK 13

6:43 PM

Choice of a problem space

• not so obvious for some problems.

• One general rule is that a smaller representation, in the sense of fewer states to search, is often

better then a larger one. A problem space is characterized by two major factors.

The branching factor - the average number of children of the nodes in the space.

• The eight puzzle has a branching factor of 2.13

• Rubik’s cube has a branching factor of 13.34

• Chess has a branching factor of about 35

The solution depth

• The length of the shortest path from the initial node to a goal node.

• The size of a solution space:

• Tic-Tac-Toe is 9! = 362,880

• 8-puzzle - 9!/2

• Checkers - 𝟏𝟎𝟒𝟎

• Chess - 𝟏𝟎𝟏𝟐𝟎 (40 moves, 35 branch factor - 35(2*40))

Game Trees - Search for a Move

Dr Varun Ojha, University of Reading, UK 14

6:43 PM

-1 0 +1

x x x
x x x

x x x

x x x

x

o o
o

x o x
x
x o x o

x

x o x x o x x o x
x

x ooo
o o

x
x

x
o
oTerminal

Utility

MIN ()

MAX ()

MIN ()

MAX ()

x

x

o

o

• Brute-Force Search

• Minimax

• Heuristic Search

• Dijkstra Algorithm

• Best-First Search

• A* algorithm

Search
6:43 PM

Dr Varun Ojha, University of Reading, UK 15

Uninformed /
Systematic

Informed /
Non-Systematic

Brute
force

search

Minimax
search

Best-First
search

A*
Algorithm

6:43 PM

16

Part 2

Systematic Search

Artificial Intelligence
CS3AI18/ CSMAI19

Lecture - 4/10: Search and Reasoning

DR VARUN OJHA
Department of Computer Science

Systematic Search

Dr Varun Ojha, University of Reading, UK 17

6:43 PM

Brute-Force Search
And Minimax

Brute-Force Search

Dr Varun Ojha, University of Reading, UK 18

6:43 PM

Breadth-First

Search

Depth-First

Search

Breadth-First Search

Dr Varun Ojha, University of Reading, UK 19

6:43 PM

• Breadth-First search (BFS) expands nodes in

order of their depth from the root.

• Implemented by first-in first-out (FIFO) queue.

• BFS will find a shortest path to a goal.

• Time/Space Complexity - branching factor b

and the solution depth d.

• Generate all the nodes up to level d.

• Total number of nodes in BFS

1 + b + b2 + ... + bd = O(bd)

• BFS will exhaust the memory in minutes.

6:43 PM

Dr Varun Ojha, University of Reading, UK 20

S T

Graphics inspiration:

https://qiao.github.io/PathFinding.js/visual/

https://qiao.github.io/PathFinding.js/visual/
https://qiao.github.io/PathFinding.js/visual/

6:43 PM

Dr Varun Ojha, University of Reading, UK 21

S T

Graphics inspiration:

https://qiao.github.io/PathFinding.js/visual/

Bi-Directional Breadth-First Search

https://qiao.github.io/PathFinding.js/visual/
https://qiao.github.io/PathFinding.js/visual/

Depth-First Search

Dr Varun Ojha, University of Reading, UK 22

6:43 PM

• Depth-First is iterative-deepening

• First performs a DFS to depth one. Than starts over

executing DFS to depth two and so on.

• Implemented by LIFO stack

• Space Complexity is linear in the maximum search

depth.

• DFS generate the same set of nodes as BFS

• Time Complexity is O(bd)

• The first solution DFS found may not be the

optimal one.

• On infinite (branch) tree DFS may not terminate.

Minimax

• We consider games with two players

• Zero-Sum games: One person's gains are the result of another person's
losses (so called).

• The minimax algorithm is a specialized search algorithm which returns
the optimal sequence of moves for a player in a zero-sum game.

• In the game tree that results from the algorithm, each level represents a
move by either of two players, say A and B.

Dr Varun Ojha, University of Reading, UK 23

6:43 PM

Minimax: Example

Dr Varun Ojha, University of Reading, UK 24

6:43 PM

• Tic-Tac-Toe

• Player A: MAX (x)

• Player B: MIN (o)

• Zero Sum:

• If MAX wins gets +1

• If MIN wins gets -1

• Net Sum = 0

-1 0 +1

x x x
x x x

x x x

x xx o o
o

x o x
x
x o x o

x

x o x x o x x o x

x
x

oo
o

o
o
x

x
x

xo
oTerminal

Utility

MAX ()x

MAX ()x

MIN ()o

MIN ()o

Minimax

Dr Varun Ojha, University of Reading, UK 25

6:43 PM

• The minimax algorithm explores the entire

game tree using a depth-first search.

• At each node in the tree where player-A

has to move. The player-A would like to play

the move that maximises the payoff.

• Player-A will assign the maximum score

amongst the children to the node where Max

makes a move.

• Similarly, player-B will minimize the payoff to

A-player.

• The maximum and minimum scores are

taken at alternating levels of the tree, since A

and B alternate turns.

-1 0 +1

x x x
x x x

x x x

x xx o o
o

x o x
x
x o x o

x

x o x x o x x o x

x
x

oo
o

o
o
x

x
x

xo
oTerminal

Utility

MAX ()x

MAX ()x

MIN ()o

MIN ()o

Alpha-Beta Pruning

Dr Varun Ojha, University of Reading, UK 26

6:43 PM

• Alpha-beta pruning improve

the efficiency of Minimax

search and reduces the

number of state to examine

in a game tree.

• It prunes the branches that

will not influence decision of

a node.
3 12 2 6 14 28 4 5

[−∞, 3][3, 3]

Alpha-Beta Pruning

Dr Varun Ojha, University of Reading, UK 27

6:43 PM

A

B

• Initialise 𝛼 = −∞, 𝛽 = +∞ to the MAX (root node A) and

explore its child

• Leaf of B is 3. Set 𝛼 = −∞, 𝛽 = 3 since B is MIN node

and it will play at most 3. That is beta is the minimum

upper bound of possible solutions

• Explore other child of B to see if any other child has less

than 3.

• Last child of B has 8. Set B with 𝛼 = 3, 𝛽 = 3 .

• Root (MAX node A) can play at least 3. Set [
]

𝛼 =
3, 𝛽 = +∞ . Explore other child to see if any child has a

grater value than 3. That is alpha is the maximum lower

bound of possible solutions

• MIN node C has 2. Hence, its other child are pruned since

C will not play more than 2 and node B has 3. Hence, A will

NOT play C.

• Similarly explore other child of A to check if it can play

more than 3.

[−∞,+∞]

3 12 2 14 28 5

[3, +∞]

[−∞, 2] C [−∞, 14][−∞, 5][2, 2] D

pruning

[3, 3]

Systematic Search

• Brute-force and Minimax systematically search the whole

search space.

• Limitation – Sometimes however it is not feasible to search the whole

search space - it's just too big!

• Solution – Use heuristic search (non-systematic search)

Dr Varun Ojha, University of Reading, UK 28

6:43 PM

6:43 PM

29

Part 3

Non-Systematic Search

Artificial Intelligence
CS3AI18/ CSMAI19

Lecture - 4/10: Search and Reasoning

DR VARUN OJHA
Department of Computer Science

Non-Systematic Search

Dr Varun Ojha, University of Reading, UK 30

6:43 PM

Heuristic Search

Heuristic Search: Principles

Strategy – rather than trying all possible search paths, focus on paths that seem to

be getting us closer to the goal state.

Limitation – generally can't be sure that the goal state is really near.

Advantage – might be able to have a good guess based on some heuristics.

Evaluation function – evaluation function that ranks nodes in the search tree

according to some criteria (for example, how close we are to the target). This

function provides a quick way of guessing.

Dr Varun Ojha, University of Reading, UK 31

6:43 PM

Heuristic Search: Properties

1. It must provide an accurate estimator of

the cost to reach a goal.

2. It must be cheap to compute.

3. It always must be a lower bound on

actual solution cost.

Dr Varun Ojha, University of Reading, UK 32

6:43 PM

Dijkstra Algorithm

• It find the shortest path between
two nodes in a graph

• Steps:
1. Initially all nodes are marked

unvisited and assigned value ∞

2. Start with assigning initial node with
values 0

3. Visit other unvisited node assign
smallest tentative distance from
initial node mark them visited. And
REPEAT

Dr Varun Ojha, University of Reading, UK 33

6:43 PM

Illustration source: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

6:43 PM

Dr Varun Ojha, University of Reading, UK 34

S T

Graphics inspiration:

https://qiao.github.io/PathFinding.js/visual/

https://qiao.github.io/PathFinding.js/visual/
https://qiao.github.io/PathFinding.js/visual/

6:43 PM

Dr Varun Ojha, University of Reading, UK 35

S T

Graphics inspiration:

https://qiao.github.io/PathFinding.js/visual/

Bi-Directional Dijkstra Search

https://qiao.github.io/PathFinding.js/visual/
https://qiao.github.io/PathFinding.js/visual/

Best-First Search

• The search is similar to Breadth First Search, but instead of taking

the first node it always chooses a node with the best score,

according to an evaluation function.

• If we create a good evaluation function, best first search may

drastically cut down the amount of search time.

• It is a Greedy algorithm. It uses a heuristic to evaluate the path.

Dr Varun Ojha, University of Reading, UK 36

6:43 PM

Dr Varun Ojha, University of Reading, UK 37

6:43 PM

9 2 4

6

4

3

7

2

6:43 PM

Dr Varun Ojha, University of Reading, UK 38

S T

Graphics inspiration:

https://qiao.github.io/PathFinding.js/visual/

Best-First Search

https://qiao.github.io/PathFinding.js/visual/
https://qiao.github.io/PathFinding.js/visual/

6:43 PM

Dr Varun Ojha, University of Reading, UK 39

S T

Graphics inspiration:

https://qiao.github.io/PathFinding.js/visual/

Bi-Directional Best-First Search

https://qiao.github.io/PathFinding.js/visual/
https://qiao.github.io/PathFinding.js/visual/

A* Algorithm

• A* is a variant of Best-First search. Since Best-First search only
accounts for heuristic and the cheapest cost of the path from a
start state to the current state. So, we may find a solution but it
may be not a very good solution.

• A* attempts to find a solution which minimizes the total cost of the
solution path.

• This algorithm combines advantages of Breadth-First search with
advantages of best first search.

Dr Varun Ojha, University of Reading, UK 40

6:43 PM

A* Algorithm

𝑓 𝑛 = ℎ 𝑛

Dr Varun Ojha, University of Reading, UK 41

6:43 PM

𝑓 𝑛 = 𝑔 𝑛 + ℎ(𝑛)

Best-First Search

𝒏

𝑔 𝑛
estimated cost from S to 𝑛

T

ℎ 𝑛
heuristic cost to from S to T

S

ℎ 𝑛
heuristic cost to from 𝑛 to T

𝑔 𝑛
estimated cost

from 𝑛 to 𝑛1, 𝑛2. . . , 𝑇

Admissibility of a heuristic ℎ(𝑛)

• A heuristic ℎ 𝑛 is admissible if it never overestimate the cost

to the Goal. That is ℎ 𝑛 ≤ ℎ∗ 𝑛 , where ℎ∗ 𝑛 is the true cost

from a state 𝑛 to the Goal.

• Admissible heuristics can be measured as:

• ℎ 𝑛 = 0 (set to zero)

• ℎ 𝑛 = 𝑛𝑥 − 𝑇𝑥
2 + 𝑛𝑦 − 𝑇𝑦

2
(straight line)

6:43 PM

Dr Varun Ojha, University of Reading, UK 42

43

6:43 PM

9 7 3

0

2

5 3

f(n) = 5 + 3 = 8

5

f(n) = 3 + 7 = 10f(n) = 5 + 9 = 14

9 20

5

2 6 5 7

3 1 3 5 2 4

1

4

0

7

2

𝑓 𝑛 = 𝑔 𝑛 + ℎ(𝑛)

1

5

f(n) =

(8+5)+2

= 13

f(n) =

(8+7)+5

= 20

f(n)

(13+2)+0

= 15

f(n)

(20+4)+1

= 25

f(n)

(16+3)+1

=20

f(n)

(16+1)+0

=17

f(n)

(16+3)+2

=21

f(n) =

(10+2)+4

= 16

0

𝑓 𝑛 = 𝑔 𝑛 + ℎ(𝑛) 𝑓 𝑛 = 𝑔 𝑛 + ℎ(𝑛)

These are suboptimal Goal reached!

Is it optimal?

Path Finding Example

Dr Varun Ojha, University of Reading, UK 44

6:43 PM

𝐹 𝑛 = 𝐺 𝑛 + 𝐻(𝑛)

Example adapted from: https://brilliant.org/wiki/a-star-search/ (Accessed on 31 Jan 2021)

Initial State

Goal State

𝐻 𝑛 = 𝑛𝑥 − 𝑇𝑥
2 + 𝑛𝑦 − 𝑇𝑦

2

𝑇

𝑆

Path Finding Example

Dr Varun Ojha, University of Reading, UK 45

6:43 PM

𝐹 𝑛 = 𝐺 𝑛 + 𝐻(𝑛)

Example adapted from: https://brilliant.org/wiki/a-star-search/ (Accessed on 31 Jan 2021)

Initial State

Goal State

𝐻 𝑛 = 𝑛𝑥 − 𝑇𝑥
2 + 𝑛𝑦 − 𝑇𝑦

2

𝑇

𝑆

6:43 PM

Dr Varun Ojha, University of Reading, UK 46

S T

Graphics inspiration:

https://qiao.github.io/PathFinding.js/visual/

https://qiao.github.io/PathFinding.js/visual/
https://qiao.github.io/PathFinding.js/visual/

6:43 PM

Dr Varun Ojha, University of Reading, UK 47

Part 4
Reasoning

Artificial Intelligence
CS3AI18/ CSMAI19

Lecture - 4/10: Search and Reasoning

DR VARUN OJHA
Department of Computer Science

Probability
6:43 PM

Dr Varun Ojha, University of Reading, UK 48

Bayes Theorem

𝑃 𝐻 𝐸) =
𝑃 𝐸 | 𝐻 𝑃(𝐻)

𝑃 𝐻 𝑃 𝐸 𝐻) + 𝑃 ¬𝐻 𝑃 𝐸 ¬𝐻)

Where 𝐻 and 𝐸 are events

𝑃(𝐻 | 𝐸) is a conditional probability, the likelihood of 𝐻 given 𝐸 is true.

𝑃(𝐸 | 𝐻) is a conditional probability the likelihood of 𝐸 given 𝐻 is true.

𝑃(𝐻) and 𝑃(𝐸) are probabilities of observing 𝐻 and 𝐸

6:43 PM

Dr Varun Ojha, University of Reading, UK 49

posterior
normalising constant

priorlikelihood

Bayesian Inference (Sequential)

𝑃 𝐻 𝐸1, 𝐸2) =
𝑃 𝐸1 | 𝐻 𝑃 𝐸2 | 𝐻 𝑃(𝐻)

𝑃 𝐸1 𝑃(𝐸2)

Where 𝐻 and 𝐸𝑖 are events

𝑃 𝐻 𝐸𝑖) is a conditional probability, the likelihood of 𝐻 given 𝐸𝑖 is true.

𝑃(𝐸𝑖 | 𝐻) is a conditional probability the likelihood of 𝐸𝑖 given 𝐻 is true.

𝑃(𝐻) and 𝑃(𝐸𝑖) are probabilities of observing 𝐻 and 𝐸𝑖

6:43 PM

Dr Varun Ojha, University of Reading, UK 50

posterior
normalising constant

priorlikelihood

Probabilistic Reasoning

Fact: You return home and the door is open

Reason: Is it a family person?

Reason: Is it a Burglar?

Who opens the door? Is something stolen? …

How do we represent these relations?

6:43 PM

Dr Varun Ojha, University of Reading, UK 51

Belief Network
6:43 PM

Dr Varun Ojha, University of Reading, UK 52

Door open

Causal relationship are represented in a direct acyclic graph
(DAG) and arrows represent relationship.

Family person Burglar

Probabilistic Relationships 6:43 PM

Dr Varun Ojha, University of Reading, UK 53

A

B

A

C

B

C B

A

C

A

Direct Indirect Common cause Common effect

𝑃 𝐵 𝐴) 𝑃 𝐵 𝐴)
𝑃 𝑪 𝐵)

𝑃 𝐵 𝐴)
𝑃 𝑪 𝐴)

𝑃 𝑪 𝐴, 𝐵)

C is independent

of A given B

B

Joint Probabilities
6:43 PM

Dr Varun Ojha, University of Reading, UK 54

What is the probability that event A and B together (e.g., cloud
and sun appearing together).

𝑃 𝐴, 𝐵 = 𝑃 𝐴 𝐵) 𝑃(𝐵)

𝑃 𝐴, 𝐵 = 𝑃 𝐵 𝐴) 𝑃(𝐴)

Bayesian Belief Network

𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 𝐴 𝑃 𝐵 𝐶 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶, 𝐸 𝑃 𝐸 𝐴, 𝐶

In General, we can write

𝑃 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑃 𝑋1 = 𝑥1 ∧ ⋯∧ 𝑋𝑛 = 𝑥𝑛

= ෑ

𝑖=1

𝑛

𝑃 𝑥𝑖 parent(𝑋𝑖))

6:43 PM

Dr Varun Ojha, University of Reading, UK 55

E

D

B C

A

Goal: is to calculate the posterior conditional probability distribution of each of the possible

unobserved causes given the observed evidence, i.e. 𝑷 𝑪𝒂𝒖𝒔𝒆 𝑬𝒗𝒊𝒅𝒂𝒏𝒄𝒆]

Example Problem
6:43 PM

56

Example adapted from:

Bayesian networks, Ch 14, Artificial Intelligence: A Modern Approach, Peter Norvig and Stuart J. Russell

Variables: Burglar, Earthquake, Alarm,

JohnCalls, MaryCalls

Network topology reflects “causal”

knowledge:

• A burglar can set the alarm off

• An earthquake can set the alarm off

• The alarm can cause Mary to call

• The alarm can cause John to call

Note: I keep calling/writing BNN – but it should be BBN – Bayesian Belief Network

Example Problem
6:43 PM

Dr Varun Ojha, University of Reading, UK 57

Example adapted from:

Bayesian networks, Ch 14, Artificial Intelligence: A Modern Approach, Peter Norvig and Stuart J. Russell

If we assume:

Burglar (B) = True

Earthquake (E) = True

Alarm (A) = True

JohnCalls (J) = True

MaryCalls (M) = False

From this Bayesian Belief Network

(BNN), we have the following

probability:

𝑃 𝐵 = 𝑇, 𝐸 = 𝑇, 𝐴 = 𝑇, 𝐽 = 𝑇,𝑀 = 𝐹

𝑃 𝐵 = 𝑇, 𝐸 = 𝑇, 𝐴 = 𝑇, 𝐽 = 𝑇,𝑀 = 𝐹 =
P(B=T)P(E=T)P(A=T|B=T,E=T)P(J =T| A=T)P(M =F| A=T)

Example Problem
6:43 PM

Dr Varun Ojha, University of Reading, UK 58

Example adapted from:

Bayesian networks, Ch 14, Artificial Intelligence: A Modern Approach, Peter Norvig and Stuart J. Russell

If we assume:

Burglar (B) = True

Earthquake (E) = True

Alarm (A) = True

JohnCalls (J) = True

MaryCalls (M) = False

From this Bayesian Belief Network

(BNN), we have the following

probability:

𝑃 𝐵 = 𝑇, 𝐸 = 𝑇, 𝐴 = 𝑇, 𝐽 = 𝑇,𝑀 = 𝐹

𝑃 𝐵 = 𝑇, 𝐸 = 𝑇, 𝐴 = 𝑇, 𝐽 = 𝑇,𝑀 = 𝐹 =
P(B=T)P(E=T)P(A=T|B=T,E=T)P(J =T| A=T)P(M =F| A=T)

Example Problem
6:43 PM

Dr Varun Ojha, University of Reading, UK 59

Example adapted from:

Bayesian networks, Ch 14, Artificial Intelligence: A Modern Approach, Peter Norvig and Stuart J. Russell

If we assume:

Burglar (B) = True

Earthquake (E) = True

Alarm (A) = True

JohnCalls (J) = True

MaryCalls (M) = False

From this Bayesian Belief Network

(BNN), we have the following

probability:

𝑃 𝐵 = 𝑇, 𝐸 = 𝑇, 𝐴 = 𝑇, 𝐽 = 𝑇,𝑀 = 𝐹

We are interested in answering the prediction questions like:

• probability of Alarm going off 𝑃 𝐴 = 𝑇
• probability of 𝑃 𝐽𝑜ℎ𝑛 𝐶𝑎𝑙𝑙𝑠 |𝐴𝑙𝑎𝑟𝑚 = 𝑇

6:43 PM

60

Part 5
Practical Exercise

Artificial Intelligence
CS3AI18/ CSMAI19

Lecture - 4/10: Search and Reasoning

DR VARUN OJHA
Department of Computer Science

