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Learning Objectives
On completion of this week, you will be able to 

• Understand One-Player and Two-Player Game and Their solutions using Search Techniques.

• Learning two different categories of search techniques of AI

• Systematic Search

• Non Systematic Search

• Learn techniques to improve search speed

• Alpha-beta pruning

• A* Search

• Apply methods to solve search problems

• Learning methods of Reasoning
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Content of this Lecture

Introduction

• Part – I       : Search Problem Formulation 

• Part – II      : Systematic Search

• Part – III     : Non-Systematic Search   

• Part – IV     : Reasoning

• Part – V      : Practical Exercise

Quiz 
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You’re here

Image Credit: NASA/JPL.
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That's Earth

4 billion miles away

from earth in Voyager 1

You’re here

Image Credit: NASA/JPL.



Search for Solution(s) in a Tree
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{ }

Q1 = 1

Q1 = 2

Q2 = 4Q2 = 3Q2 = 2

Q3 = 2 Q3 = 4 Q3 = 3 Q3 = 2

Q2 = 4

Q3 = 1

Q4 = 3Q4 = 4

• INITIAL STATE (   )

• ACTIONS function (           ) 

• RESULT function (         )

• the nodes are game states

• the edges are moves. 

Game Trees (Definition)

Q1 move to col 2

{ }



Game Trees (Tic-Tac-Toe)
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INITIAL STATE 

MAX(x) has 9 moves

ACTIONS function 

Alternatively MAX places x and MIN places o

until reach leaf (terminal) node 

RESULT function

utility value of the terminal state from 

the point of view of MAX; high values 

are assumed to be good for MAX and 

bad for MIN
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o • Terminal node for tic-tac-toe 

game tree is: fewer than 

9! = 362,880 nodes.

• For chess there are over 1040

nodes.
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Single-player path finding problems.

• Rubik’s Cube

• Sliding puzzle.

• Travelling Salesman Problem.

Two-player games.

• Tic-Tac-Toe

• Chess

• Checkers

• Othello

• Constraint satisfaction problems.

• Eight Queens (N-Queen)

• Sudoku

Example: Sliding puzzle



Game Tree – Problem Space
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Each game consists of 

• a problem space, 

• an initial state, and 

• a single (or a set of) goal states.

A problem space is a mathematical abstraction 

in the form of a tree:

• the root represents current state

• nodes represent states of the game

• edges represent moves

• leaves represent final states (win, loss or draw)

Example: 8-Puzzle game

• nodes: the different permutations of the tiles.

• edges: moving the blank tile up, down, right or left.

Example: Sliding puzzle

up right down left
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Game Tree – Problem Space
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Choice of a problem space 

• not so obvious for some problems. 

• One general rule is that a smaller representation, in the sense of fewer states to search, is often 

better then a larger one. A problem space is characterized by two major factors.

The branching factor - the average number of children of the nodes in the space.

• The eight puzzle has a branching factor of 2.13

• Rubik’s cube has a branching factor of 13.34

• Chess has a branching factor of about 35

The solution depth 

• The length of the shortest path from the initial node to a goal node.

• The size of a solution space:

• Tic-Tac-Toe is 9! = 362,880

• 8-puzzle - 9!/2

• Checkers - 𝟏𝟎𝟒𝟎

• Chess - 𝟏𝟎𝟏𝟐𝟎 (40 moves, 35 branch factor - 35(2*40))
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• Brute-Force Search

• Minimax

• Heuristic Search

• Dijkstra Algorithm

• Best-First Search

• A* algorithm
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Uninformed / 
Systematic

Informed /      
Non-Systematic

Brute 
force 

search

Minimax 
search

Best-First 
search

A* 
Algorithm
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Systematic Search
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Brute-Force Search 
And Minimax



Brute-Force Search
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Breadth-First

Search

Depth-First

Search



Breadth-First Search
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• Breadth-First search (BFS) expands nodes in 

order of their depth from the root.

• Implemented by first-in first-out (FIFO) queue.

• BFS will find a shortest path to a goal.

• Time/Space Complexity - branching factor b 

and the solution depth d. 

• Generate all the nodes up to level d.

• Total number of nodes in BFS 

1 + b + b2 + ... + bd = O(bd) 

• BFS will exhaust the memory in minutes.
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Graphics inspiration: 

https://qiao.github.io/PathFinding.js/visual/

https://qiao.github.io/PathFinding.js/visual/
https://qiao.github.io/PathFinding.js/visual/
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Graphics inspiration: 

https://qiao.github.io/PathFinding.js/visual/

Bi-Directional Breadth-First Search

https://qiao.github.io/PathFinding.js/visual/
https://qiao.github.io/PathFinding.js/visual/


Depth-First Search
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• Depth-First  is iterative-deepening

• First performs a DFS to depth one. Than starts over 

executing DFS to depth two and so on.

• Implemented by LIFO stack

• Space Complexity is linear in the maximum search 

depth.

• DFS generate the same set of nodes as BFS

• Time Complexity is O(bd) 

• The first solution DFS found may not be the 

optimal one.

• On infinite (branch) tree DFS may not terminate.



Minimax

• We consider games with two players 

• Zero-Sum games: One person's gains are the result of another person's 
losses (so called). 

• The minimax algorithm is a specialized search algorithm which returns 
the optimal sequence of moves for a player in a zero-sum game. 

• In the game tree that results from the algorithm, each level represents a 
move by either of two players, say A and B. 

Dr Varun Ojha, University of Reading, UK 23
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Minimax: Example
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• Tic-Tac-Toe

• Player A: MAX (x)

• Player B: MIN (o)

• Zero Sum: 

• If MAX wins gets +1

• If MIN wins  gets  -1

• Net Sum = 0
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Minimax
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• The minimax algorithm explores the entire 

game tree using a depth-first search. 

• At each node in the tree where player-A 

has to move. The player-A would like to play 

the move that maximises the payoff.  

• Player-A will assign the maximum score 

amongst the children to the node where Max 

makes a move. 

• Similarly, player-B will minimize the payoff to 

A-player. 

• The maximum and minimum scores are 

taken at alternating levels of the tree, since A 

and B alternate turns.
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• Alpha-beta pruning improve 

the efficiency of Minimax 

search and reduces the 

number of state to examine 

in a game tree.  

• It prunes the branches that 

will not influence decision of 

a node.
3 12 2 6 14 28 4 5



[−∞, 3][3, 3]

Alpha-Beta Pruning
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A

B

• Initialise 𝛼 = −∞, 𝛽 = +∞ to the MAX (root node A) and 

explore its child

• Leaf of B is 3. Set 𝛼 = −∞, 𝛽 = 3 since B is MIN node 

and it will play at most 3. That is beta is the minimum 

upper bound of possible solutions

• Explore other child of B to see if any other child has less 

than 3.

• Last child of B has 8. Set B with 𝛼 = 3, 𝛽 = 3 .

• Root (MAX node A) can play at least 3. Set              [
]

𝛼 =
3, 𝛽 = +∞ . Explore other child to see if any child  has a 

grater value than 3. That is alpha is the maximum lower 

bound of possible solutions

• MIN node C has 2. Hence, its other child are pruned since 

C will not play more than 2 and node B has 3. Hence, A will 

NOT play C. 

• Similarly explore other child of A to check if it can play 

more than 3.

[−∞,+∞]

3 12 2 14 28 5

[3, +∞]

[−∞, 2] C [−∞, 14][−∞, 5][2, 2] D

pruning

[3, 3]



Systematic Search

• Brute-force and Minimax systematically search the whole 

search space.

• Limitation – Sometimes however it is not feasible to search the whole 

search space - it's just too big!

• Solution – Use heuristic search (non-systematic search)

Dr Varun Ojha, University of Reading, UK 28
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Non-Systematic Search
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Heuristic Search



Heuristic Search: Principles

Strategy – rather than trying all possible search paths, focus on paths that seem to 

be getting us closer to the goal state. 

Limitation – generally can't be sure that the goal state is really near.

Advantage – might be able to have a good guess based on some heuristics.

Evaluation function – evaluation function that ranks nodes in the search tree 

according to some criteria (for example, how close we are to the target). This 

function provides a quick way of guessing.
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Heuristic Search: Properties

1. It must provide an accurate estimator of 

the cost to reach a goal.

2. It must be cheap to compute.

3. It always must be a lower bound on 

actual solution cost.
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Dijkstra Algorithm

• It find the shortest path between 
two nodes in a graph

• Steps:
1. Initially all nodes are marked 

unvisited and assigned value ∞

2. Start with assigning initial node with 
values 0

3. Visit other unvisited node assign 
smallest tentative distance from 
initial node mark them visited. And 
REPEAT

Dr Varun Ojha, University of Reading, UK 33
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Illustration source: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
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Graphics inspiration: 

https://qiao.github.io/PathFinding.js/visual/

https://qiao.github.io/PathFinding.js/visual/
https://qiao.github.io/PathFinding.js/visual/
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Graphics inspiration: 

https://qiao.github.io/PathFinding.js/visual/

Bi-Directional Dijkstra Search

https://qiao.github.io/PathFinding.js/visual/
https://qiao.github.io/PathFinding.js/visual/


Best-First Search

• The search is similar to Breadth First Search, but instead of taking 

the first node it always chooses a node with the best score, 

according to an evaluation function. 

• If we create a good evaluation function, best first search may 

drastically cut down the amount of search time.

• It is a Greedy algorithm. It uses a heuristic to evaluate the path.
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Graphics inspiration: 

https://qiao.github.io/PathFinding.js/visual/

Best-First Search

https://qiao.github.io/PathFinding.js/visual/
https://qiao.github.io/PathFinding.js/visual/
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Graphics inspiration: 

https://qiao.github.io/PathFinding.js/visual/

Bi-Directional Best-First Search

https://qiao.github.io/PathFinding.js/visual/
https://qiao.github.io/PathFinding.js/visual/


A* Algorithm

• A* is a variant of Best-First search.  Since Best-First search only 
accounts for heuristic and the cheapest cost of the path from a 
start state to the current state. So, we may find a solution but it 
may be not a very good solution. 

• A* attempts to find a solution which minimizes the total cost of the 
solution path. 

• This algorithm combines advantages of Breadth-First search with 
advantages of best first search.
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A* Algorithm

𝑓 𝑛 = ℎ 𝑛
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𝑓 𝑛 = 𝑔 𝑛 + ℎ(𝑛)

Best-First Search

𝒏

𝑔 𝑛
estimated cost from S to 𝑛

T

ℎ 𝑛
heuristic cost to from S to T

S

ℎ 𝑛
heuristic cost to from 𝑛 to T

𝑔 𝑛
estimated cost

from 𝑛 to 𝑛1, 𝑛2. . . , 𝑇



Admissibility of a heuristic ℎ(𝑛)

• A heuristic ℎ 𝑛 is admissible if it never overestimate the cost 

to the Goal. That is ℎ 𝑛 ≤ ℎ∗ 𝑛 , where ℎ∗ 𝑛 is the true cost 

from a state 𝑛 to the Goal. 

• Admissible heuristics can be measured as:

• ℎ 𝑛 = 0 (set to zero)

• ℎ 𝑛 = 𝑛𝑥 − 𝑇𝑥
2 + 𝑛𝑦 − 𝑇𝑦

2
(straight line)

6:43 PM

Dr Varun Ojha, University of Reading, UK 42



43

6:43 PM

9 7 3

0

2

5 3
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𝑓 𝑛 = 𝑔 𝑛 + ℎ(𝑛)

1

5

f(n) = 

(8+5)+2 

= 13

f(n) = 

(8+7)+5 

= 20

f(n) 

(13+2)+0

= 15

f(n) 

(20+4)+1 

= 25

f(n)

(16+3)+1 

=20

f(n) 

(16+1)+0

=17

f(n) 

(16+3)+2

=21
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0

𝑓 𝑛 = 𝑔 𝑛 + ℎ(𝑛) 𝑓 𝑛 = 𝑔 𝑛 + ℎ(𝑛)

These are suboptimal Goal reached!

Is it optimal?



Path Finding Example
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𝐹 𝑛 = 𝐺 𝑛 + 𝐻(𝑛)

Example adapted from: https://brilliant.org/wiki/a-star-search/ (Accessed on 31 Jan 2021)

Initial State

Goal State

𝐻 𝑛 = 𝑛𝑥 − 𝑇𝑥
2 + 𝑛𝑦 − 𝑇𝑦

2

𝑇

𝑆
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𝐹 𝑛 = 𝐺 𝑛 + 𝐻(𝑛)

Example adapted from: https://brilliant.org/wiki/a-star-search/ (Accessed on 31 Jan 2021)

Initial State

Goal State

𝐻 𝑛 = 𝑛𝑥 − 𝑇𝑥
2 + 𝑛𝑦 − 𝑇𝑦

2

𝑇

𝑆
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Graphics inspiration: 

https://qiao.github.io/PathFinding.js/visual/

https://qiao.github.io/PathFinding.js/visual/
https://qiao.github.io/PathFinding.js/visual/
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Bayes Theorem 

𝑃 𝐻 𝐸) =
𝑃 𝐸 | 𝐻 𝑃(𝐻)

𝑃 𝐻 𝑃 𝐸 𝐻) + 𝑃 ¬𝐻 𝑃 𝐸 ¬𝐻)

Where 𝐻 and 𝐸 are events 

𝑃(𝐻 | 𝐸) is a conditional probability, the likelihood of 𝐻 given 𝐸 is true.

𝑃(𝐸 | 𝐻) is a conditional probability the likelihood of 𝐸 given 𝐻 is true.

𝑃(𝐻) and 𝑃(𝐸) are probabilities of observing 𝐻 and 𝐸

6:43 PM
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posterior
normalising constant

priorlikelihood



Bayesian Inference (Sequential)

𝑃 𝐻 𝐸1, 𝐸2) =
𝑃 𝐸1 | 𝐻 𝑃 𝐸2 | 𝐻 𝑃(𝐻)

𝑃 𝐸1 𝑃(𝐸2)

Where 𝐻 and 𝐸𝑖 are events 

𝑃 𝐻 𝐸𝑖) is a conditional probability, the likelihood of 𝐻 given 𝐸𝑖 is true.

𝑃(𝐸𝑖 | 𝐻) is a conditional probability the likelihood of 𝐸𝑖 given 𝐻 is true.

𝑃(𝐻) and 𝑃(𝐸𝑖) are probabilities of observing 𝐻 and 𝐸𝑖

6:43 PM
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posterior
normalising constant

priorlikelihood



Probabilistic Reasoning

Fact: You return home and the door is open

Reason: Is it a family person?

Reason: Is it a Burglar? 

Who opens the door?  Is something stolen? …

How do we represent these relations? 

6:43 PM
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Belief Network
6:43 PM
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Door open

Causal relationship are represented in a direct acyclic graph 
(DAG) and arrows represent relationship. 

Family person Burglar



Probabilistic Relationships 6:43 PM
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A

B

A

C

B

C B

A

C

A

Direct Indirect Common cause Common effect

𝑃 𝐵 𝐴) 𝑃 𝐵 𝐴)
𝑃 𝑪 𝐵)

𝑃 𝐵 𝐴)
𝑃 𝑪 𝐴)

𝑃 𝑪 𝐴, 𝐵)

C is independent 

of A given B

B



Joint Probabilities
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What is the probability that event A and B together (e.g., cloud 
and sun appearing together). 

𝑃 𝐴, 𝐵 = 𝑃 𝐴 𝐵) 𝑃(𝐵)

𝑃 𝐴, 𝐵 = 𝑃 𝐵 𝐴) 𝑃(𝐴)



Bayesian Belief Network

𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 𝐴 𝑃 𝐵 𝐶 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶, 𝐸 𝑃 𝐸 𝐴, 𝐶

In General, we can write

𝑃 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑃 𝑋1 = 𝑥1 ∧ ⋯∧ 𝑋𝑛 = 𝑥𝑛

= ෑ

𝑖=1

𝑛

𝑃 𝑥𝑖 parent(𝑋𝑖))

6:43 PM
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E

D

B C

A

Goal: is to calculate the posterior conditional probability distribution of each of the possible 

unobserved causes given the observed evidence, i.e. 𝑷 𝑪𝒂𝒖𝒔𝒆 𝑬𝒗𝒊𝒅𝒂𝒏𝒄𝒆]



Example Problem
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Example adapted from: 

Bayesian networks, Ch 14, Artificial Intelligence: A Modern Approach, Peter Norvig and Stuart J. Russell

Variables: Burglar, Earthquake, Alarm, 

JohnCalls, MaryCalls

Network topology reflects “causal” 

knowledge:

• A burglar can set the alarm off

• An earthquake can set the alarm off

• The alarm can cause Mary to call

• The alarm can cause John to call

Note: I keep calling/writing BNN – but it should be BBN – Bayesian Belief Network
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Example adapted from: 

Bayesian networks, Ch 14, Artificial Intelligence: A Modern Approach, Peter Norvig and Stuart J. Russell

If we assume: 

Burglar (B) = True

Earthquake (E) = True

Alarm (A) = True

JohnCalls (J) = True

MaryCalls (M) =  False 

From this Bayesian Belief Network 

(BNN), we have the following 

probability:

𝑃 𝐵 = 𝑇, 𝐸 = 𝑇, 𝐴 = 𝑇, 𝐽 = 𝑇,𝑀 = 𝐹

𝑃 𝐵 = 𝑇, 𝐸 = 𝑇, 𝐴 = 𝑇, 𝐽 = 𝑇,𝑀 = 𝐹 =
P(B=T)P(E=T)P(A=T|B=T,E=T)P(J =T| A=T)P(M =F| A=T)
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Example adapted from: 

Bayesian networks, Ch 14, Artificial Intelligence: A Modern Approach, Peter Norvig and Stuart J. Russell

If we assume: 

Burglar (B) = True

Earthquake (E) = True

Alarm (A) = True

JohnCalls (J) = True

MaryCalls (M) =  False 

From this Bayesian Belief Network 

(BNN), we have the following 

probability:

𝑃 𝐵 = 𝑇, 𝐸 = 𝑇, 𝐴 = 𝑇, 𝐽 = 𝑇,𝑀 = 𝐹

𝑃 𝐵 = 𝑇, 𝐸 = 𝑇, 𝐴 = 𝑇, 𝐽 = 𝑇,𝑀 = 𝐹 =
P(B=T)P(E=T)P(A=T|B=T,E=T)P(J =T| A=T)P(M =F| A=T)
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Example adapted from: 

Bayesian networks, Ch 14, Artificial Intelligence: A Modern Approach, Peter Norvig and Stuart J. Russell

If we assume: 

Burglar (B) = True

Earthquake (E) = True

Alarm (A) = True

JohnCalls (J) = True

MaryCalls (M) =  False 

From this Bayesian Belief Network 

(BNN), we have the following 

probability:

𝑃 𝐵 = 𝑇, 𝐸 = 𝑇, 𝐴 = 𝑇, 𝐽 = 𝑇,𝑀 = 𝐹

We are interested in answering the prediction questions like:

• probability of Alarm going off 𝑃 𝐴 = 𝑇
• probability of 𝑃 𝐽𝑜ℎ𝑛 𝐶𝑎𝑙𝑙𝑠 |𝐴𝑙𝑎𝑟𝑚 = 𝑇
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