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Learning objectives

• By the end of this week, you will be able to

• Learn Bayesian Classifier

• Markov Chain and Markova Decision Process

• Valuer Function and Optima Policy Design

• Decision Network

• Apply concept of Bayesian classify to two or more objects. 
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Content of this week

• Part 1: Basics of Bayesian Theorem

• Part 2: Naïve Bayesian  Classifier (NBC)

• Discrete Values Attributes

• Continuous Values Attributes

• Part 3:  Markov Decision Process (MDP)

• Markov Chain

• Value Function

• Policy design

• Part 4:  Decision Network (DN) 

• Part 5:  Practical Exercise (NBC)

• Quiz
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Part 1
Bayesian Theorem
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Probability
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Probability of choosing either 0 or 1

𝑃 either 0 or 1 =
1

2

6:56 PM

Dr Varun Ojha, University of Reading, UK 6



Probability of choosing either 1 and 10

𝑃 EVEN number between 1 and 10 =
5

10
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Training data
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Example Source: Kubat, M., 2017. An introduction to machine learning (Vol. 2). Cham, Switzerland: Springer International Publishing.

Crust: 

• Size: (thick; thin)

• Shade (white; dark; grey) 

Filling: 

• Size: (thick; thin)

• Shade (white; dark; grey) Shape: (circle; square; triangle) 



Training data
6:56 PM
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Example Source: Kubat, M., 2017. An introduction to machine learning (Vol. 2). Cham, Switzerland: Springer International Publishing.



Training data
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Example Source: Kubat, M., 2017. An introduction to machine learning (Vol. 2). Cham, Switzerland: Springer International Publishing.

I LIKE these types of cake I DO NOT LIKE these types of cake



Training data: Positive example
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Example Source: Kubat, M., 2017. An introduction to machine learning (Vol. 2). Cham, Switzerland: Springer International Publishing.

I LIKE these types of cake

E
x
a
m

p
le Crust Filling

Shape Size Shade Size Shade Class

Ex1 Circle Thick Grey Thick Dark Pos

Ex2 Circle Thick White Thick Dark Pos

Ex3 Triangle Thick Dark Thick Grey Pos

Ex4 Circle Thin White Thin Dark Pos

Ex5 Square Thick Dark Thin White Pos

Ex6 Circle Thick White Thin Dark Pos



Training data: Negative example
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Example Source: Kubat, M., 2017. An introduction to machine learning (Vol. 2). Cham, Switzerland: Springer International Publishing.

E
x
a
m

p
le Crust Filling

Shape Size Shade Size Shade Class

Ex7 Circle Thick Grey Thick White Neg

Ex8 Square Thick White Thick Grey Neg

Ex9 Triangle Thin Grey Thin Dark Neg

Ex10 Circle Thick Dark Thin White Neg

Ex11 Square Thick White Thick Dark Neg

Ex12 Triangle Thick White Thick Grey Neg

I DO NOT LIKE these types of cake



Training data: All examples
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Example Source: Kubat, M., 2017. An introduction to machine learning (Vol. 2). Cham, Switzerland: Springer International Publishing.

# Crust Filling

Shape Size Shade Size Shade Class

Ex1 Circle Thick Grey Thick Dark Pos

Ex2 Circle Thick White Thick Dark Pos

Ex3 Triangle Thick Dark Thick Grey Pos

Ex4 Circle Thin White Thin Dark Pos

Ex5 Square Thick Dark Thin White Pos

Ex6 Circle Thick White Thin Dark Pos

Ex7 Circle Thick Grey Thick White Neg

Ex8 Square Thick White Thick Grey Neg

Ex9 Triangle Thin Grey Thin Dark Neg

Ex10 Circle Thick Dark Thick White Neg

Ex11 Square Thick White Thick Dark Neg

Ex12 Triangle Thick White Thick Grey Neg

Instance space

Shape × |Crustsize × Crustshape × Fillsize × Fillshade

3 × 2 × 3 × 2 × 3

108



Bayes Theorem 
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Thomas Bayes

(1701 – 1761)

𝑃 𝐻 𝐸) =
𝑃 𝐸 | 𝐻 𝑃(𝐻)

𝑃(𝐸)



Probability picking a “pos” example 
randomly?

𝑃 pos =
𝑁pos examples

𝑁all examples
=

6

12
= 0.5
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The Prior Probability: 
probability of picking a “pos” example randomly?

𝑃 pos =
𝑁pos examples

𝑁all examples
=

6

12
= 0.5
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The Conditional Probability: 
The probability of picking a “pos” from all “thick 
filling” example randomly?

𝑃 pos | thick =
𝑁pos | thick

𝑁thick
=
3

8
= 0.375

6:56 PM
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The Conditional Probability: 
The probability of picking a “thick filling” from all 
“pos” example randomly?

𝑃 thick | pos =
𝑁thick | pos

𝑁pos
=
3

6
= 0.5

6:56 PM
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The Joint Probability: 
The probability of picking a “pos” and “thick filling” 
example randomly?

𝑃 pos , thick = 𝑃 pos | thick . 𝑃 thick

=
3

8
.
8

12
=

3

12

6:56 PM
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The Joint Probability: 
The probability of picking a “thick filling” and “pos” 
example randomly?

𝑃 thick , pos = 𝑃 thick | pos . 𝑃 pos

=
3

6
.
6

12
=

3

12
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The Joint Probability: 
Two important things
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𝑃 pos , thick ≤ 𝑃 pos | thick

𝑃 pos , thick = 𝑃 thick , pos

Joint probability of two events will always be ≤ their conditional probability



The Posterior Probability: 
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𝑃 pos | thick =
𝑃 thick | pos 𝑃 pos

𝑃 thick



The Posterior Probability: 
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𝑃 pos | thick =
𝑃 thick | pos 𝑃 pos

𝑃 thick

Bayes Theorem 



Bayes Theorem 

𝑃 𝐻 𝐸) =
𝑃 𝐸 | 𝐻 𝑃(𝐻)

𝑃(𝐸)

Where 𝐻 and 𝐸 are events 

𝑃(𝐻 | 𝐸) is a conditional probability, the likelihood of 𝐻 given 𝐸 is true.

𝑃(𝐸 | 𝐻) is a conditional probability, the likelihood of 𝐸 given 𝐻 is true.

𝑃(𝐻) and 𝑃(𝐸) are probabilities of observing 𝐻 and 𝐸
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posterior
normalising constant

priorlikelihood



Part 2
Bayesian Classifier
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Training data: All examples
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Example Source: Kubat, M., 2017. An introduction to machine learning (Vol. 2). Cham, Switzerland: Springer International Publishing.

# Crust Filling

Shape Size Shade Size Shade Class

Ex1 Circle Thick Grey Thick Dark Pos

Ex2 Circle Thick White Thick Dark Pos

Ex3 Triangle Thick Dark Thick Grey Pos

Ex4 Circle Thin White Thin Dark Pos

Ex5 Square Thick Dark Thin White Pos

Ex6 Circle Thick White Thin Dark Pos

Ex7 Circle Thick Grey Thick White Neg

Ex8 Square Thick White Thick Grey Neg

Ex9 Triangle Thin Grey Thin Dark Neg

Ex10 Circle Thick Dark Thick White Neg

Ex11 Square Thick White Thick Dark Neg

Ex12 Triangle Thick White Thick Grey Neg

Instance space

Shape × |Crustsize × Crustshape × Fillsize × Fillshade

3 × 2 × 3 × 2 × 3

108



The Posterior Probability: 
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𝑃 class | data =
𝑃 data | class 𝑃 class

𝑃 data

The posterior probability of a class given input data



The Posterior Probability: 
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𝑃 𝑐𝑗 | 𝐱 =
𝑃 𝐱 | 𝑐𝑗 𝑃 𝑐𝑗

𝑃 𝐱

The posterior probability of a class 𝑐𝑗 given an input vector 𝐱

Where 𝐱 = 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 is a data  and 𝑐𝑗 = 𝑓 𝐱 , class label, e.g., 𝑐1 = 𝑝𝑜𝑠 and 𝑐2 = 𝑛𝑒𝑔



The Posterior Probability: 
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𝑃 𝑐𝑗 | 𝐱 = 𝑃 𝐱 | 𝑐𝑗 𝑃 𝑐𝑗

The posterior probability of a class 𝑐𝑗 given an input vector 𝐱

Where 𝐱 = 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 is a data  and 𝑐𝑖 = 𝑓 𝐱 , class label 

Since 𝑃 𝐱 being same for all classes in question, we will label data with class which 

maximises the numerator 𝑃 𝐱 | 𝑐𝑗 𝑃 𝑐𝑗



The Prior Probability 𝑃 𝑐𝑗 is easy!

𝑃 𝑐𝑗 =
𝑁examples of class labled 𝑐𝑗

𝑁all examples

6:56 PM
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The Prior Probability𝑃 𝐱 | 𝑐𝑗 is hard!

𝑃 𝐱 | 𝑐𝑗 =
𝑁examples represent vector 𝐱 where class is 𝑐𝑗

𝑁all examples labled as class 𝑐𝑗

6:56 PM
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The Prior Probability𝑃 𝐱 | 𝑐𝑗 is hard!

𝑃 𝐱 | 𝑐𝑗 =
𝑁examples represent vector 𝐱 where class is 𝑐𝑗

𝑁all examples labled as class 𝑐𝑗
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Instance space can be huge!

What if the vector 𝐱 does not belong to the training set?

X = Triangle Thick Grey Thin Grey

This example does NOT belong to the training data 



The Prior Probability 𝑃 𝐱 | 𝑐𝑗 is hard!

𝑃 𝐱 | 𝑐𝑗 = 0

6:56 PM
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Bayes formula will give 0 Game Over!!

Instance – space  can be huge!

What if the vector 𝐱 does not belong to the training set?



Hope! Try individual attributes
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𝑃 𝐱 | 𝑐𝑗 =ෑ

𝑖=1

𝑛

𝑃 𝑥𝑖 𝑐𝑗)

Assumption!  Mutually independent attributes

Where 𝐱 = 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 is a data  and 𝑐𝑗 = 𝑓 𝐱 , class label 



The Posterior Probability: 
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𝑃 𝑐𝑗 | 𝐱 = 𝑃 𝑐𝑗 ⋅ෑ

𝑖=1

𝑛

𝑃 𝑥𝑖 𝑐𝑗)

The posterior probability of a class given input data vector

Since 𝑃 𝐱 being same for all classes in question, we will label data with class which 

maximises the numerator 𝑃 𝐱 | 𝑐𝑗 𝑃 𝑐𝑗 . 



Naïve Bayes Classifier (NBC): 
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ො𝑦 = argmax
𝑐𝑗∈{1,2,…,𝑘}

𝑃 𝑐𝑗 ⋅ෑ

𝑖=1

𝑛

𝑃 𝑥𝑖 𝑐𝑗)

Maximum a Posteriori (MAP)

Because we make a naïve assumption 



Naïve Bayes Classifier (NBC):  
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ො𝑦 = argmax
𝑐𝑗∈{1,2,…,𝑘}

log 𝑃 𝑐𝑗 

𝑖=1

𝑛

log 𝑃 𝑥𝑖 𝑐𝑗)

Maximum a Posteriori (MAP) using log likelihood

Because we make a naïve assumption 



Naïve Bayes Classifier: 
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ො𝑦 = argmax
𝑐𝑗∈{1,2,…,𝑘}

ෑ

𝑖=1

𝑛

𝑃 𝑥𝑖 𝑐𝑗)

Assuming a uniform prior 𝑃 𝑐𝑗 over the hypothesis space, 

MAP reduces to Maximum Likelihood learning:

Because we make a naïve assumption 



Maximum Likelihood learning : 
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ො𝑦 = argmax
𝑐𝑗∈{1,2,…,𝑘}

ෑ

𝑖=1

𝑛

𝑃 𝑥𝑖 𝑐𝑗)

Assuming a uniform prior 𝑃 𝑐𝑗 over the hypothesis space, 

MAP reduces to Maximum Likelihood learning:



Bayesian Classifier

Continuous domain
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If we try to find frequency of mutually independent 
attribute 𝒙𝒊 which is a real number and not 
discrete, the Prior Probability 𝑷 𝐱 | 𝒄𝒋 is super 

hard to find in a continuous domain.

Instance-space is too vast!
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Does NBC also work for 
continuous attributes?



Binning of Continues Variables
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p(x)

x

x𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7



Probability Density Function (pdf)
Gaussian function
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𝜇 = 0
𝜎 = 1

𝑝(𝑥)

𝑥



Probability Density Function (pdf)
Gaussian function
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𝜇 =
1

𝑛


𝑖 = 1

𝑛

𝑥𝑖

𝑝(𝑥)

𝑥

𝑝 𝑥 =
1

2 𝜋𝜎2
. 𝑒

−
𝑥 −𝜇 2

2𝜎2 𝜎2 =
1

𝑛 − 1


𝑖 = 1

𝑛

(𝑥𝑖 −𝜇)
2



The Posterior Probability: 
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𝑃 𝑐𝑗 | 𝑥𝑖 =
𝑝𝑐𝑗 𝑥𝑖 . 𝑃 𝑐𝑗

𝑝𝑐𝑗 𝑥𝑖

The posterior probability of a class given input (continuous) variable 𝑥

𝑝 𝑥 is a probability density function over variable 𝑥 and 𝑐𝑗 = 𝑓 𝑥 is a class label 



Naïve Bayes Classifier: 
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ො𝑦 = argmax
𝑐𝑗∈{1,2,…,𝑘}

ෑ

𝑖=1

𝑛

𝑝𝑐𝑗 𝑥𝑖 𝑐𝑗)

Assuming a uniform prior 𝑃 𝑐𝑗 over the hypothesis space, 

MAP reduces to Maximum Likelihood learning:



Combining Gaussian function (pdfs)
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𝑝𝑐𝑗 𝑥𝑖 =
1

𝑚 2 𝜋𝜎2


𝑘=1

𝑚

𝑒
−

𝑥𝑖 −𝑥𝑘
2

2𝜎2

𝑚 being total number of examples in a training set labelled as 𝑐𝑗



Example Table
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Attributes

Set
Examples A B C Class

Training

Ex1 3.2 2.1 2.1 Pos

Ex2 5.2 6.1 7.5 Pos

Ex3 8.5 1.3 0.5 Pos

Ex4 2.3 5.4 2.45 Neg

Ex5 6.2 3.1 4.4 Neg

Ex6 1.3 6.0 3.35 Neg

Test Ex7 9.0 3.6 3.3 Pos / Neg ?



Naïve Bayes Classifier:  Homework
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If 𝑝pos 𝐴𝑒𝑥7 =
1

3 2 𝜋
𝑒− 0.5 (𝐴𝑒𝑥7−𝐴𝑒𝑥1) + 𝑒− 0.5 (𝐴𝑒𝑥7−𝐴𝑒𝑥2) + 𝑒− 0.5 (𝐴𝑒𝑥7−𝐴𝑒𝑥3)

compute 𝑝pos 𝐱7 = 𝑝pos 𝐴𝑒𝑥7 . 𝑝pos 𝐵𝑒𝑥7 . 𝑝pos 𝐶𝑒𝑥7

If 𝑝neg 𝐴𝑒𝑥7 =
1

3 2 𝜋
𝑒− 0.5 (𝐴𝑒𝑥7−𝐴𝑒𝑥4) + 𝑒− 0.5 (𝐴𝑒𝑥7−𝐴𝑒𝑥5) + 𝑒− 0.5 (𝐴𝑒𝑥7−𝐴𝑒𝑥6)

compute 𝑝neg 𝐱7 = 𝑝neg 𝐴𝑒𝑥7 . 𝑝neg 𝐵𝑒𝑥7 . 𝑝neg 𝐶𝑒𝑥7

determine the output class by computing ො𝑦 = argmax(𝑝pos 𝐱7 , 𝑝neg 𝐱7 )

For the given training example (Table in Slide #44), computer the following
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Markov Process/ Markov Chain 

Source Demo: http://setosa.io/ev/markov-chains/

S R

A sequence of random states 𝑆1, 𝑆2, ⋯ 𝑆𝑡 with the Markov property, i.e.,  future state 𝑆𝑡+1 depends only on 
current  state 𝑆𝑡, where 𝑆𝑡 capture all relevant information for 𝑆𝑡+1 from past sequence 𝑆𝑡−1, 𝑆𝑡−2, ⋯ 𝑆0.

http://setosa.io/ev/markov-chains/


Markov Process/ Markov Chain 
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S R

Source Demo: http://setosa.io/ev/markov-chains/

(Accessed on 07 Feb 2021)

S: Sunny R: Rain

S: Sunny

R: Rain

Transition Probability Matrix 
(State Transition Matrix)

𝟎. 𝟖

𝟎. 𝟐

𝟎. 𝟑

𝟎. 𝟕 𝑷(𝑺 | 𝑺): 𝟎. 𝟕 𝑷(𝑺 | 𝑹): 𝟎. 𝟑

𝑷(𝑹 | 𝑹): 𝟎. 𝟐𝑷(𝑹 | 𝑺): 𝟎. 𝟖

Markov Chain State Space

http://setosa.io/ev/markov-chains/


Markov Decision Process

• Markov decision processes (MDPs) are an extension of 

Markov Chains with the addition of rewards for each action. 

• Conversely, if only one action exists for each state (e.g. "wait") 

and all rewards are the same (e.g. "zero"), a Markov decision 

process reduces to a Markov Chain.
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Markov Decision Processes 

• A Markov decision process (MDP) is a discrete time stochastic 

control process. 

• It provides a mathematical framework for modelling decision 

making in situations where outcomes are partly random and partly 

under the control of a decision maker. 

• MDPs are useful for studying optimization problems solved via 

dynamic programming and reinforcement learning.
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Markov Decision Process: Definition

• A Markov Decision Process is a 4-tuple (𝑺 , 𝑨 , 𝑷𝒂 , 𝑹𝒂, 𝜸), where 

• 𝑺 = {𝒔𝟏, 𝒔𝟐, … } is a finite set of states.

• 𝑨 = {𝒂𝟏, 𝒂𝟐, … } is a finite set of actions (alternatively, 𝑨𝒔 is the finite set of actions available 

from state  𝑺), 

• 𝑷𝒂 𝒔, 𝒔′ = 𝐏 𝒔𝒕+𝟏 = 𝒔′ 𝒔𝒕 = 𝒔 , 𝒂𝒕 = 𝒂) is the probability that action 𝒂 in state 𝒔 at time 

𝒕 will lead to state 𝒔′ at time 𝒕 + 𝟏, 

• 𝑹𝒂(𝒔, 𝒔
′) is the immediate reward (or expected immediate reward) received after 

transitioning from  state 𝒔 to state 𝒔′, due to action 𝒂.

• 𝜸 ∈ [𝟎, 𝟏] is a discount factor, 0 being insignificant and 1 being significant reward
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MDP: Example

• three states 𝑺𝟎, 𝑺𝟏, 𝑺𝟐 , 𝑻.

• two actions 𝒂𝟎, 𝒂𝟏, 𝒂𝟐.

• 𝑷𝒂 𝒔, 𝒔′

• 𝑹𝒂(𝒔, 𝒔
′)

• e.g., rewards {-1, 0, and +1}

(green arrows).

6:56 PM
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𝒂𝟏

𝒂𝟏

𝒂𝟏 𝒂𝟐

𝒂𝟎

𝒂𝟎

𝒂𝟎

𝒂𝟏

𝒂𝟐

𝒂𝟏

𝑺𝟏

𝑺𝟎

𝑻

𝑺𝟐

+1

0

+1

+1

+1
-1

0

+1

0

-1

𝟎. 𝟔

𝟎. 𝟐

𝟎. 𝟑

𝟎. 𝟓

𝟎. 𝟐
𝟎. 𝟕

𝟎. 𝟔𝟓

𝟎. 𝟏

𝟎. 𝟑

𝟎. 𝟒



MDP: Example
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𝑺𝟏

𝑺𝟎

𝑻

+1

0

+1

-1
+1

𝟎. 𝟐

𝟎. 𝟓

𝟎. 𝟓

𝟎. 𝟕

𝟎. 𝟑

𝒂𝟏

𝒂𝟏

𝒂𝟐

𝒂𝟎

𝒂𝟎

𝒂𝟏

𝟎. 𝟔

0

• three states 𝑺𝟎, 𝑺𝟏, 𝑻.

• two actions 𝒂𝟎, 𝒂𝟏, 𝒂𝟐.

• 𝑷𝒂 𝒔, 𝒔′

• 𝑹𝒂(𝒔, 𝒔
′)

e.g., rewards {-1, 0, and +1}

(green arrows).



Policy 𝜋

• Optimal "policy" design for the decision maker is the core problem of MDPs.

• A policy denoted as 𝜋 is its recommended action 𝑎 for state 𝑠, i.e., what to do 

next when at state 𝑠.

𝝅 𝒂 𝒔 = 𝑷 𝑨 = 𝒂 𝑺 = 𝒔]

• It is the of distribution over actions given states. It fully defines the behaviour of 

an agent. This means a MDP depends on current state not all the history.

• If a decision maker has a complete policy 𝜋 it will know what to do next.
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State Value Function 𝑣𝜋(𝑠)

State Function 𝑣𝜋(𝑠) is the expected return (reward) value accumulated at a state 𝑠 and 
following policy 𝜋. 

𝒗𝝅 𝒔 = 𝔼𝝅 𝑮𝒕 𝑺 = 𝒔

𝒗𝝅 𝒔 = 

𝒂 ∈ 𝑨

𝝅 𝒂 𝒔) (𝑹𝒔 + 𝜸 

𝒔′ ∈ 𝑺

𝑷 𝒔′, 𝒔 𝒗𝝅 𝒔′ )

This is Bellman Expectation State-Value Equation. Where reward intermediate 𝑅 and 
state value 𝑠.  

State-value function tells us how good is it to be in state 𝒔 by following policy 𝝅.
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Action Value Function 𝑞𝜋(𝑠, 𝑎)

Action Function 𝑞𝜋(𝑠, 𝑎) is the expected return (reward) value accumulated at a state 𝑠
and following policy 𝜋. 

This Bellman Action-Value Equation function tells us how good is it to take an action at  
state 𝒔 by following policy 𝜋. 

This give us an idea how good it is to take an action 𝑎 at state 𝑠.
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𝑞𝜋 𝑠, 𝑎 = 𝔼𝝅 𝑮𝒕 𝑺 = 𝒔, 𝑨 = 𝒂

=
𝑹𝒔
𝒂 + 𝜸 

𝒔′ ∈ 𝑺

𝑷𝒂 𝒔′, 𝒔 𝒗𝝅(𝒔
′)

=
𝑹𝒔
𝒂 + 𝜸 

𝒔′ ∈ 𝑺

𝑷𝒂 𝒔′, 𝒔 

𝒂′ ∈𝑨

𝝅 𝒂′ 𝒔′) 𝒒𝝅(𝒔
′, 𝒂′)



𝝅: Policy Design 

• Policy design for the decision maker is the core problem of MDPs.

• A policy denoted as 𝜋 and 𝜋(𝑠) for its recommended action for state 

𝑠, i.e., what to do next when at state 𝑠.

• If a decision maker has a complete policy 𝜋 it will know what to do 

next when on state 𝑠. In that case, Markov Decision process will 

behave like a Markov Chain since 𝑷 𝒔𝒕+𝟏 = 𝒔′ 𝒔𝒕 = 𝒔 , 𝒂𝒕 = 𝒂) will 

reduce to 𝑷 𝒔𝒕+𝟏 = 𝒔′ 𝒔𝒕 = 𝒔) because determinacy of 𝜋(𝑠) . 
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𝝅∗: Optimal Policy Design

Optimal Policy 𝝅∗ is the one that gives the highest expected utility.  
That is a policy 𝝅 that will maximise some cumulative function of the 
random rewards 𝑹𝒂𝒕, typically, the expected discounted sum over a 
potentially infinite horizon: 

𝑼 = σ𝒕=𝟎
∞ 𝜸𝒕𝑹𝒂𝒕(𝒔𝒕, 𝒔𝒕+𝟏)

where 𝜸 ∈ [𝟎, 𝟏] is a discount factor, 0 being insignificant and 1 being 
significant reward, and 𝒂𝒕 = 𝜋(𝑠𝑡)
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Decision Network (Influence Diagrams)

• Decision networks (aka influence diagrams) provide a 
representation for sequential decision making 

• Basic idea
• Random variables like in Bayes Nets 

• Decision variables that you “control” 

• Utility variables which state how good certain states are (e.g., metrics, 
objective function, measurements).
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Decision Network: Example
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Random Variables 

(denoted by circles).

Variables the 

decision maker sets 

(denoted by squares).

Disease

Test 

Result
Cold

Fever

Drug

Utility

optional

Blood Test



Decision Network: Chance Node
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Random Variable 

(denoted by circles).

Each nodes have 

probabilistic dependence 

on parent nodes

Disease

Test 

Result

Fever

Blood Test

 𝑃(𝑓𝑙𝑢) = 0.3

 𝑃(𝑎𝑐ℎ𝑒) = 0.1

 𝑃(𝑛𝑜𝑛𝑒) = 0.6

 𝑃(𝑓𝑙𝑢) = 0.5

 𝑃(𝑎𝑐ℎ𝑒) = 0.3

 𝑃(𝑛𝑜𝑛𝑒) = 0.05

 𝑃 𝑝𝑜𝑠 𝑓𝑙𝑢, 𝑏𝑡) = 0.5

 𝑃 𝑛𝑒𝑔 𝑓𝑙𝑢𝑒, 𝑏𝑡) = 0.8

 ∶

 𝑃 𝑛𝑒𝑔 𝑎𝑐ℎ𝑒, ~𝑏𝑡 ) = 0. 9



Decision Network: Decision Node
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Variables the decision 

maker sets 

(denoted by squares).

Parents reflect the 

information available at a 

time of decision making 

Cold

Fever

Blood Test ∈ { 𝐵𝑇,~𝐵𝑇}

Blood Test
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Disease

Drug

Utility

Decision Network: Value Node

Value node: Specify the 

utility of a state.

(denoted by diamond).

Utility depends only on 

state of the parent

Generally, only one 

value node exists in a 

network

 𝑈(𝑑𝑟𝑎𝑔𝑓𝑙𝑢, 𝑓𝑙𝑢) = 20

 𝑈 𝑑𝑟𝑎𝑔𝑓𝑙𝑢, 𝑎𝑐ℎ𝑒 = −5

 𝑈 𝑑𝑟𝑎𝑔𝑓𝑒𝑣𝑒𝑟 , 𝑎𝑐ℎ𝑒 = −10

 :

 𝑈(𝑑𝑟𝑎𝑔𝑛𝑜𝑛𝑒 , 𝑓𝑙𝑢𝑒) = 300

Utilities



Assumptions

• Decision nodes are totally ordered

• Given variables 𝐷1, 𝐷2, … , 𝐷𝑛, the 

decision nodes are made in sequence.

• No forgetting property

• Any information available for a decision 

𝐷𝑖 is available for decision 𝐷𝑗 for 𝑗 > 𝑖

• All parents of decision 𝐷𝑖 are also the 

parents of decision 𝐷𝑗 for 𝑗 > 𝑖
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Cold

Fever

DrugBlood Test



Policy

• Let 𝑃𝑎𝑟𝑒𝑛𝑡(𝐷𝑖) be the parents of a  

decision node 𝐷𝑖

• 𝐷𝑜𝑚𝑎𝑖𝑛(𝑃𝑎𝑟𝑒𝑛𝑡(𝐷𝑖)) is the set of 

assignments to 𝑃𝑎𝑟𝑒𝑛𝑡 𝐷𝑖 , 

• e.g., {𝑐𝑜𝑙𝑑, ~ 𝑐𝑜𝑙𝑑) and {𝑓𝑒𝑣𝑒𝑟, ~𝑓𝑒𝑣𝑒𝑟}

• A policy 𝜋 is a set of mappings 𝜋𝑖, 
one for each decision node 𝐷𝑖

• 𝜋𝑖 (𝐷𝑖) associates a decision for each 

parent assignment 

• 𝜋𝑖 ∶ 𝐷𝑜𝑚𝑎𝑖𝑛(𝑃𝑎𝑟𝑒𝑛𝑡(𝐷𝑖)) → 𝐷𝑜𝑚𝑎𝑖𝑛(𝐷𝑖)
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Cold

Fever

DrugBlood Test

𝜋𝐵𝑇(𝑐𝑜𝑙𝑑, 𝑓𝑒𝑣𝑒𝑟) = 𝐵𝑇
𝜋𝐵𝑇(𝑐𝑜𝑙𝑑, ~𝑓𝑒𝑣𝑒𝑟) = ~𝐵𝑇
𝜋𝐵𝑇(~𝑐𝑜𝑙𝑑, 𝑓𝑒𝑣𝑒𝑟) = 𝐵𝑇

𝜋𝐵𝑇(~𝑐𝑜𝑙𝑑, ~𝑓𝑒𝑣𝑒𝑟) = ~𝐵𝑇

Policy



Value of a Policy

• Given assignment 𝑥 to random variables 𝑋, let 𝜋(𝑥) be the 
assignment to decision variables denoted by𝜋.

• Value of 𝜋, i.e., the expected utility, 𝑬𝑼 𝝅 , is:

𝑬𝑼 𝝅 = σ𝒙𝑷 𝒙, 𝝅 𝒙 𝑼 𝒙,𝝅 𝒙

• Where, 𝑷 is the probability of the outcome and 𝑼 is utility 
function and 
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Optimal Policy 𝝅∗

An optimal policy 𝝅∗ is given by 𝑬𝑼 𝝅∗ ≥ 𝑬𝑼 𝜋 for all 𝝅
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Maximisation over all other



Computing Optimal Policy

• Compute backward direction

• Compute optimal policy of the last decision 
node in a sequence

• E.g., Drugs in this case

• For each parent {𝐶, 𝐹, 𝐵𝑇, 𝑇𝑅} and for each decision 
value 𝐷 ∈ {𝑑𝑟𝑢𝑔𝑓𝑙𝑢𝑒, 𝑑𝑟𝑢𝑔𝑎𝑐ℎ𝑒 , 𝑛𝑜𝑑𝑟𝑢𝑔}, compute the 
expected utility, EU of choosing a decision value D. 

• For each 𝐷𝑜𝑚𝑎𝑖𝑛(𝑃𝑎𝑟𝑒𝑛𝑡(𝐷)), set a policy choice 
𝝅𝑫(𝐶, 𝐹, 𝐵𝑇, 𝑇𝑅) where the value of 𝐷 is maximum.
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Disease

Test 

ResultCold

Fever

Drug

Utility

optional

Blood Test



Computing Optimal Policy

• Compute backward direction

• Compute optimal policy of the second last 
decision node in a sequence based on last policy 
𝝅𝑫(𝐶, 𝐹, 𝐵𝑇, 𝑇𝑅)

• E.g., Blood Test is just before Drug

• Since 𝝅𝑫(𝐶, 𝐹, 𝐵𝑇, 𝑇𝑅) is already computed its fixed. 

• Treat 𝑫 as a random variable with a deterministic probability 

• Computer policy choice for Blood Test, 𝐵𝑇, where the value of 𝐵𝑇
is maximum.
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Disease

Test 

ResultCold

Fever

Drug

Utility

optional

Blood Test



Computing Expected Utilities

• Computing expected utilities with Bayes Net is 
straightforward

• Utility nodes are just factors that can be dealt 
with using variable elimination

• 𝑬𝑼 = σ𝑨,𝑩,𝑪𝑷 𝑨,𝑩, 𝑪 𝑼 𝑩, 𝑪

• 𝑬𝑼 = σ𝑨,𝑩,𝑪𝑷 𝑨 ⋅ 𝑷 𝑩|𝑨 ⋅ 𝑷 𝑪|𝑩 ⋅ 𝑼 𝑩, 𝑪
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