Artificial Intelligence

CS3AI18/ CSMAI19
Lecture - 5/10: Learning, Markov Decision Processes, and Decision Network

DR VARUN OJHA

Department of Computer Science

Reading

Learning objectives

- By the end of this week, you will be able to
- Learn Bayesian Classifier
- Markov Chain and Markova Decision Process
- Valuer Function and Optima Policy Design
- Decision Network
- Apply concept of Bayesian classify to two or more objects.

Content of this week

- Part 1: Basics of Bayesian Theorem
- Part 2: Naïve Bayesian Classifier (NBC)
- Discrete Values Attributes
- Continuous Values Attributes
- Part 3: Markov Decision Process (MDP)
- Markov Chain
- Value Function
- Policy design
- Part 4: Decision Network (DN)
- Part 5: Practical Exercise (NBC)
- Quiz

Artificial Intelligence

CS3AI18/ CSMAI19
Lecture - 5/10: Learning (Algorithms)

Part 1 Bayesian Theorem DR VARUN OJHA
 Department of Computer Science

*** University of
Reading

Probability

Probability of choosing either 0 or 1

$$
P(\text { either } 0 \text { or } 1)=\frac{1}{2}
$$

Probability of choosing either 1 and 10

$P($ EVEN number between 1 and 10$)=\frac{5}{10}$

Training data

[^0]Training data

Example Source: Kubat, M., 2017. An introduction to machine learning (Vol. 2). Cham, Switzerland: Springer International Publishing.

Training data

I LIKE these types of cake

I DO NOT LIKE these types of cake

Training data: Positive example

I LIKE these types of cake

	Crust			Filling		
	Shape	Size	Shade	Size	Shade	Class
Ex1	Circle	Thick	Grey	Thick	Dark	Pos
Ex2	Circle	Thick	White	Thick	Dark	Pos
Ex3	Triangle	Thick	Dark	Thick	Grey	Pos
Ex4	Circle	Thin	White	Thin	Dark	Pos
Ex5	Square	Thick	Dark	Thin	White	Pos
Ex6	Circle	Thick	White	Thin	Dark	Pos

Training data: Negative example

DO NOT LIKE these types of cake

$\begin{aligned} & \frac{0}{0} \\ & \hline \stackrel{E}{E} \\ & \underset{\sim}{x} \\ & \hline \end{aligned}$	Crust			Filling		
	Shape	Size	Shade	Size	Shade	Class
Ex7	Circle	Thick	Grey	Thick	White	Neg
Ex8	Square	Thick	White	Thick	Grey	Neg
Ex9	Triangle	Thin	Grey	Thin	Dark	Neg
Ex10	Circle	Thick	Dark	Thin	White	Neg
Ex11	Square	Thick	White	Thick	Dark	Neg
Ex12	Triangle	Thick	White	Thick	Grey	Neg

[^1]
Training data: All examples

\#	Shape	Crust		Filling		Class
		Size	Shade	Size	Shade	
Ex1	Circle	Thick	Grey	Thick	Dark	Pos
Ex2	Circle	Thick	White	Thick	Dark	Pos
Ex3	Triangle	Thick	Dark	Thick	Grey	Pos
Ex4	Circle	Thin	White	Thin	Dark	Pos
Ex5	Square	Thick	Dark	Thin	White	Pos
Ex6	Circle	Thick	White	Thin	Dark	Pos
Ex7	Circle	Thick	Grey	Thick	White	Neg
Ex8	Square	Thick	White	Thick	Grey	Neg
Ex9	Triangle	Thin	Grey	Thin	Dark	Neg
Ex10	Circle	Thick	Dark	Thick	White	Neg
Ex11	Square	Thick	White	Thick	Dark	Neg
Ex12	Triangle	Thick	White	Thick	Grey	Neg

Instance space
\mid Shape $|\times|$ Crust $_{\text {size }}|\times|$ Crust $_{\text {shape }}|\times|$ Fill $_{\text {size }}|\times|$ Fill $_{\text {shade }}$
$3 \times 2 \times 3 \times 2 \times 3$
108

Example Source: Kubat, M., 2017. An introduction to machine learning (Vol. 2). Cham, Switzerland: Springer International Publishing.

Bayes Theorem

$$
P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}
$$

Thomas Bayes
(1701-1761)

Probability picking a "pos" example randomly?

$$
P(\text { pos })=\frac{N_{\text {pos examples }}}{N_{\text {all examples }}}=\frac{6}{12}=0.5
$$

The Prior Probability: probability of picking a "pos" example randomly?

$$
P(\text { pos })=\frac{N_{\text {pos examples }}}{N_{\text {all examples }}}=\frac{6}{12}=0.5
$$

The Conditional Probability:

 The probability of picking a "pos" from all "thick filling" example randomly?$$
P(\text { pos } \mid \text { thick })=\frac{N_{\text {pos } \mid \text { thick }}}{N_{\text {thick }}}=\frac{3}{8}=0.375
$$

The Conditional Probability: The probability of picking a "thick filling" from all "pos" example randomly?

$$
P(\text { thick } \mid \text { pos })=\frac{N_{\text {thick } \mid \text { pos }}}{N_{\text {pos }}}=\frac{3}{6}=0.5
$$

The Joint Probability:

 The probability of picking a "pos" and "thick filling" example randomly?$$
\begin{aligned}
P(\text { pos }, \text { thick }) & =P(\text { pos } \mid \text { thick }) \cdot P(\text { thick }) \\
& =\frac{3}{8} \cdot \frac{8}{12}=\frac{3}{12}
\end{aligned}
$$

The Joint Probability:

 The probability of picking a "thick filling" and "pos" example randomly?$P($ thick, pos $)=P($ thick \mid pos $) \cdot P($ pos $)$

$$
=\frac{3}{6} \cdot \frac{6}{12}=\frac{3}{12}
$$

The Joint Probability: Two important things

$P($ pos, thick $) \leq P($ pos \mid thick $)$

Joint probability of two events will always be \leq their conditional probability

$$
P(\text { pos }, \text { thick })=P(\text { thick }, \text { pos })
$$

The Posterior Probability:

$$
P(\text { pos } \mid \text { thick })=\frac{P(\text { thick } \mid \text { pos }) P(\text { pos })}{P(\text { thick })}
$$

The Posterior Probability:

Bayes Theorem

$$
P(\text { pos } \mid \text { thick })=\frac{P(\text { thick } \mid \text { pos }) P(\text { pos })}{P(\text { thick })}
$$

Bayes Theorem

likelihood
prior

$$
P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}
$$

Where H and E are events
$P(H \mid E)$ is a conditional probability, the likelihood of H given E is true. $P(E \mid H)$ is a conditional probability, the likelihood of E given H is true. $P(H)$ and $P(E)$ are probabilities of observing H and E

Artificial Intelligence

CS3AI18/ CSMAI19
Lecture - 5/10: Learning (Algorithms)

Part 2

DR VARUN OJHA
Department of Computer Science

Training data: All examples

$\#$		Crust						
		Filling						
	Ex1	Circle	Thick	Grey		Thick	Dark	Pos
Ex2	Circle	Thick	White		Thick	Dark	Pos	
Ex3	Triangle	Thick	Dark		Thick	Grey	Pos	
Ex4	Circle	Thin	White		Thin	Dark	Pos	
Ex5	Square	Thick	Dark		Thin	White	Pos	
Ex6	Circle	Thick	White		Thin	Dark	Pos	
Ex7	Circle	Thick	Grey		Thick	White	Neg	
Ex8	Square	Thick	White		Thick	Grey	Neg	
Ex9	Triangle	Thin	Grey		Thin	Dark	Neg	
Ex10	Circle	Thick	Dark		Thick	White	Neg	
Ex11	Square	Thick	White		Thick	Dark	Neg	
Ex12	Triangle	Thick	White		Thick	Grey	Neg	

The Posterior Probability:

The posterior probability of a class given input data

$$
P(\text { class } \mid \text { data })=\frac{P(\text { data } \mid \text { class }) P(\text { class })}{P(\text { data })}
$$

The Posterior Probability:

The posterior probability of a class c_{j} given an input vector \mathbf{x}

$$
P\left(c_{j} \mid \mathbf{x}\right)=\frac{P\left(\mathbf{x} \mid c_{j}\right) P\left(c_{j}\right)}{P(\mathbf{x})}
$$

Where $\mathbf{x}=\left\langle\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right\rangle$ is a data and $c_{j}=f(\mathbf{x})$, class label, e.g., $c_{1}=p o s$ and $c_{2}=n e g$

The Posterior Probability:

The posterior probability of a class c_{j} given an input vector \mathbf{x}

$$
P\left(c_{j} \mid \mathbf{x}\right)=P\left(\mathbf{x} \mid c_{j}\right) P\left(c_{j}\right)
$$

Where $\mathbf{x}=\left\langle\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right\rangle$ is a data and $c_{i}=f(\mathbf{x})$, class label

Since $P(\mathbf{x})$ being same for all classes in question, we will label data with class which maximises the numerator $P\left(\mathbf{x} \mid c_{j}\right) P\left(c_{j}\right)$

The Prior Probability $P\left(c_{j}\right)$ is easy!

$$
P\left(c_{j}\right)=\frac{N_{\text {examples of class labled } c_{j}}}{N_{\text {all examples }}}
$$

The Prior Probability $P\left(\mathbf{x} \mid c_{j}\right)$ is hard!

$$
P\left(\mathbf{x} \mid c_{j}\right)=\frac{N_{\text {examples represent vector } \mathbf{x} \text { where class is } c_{j}}}{N_{\text {all examples labled as class } c_{j}}}
$$

The Prior Probability $P\left(\mathbf{x} \mid c_{j}\right)$ is hard!

Instance space can be huge!
What if the vector \mathbf{x} does not belong to the training set?

$$
\begin{aligned}
& P\left(\mathbf{x} \mid c_{j}\right)=\frac{N_{\text {examples represent vector } \mathbf{x} \text { where class is } c_{j}}}{N_{\text {all examples labled as class } c_{j}}} \\
& \mathbf{X}=\mid \text { Triangle Thick Grey Thin Grey } \mid
\end{aligned}
$$

The Prior Probability $P\left(\mathbf{x} \mid c_{j}\right)$ is hard!

Instance - space can be huge!
What if the vector \mathbf{x} does not belong to the training set?

$$
P\left(\mathbf{x} \mid c_{j}\right)=0
$$

Bayes formula will give 0

Hope! Try individual attributes

Assumption! Mutually independent attributes

$$
P\left(\mathbf{x} \mid c_{j}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid c_{j}\right)
$$

Where $\mathbf{x}=\left\langle\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right\rangle$ is a data and $c_{j}=f(\mathbf{x})$, class label

The Posterior Probability:

The posterior probability of a class given input data vector

$$
P\left(c_{j} \mid \mathbf{x}\right)=P\left(c_{j}\right) \cdot \prod_{i=1}^{n} P\left(x_{i} \mid c_{j}\right)
$$

Since $P(\mathbf{x})$ being same for all classes in question, we will label data with class which maximises the numerator $P\left(\mathbf{x} \mid c_{j}\right) P\left(c_{j}\right)$.

Naïve Bayes Classifier (NBC):

Maximum a Posteriori (MAP)

$$
\hat{y}=\underset{c_{j} \in\{1,2, \ldots, k\}}{\operatorname{argmax}} P\left(c_{j}\right) \cdot \prod_{i=1}^{n} P\left(x_{i} \mid c_{j}\right)
$$

Naïve Bayes Classifier (NBC):

Maximum a Posteriori (MAP) using log likelihood

$$
\hat{y}=\underset{c_{j} \in\{1,2, \ldots, k\}}{\operatorname{argmax}} \log \left(P\left(c_{j}\right)\right) \sum_{i=1}^{n} \log \left(P\left(x_{i} \mid c_{j}\right)\right)
$$

Naïve Bayes Classifier:

Assuming a uniform prior $P\left(c_{j}\right)$ over the hypothesis space, MAP reduces to Maximum Likelihood learning:

$$
\hat{y}=\underset{c_{j} \in\{1,2, \ldots, k\}}{\operatorname{argmax}} \prod_{i=1}^{n} P\left(x_{i} \mid c_{j}\right)
$$

Maximum Likelihood learning :

Assuming a uniform prior $P\left(c_{j}\right)$ over the hypothesis space, MAP reduces to Maximum Likelihood learning:

$$
\hat{y}=\underset{c_{j} \in\{1,2, \ldots, k\}}{\operatorname{argmax}} \prod_{i=1}^{n} P\left(x_{i} \mid c_{j}\right)
$$

Bayesian Classifier Continuous domain

Does NBC also work for continuous attributes?

If we try to find frequency of mutually independent attribute x_{i} which is a real number and not discrete, the Prior Probability $\boldsymbol{P}\left(\mathbf{x} \mid c_{j}\right)$ is super hard to find in a continuous domain.

Instance-space is too vast!

Binning of Continues Variables

Probability Density Function (pdf)

Gaussian function

Probability Density Function (pdf)

Gaussian function

x

The Posterior Probability:

The posterior probability of a class given input (continuous) variable x

$$
P\left(c_{j} \mid x_{i}\right)=\frac{p_{c_{j}}\left(x_{i}\right) \cdot P\left(c_{j}\right)}{p_{c_{j}}\left(x_{i}\right)}
$$

$p(x)$ is a probability density function over variable x and $c_{j}=f(x)$ is a class label

Naïve Bayes Classifier:

Assuming a uniform prior $P\left(c_{j}\right)$ over the hypothesis space, MAP reduces to Maximum Likelihood learning:

$$
\widehat{y}=\underset{c_{j} \in\{1,2, \ldots, k\}}{\operatorname{argmax}} \prod_{i=1}^{n} p_{c_{j}}\left(x_{i} \mid c_{j}\right)
$$

Combining Gaussian function (pdfs)

$$
p_{c_{j}}\left(x_{i}\right)=\frac{1}{m \sqrt{2 \pi \sigma^{2}}} \sum_{k=1}^{m} e^{-\frac{\left(x_{i}-x_{k}\right)^{2}}{2 \sigma^{2}}}
$$

m being total number of examples in a training set labelled as c_{j}

Example Table

		Attributes			
Set	Examples	A	B	C	Class
	Ex1	3.2	2.1	2.1	Pos
	Ex2	5.2	6.1	7.5	Pos
	Ex3	8.5	1.3	0.5	Pos
Training	Ex4	2.3	5.4	2.45	Neg
	Ex5	6.2	3.1	4.4	Neg
	Ex6	1.3	6.0	3.35	Neg
Test	Ex7	9.0	3.6	3.3	Pos / Neg?

Naïve Bayes Classifier: Homework

For the given training example (Table in Slide \#44), computer the following
If $p_{\mathrm{pos}}\left(A_{e x_{7}}\right)=\frac{1}{3 \sqrt{2 \pi}}\left[e^{-0.5\left(A_{e x_{7}}-A_{e x_{1}}\right)}+e^{-0.5\left(A_{e x_{7}}-A_{e x_{2}}\right)}+e^{-0.5\left(A_{e x_{7}}-A_{e x_{3}}\right)}\right]$
compute $p_{\text {pos }}\left(\mathbf{x}_{7}\right)=p_{\text {pos }}\left(A_{e x_{7}}\right) \cdot p_{\text {pos }}\left(B_{e x_{7}}\right) \cdot p_{\text {pos }}\left(C_{e x_{7}}\right)$
If $p_{\text {neg }}\left(A_{e x_{7}}\right)=\frac{1}{3 \sqrt{2 \pi}}\left[e^{-0.5\left(A_{e x_{7}}-A_{e x_{4}}\right)}+e^{-0.5\left(A_{e x_{7}}-A_{e x_{5}}\right)}+e^{-0.5\left(A_{e x_{7}}-A_{e x_{6}}\right)}\right]$
compute $p_{\text {neg }}\left(\mathbf{x}_{7}\right)=p_{\text {neg }}\left(A_{\text {ex }}\right) \cdot p_{\text {neg }}\left(B_{\text {ex }}\right) \cdot p_{\text {neg }}\left(C_{e x_{7}}\right)$
determine the output class by computing $\hat{y}=\operatorname{argmax}\left(p_{\text {pos }}\left(\mathbf{x}_{7}\right), p_{\text {neg }}\left(\mathbf{x}_{7}\right)\right)$

Artificial Intelligence

CS3AI18/ CSMAI19
Lecture - 5/10: MDP

Part 3
 Markov Decision Process

DR VARUN OJHA
Department of Computer Science
**: University of
Reading

Markov Process/ Markov Chain

A sequence of random states $S_{1}, S_{2}, \cdots S_{t}$ with the Markov property, i.e., future state S_{t+1} depends only on current state S_{t}, where S_{t} capture all relevant information for S_{t+1} from past sequence $S_{t-1}, S_{t-2}, \cdots S_{0}$.

Source Demo: http://setosa.io/ev/markov-chains/

Markov Process/ Markov Chain

Markov Chain State Space

Transition Probability Matrix (State Transition Matrix)

Markov Decision Process

- Markov decision processes (MDPs) are an extension of Markov Chains with the addition of rewards for each action.
- Conversely, if only one action exists for each state (e.g. "wait") and all rewards are the same (e.g. "zero"), a Markov decision process reduces to a Markov Chain.

Markov Decision Processes

- A Markov decision process (MDP) is a discrete time stochastic control process.
- It provides a mathematical framework for modelling decision making in situations where outcomes are partly random and partly under the control of a decision maker.
- MDPs are useful for studying optimization problems solved via dynamic programming and reinforcement learning.

Markov Decision Process: Definition

- A Markov Decision Process is a 4-tuple ($S, A, P_{a}, R_{a}, \gamma$), where
- $S=\left\{s_{1}, s_{2}, \ldots\right\}$ is a finite set of states.
- $A=\left\{a_{1}, a_{2}, \ldots\right\}$ is a finite set of actions (alternatively, $\boldsymbol{A}_{\boldsymbol{s}}$ is the finite set of actions available from state S),
- $P_{a}\left(s, s^{\prime}\right)=\mathbf{P}\left(s_{t+1}=s^{\prime} \mid s_{t}=s, a_{t}=\boldsymbol{a}\right)$ is the probability that action a in state s at time \boldsymbol{t} will lead to state s^{\prime} at time $\boldsymbol{t}+\mathbf{1}$,
- $R_{a}\left(s, s^{\prime}\right)$ is the immediate reward (or expected immediate reward) received after transitioning from state s to state s^{\prime}, due to action a.
- $\gamma \in[\mathbf{0 , 1}]$ is a discount factor, 0 being insignificant and 1 being significant reward

MDP: Example

- three states S_{0}, S_{1}, S_{2}, T.
- two actions $\boldsymbol{a}_{0}, a_{1}, a_{2}$.
- $P_{a}\left(s, s^{\prime}\right)$
- $R_{a}\left(s, s^{\prime}\right)$
- e.g., rewards $\{-1,0$, and +1$\}$ (green arrows).

MDP: Example

- three states $\boldsymbol{S}_{0}, \boldsymbol{S}_{1}, \boldsymbol{T}$.
- two actions a_{0}, a_{1}, a_{2}
- $P_{a}\left(s, s^{\prime}\right)$
- $\boldsymbol{R}_{\boldsymbol{a}}\left(\boldsymbol{s}, s^{\prime}\right)$
e.g., rewards $\{-1,0$, and +1$\}$ (green arrows).

Policy π

- Optimal "policy" design for the decision maker is the core problem of MDPs.
- A policy denoted as π is its recommended action a for state s, i.e., what to do next when at state s.

$$
\pi(a \mid s)=P[A=a \mid S=s]
$$

- It is the of distribution over actions given states. It fully defines the behaviour of an agent. This means a MDP depends on current state not all the history.
- If a decision maker has a complete policy π it will know what to do next.

State Value Function $v_{\pi}(s)$

State Function $v_{\pi}(s)$ is the expected return (reward) value accumulated at a state s and following policy π.

$$
\begin{gathered}
v_{\pi}(s)=\mathbb{E}_{\pi}\left[G_{t} \mid S=s\right] \\
v_{\pi}(s)=\sum_{a \in A} \pi(a \mid s)\left(R_{s}+\gamma \sum_{s^{\prime} \in S} P\left(s^{\prime}, s\right) v_{\pi}\left(s^{\prime}\right)\right)
\end{gathered}
$$

This is Bellman Expectation State-Value Equation. Where reward intermediate R and state value s.

State-value function tells us how good is it to be in state s by following policy $\boldsymbol{\pi}$.

Action Value Function $q_{\pi}(s, a)$

Action Function $q_{\pi}(s, a)$ is the expected return (reward) value accumulated at a state s and following policy π.

$$
\begin{aligned}
q_{\pi}(s, a) & =\mathbb{E}_{\pi}\left[G_{t} \mid S=s, A=a\right] \\
& =R_{s}^{a}+\gamma \sum_{s^{\prime} \in S} P^{a}\left(s^{\prime}, s\right) v_{\pi}\left(s^{\prime}\right) \\
& =R_{s}^{a}+\gamma \sum_{s^{\prime} \in S} P^{a}\left(s^{\prime}, s\right) \sum_{a^{\prime} \in A} \pi\left(a^{\prime} \mid s^{\prime}\right) q_{\pi}\left(s^{\prime}, a^{\prime}\right)
\end{aligned}
$$

This Bellman Action-Value Equation function tells us how good is it to take an action at state s by following policy π.

This give us an idea how good it is to take an action a at state s.

π : Policy Design

- Policy design for the decision maker is the core problem of MDPs.
- A policy denoted as π and $\pi(s)$ for its recommended action for state s, i.e., what to do next when at state s.
- If a decision maker has a complete policy π it will know what to do next when on state s. In that case, Markov Decision process will behave like a Markov Chain since $P\left(s_{t+1}=s^{\prime} \mid s_{t}=s, a_{t}=a\right)$ will reduce to $\boldsymbol{P}\left(s_{t+1}=\boldsymbol{s}^{\prime} \mid \boldsymbol{s}_{\boldsymbol{t}}=\boldsymbol{s}\right)$ because determinacy of $\pi(s)$.

π^{*} : Optimal Policy Design

Optimal Policy π^{*} is the one that gives the highest expected utility. That is a policy π that will maximise some cumulative function of the random rewards $\boldsymbol{R}_{\boldsymbol{a}}$, typically, the expected discounted sum over a potentially infinite horizon:

$$
U=\sum_{t=0}^{\infty} \gamma^{t} R_{a_{t}}\left(s_{t}, s_{t+1}\right)
$$

where $\boldsymbol{\gamma} \in[\mathbf{0}, \mathbf{1}]$ is a discount factor, 0 being insignificant and 1 being significant reward, and $\boldsymbol{a}_{\boldsymbol{t}}=\pi\left(s_{t}\right)$

Artificial Intelligence

CS3AI18/ CSMAI19

Lecture - 5/10: DN

Part 4 Decision Network

DR VARUN OJHA
Department of Computer Science
**: University of
Reading

Decision Network (Influence Diagrams)

- Decision networks (aka influence diagrams) provide a representation for sequential decision making
- Basic idea
- Random variables like in Bayes Nets
- Decision variables that you "control"
- Utility variables which state how good certain states are (e.g., metrics, objective function, measurements).

Decision Network: Example

Random Variables (denoted by circles).

Variables the decision maker sets (denoted by squares).

Decision Network: Chance Node

Random Variable (denoted by circles).

Each nodes have probabilistic dependence on parent nodes

Decision Network: Decision Node

Variables the decision maker sets (denoted by squares).

Parents reflect the information available at a time of decision making

Decision Network: Value Node

Value node: Specify the utility of a state. (denoted by diamond).

Utility depends only on state of the parent

Generally, only one value node exists in a network

Assumptions

- Decision nodes are totally ordered
- Given variables $D_{1}, D_{2}, \ldots, D_{n}$, the decision nodes are made in sequence.
- No forgetting property
- Any information available for a decision D_{i} is available for decision D_{j} for $j>i$
- All parents of decision D_{i} are also the parents of decision D_{j} for $j>i$

Policy

- Let Parent(Di) be the parents of a decision node D_{i}
- Domain(Parent(Di)) is the set of assignments to Parent $\left(D_{i}\right)$,
- e.g., \{cold, ~ cold) and \{fever, \sim fever $\}$
- A policy π is a set of mappings π_{i}, one for each decision node D_{i}
- $\pi_{i}(D i)$ associates a decision for each
 parent assignment
- $\pi_{i}: \operatorname{Domain}(\operatorname{Parent}(D i)) \rightarrow \operatorname{Domain}(D i)$

Value of a Policy

- Given assignment x to random variables X, let $\pi(x)$ be the assignment to decision variables denoted by π.
- Value of π, i.e., the expected utility, $\boldsymbol{E} \boldsymbol{U}(\boldsymbol{\pi})$, is:

$$
E U(\pi)=\sum_{x} P(x, \pi(x)) U(x, \pi(x))
$$

- Where, \boldsymbol{P} is the probability of the outcome and \boldsymbol{U} is utility function and

Optimal Policy π^{*}

An optimal policy $\boldsymbol{\pi}^{*}$ is given by $\boldsymbol{E} \boldsymbol{U}\left(\boldsymbol{\pi}^{*}\right) \geq \boldsymbol{E} \boldsymbol{U}(\pi)$ for all $\boldsymbol{\pi}$

Maximisation over all other

Computing Optimal Policy

- Compute backward direction
- Compute optimal policy of the last decision node in a sequence
- E.g., Drugs in this case
- For each parent $\{C, F, B T, T R\}$ and for each decision value $D \in\left\{\right.$ rrug $\left._{\text {flue }}, d r u g_{\text {ache }}, n 0_{\text {drug }}\right\}$, compute the expected utility, EU of choosing a decision value D.

- For each Domain(Parent(D)), set a policy choice $\boldsymbol{\pi}_{\boldsymbol{D}}(C, F, B T, T R)$ where the value of D is maximum.

Computing Optimal Policy

- Compute backward direction

- Compute optimal policy of the second last decision node in a sequence based on last policy $\boldsymbol{\pi}_{\boldsymbol{D}}(C, F, B T, T R)$
- E.g., Blood Test is just before Drug
- Since $\pi_{D}(C, F, B T, T R)$ is already computed its fixed.
- Treat \boldsymbol{D} as a random variable with a deterministic probability

- Computer policy choice for Blood Test, $B T$, where the value of $B T$ is maximum.

Computing Expected Utilities

- Computing expected utilities with Bayes Net is straightforward
- Utility nodes are just factors that can be dealt with using variable elimination
- $\boldsymbol{E U}=\sum_{A, B, C} P(A, B, C) \boldsymbol{U}(B, C)$
- $\boldsymbol{E} \boldsymbol{U}=\sum_{A, B, C} P(A) \cdot P(B \mid A) \cdot P(C \mid B) \cdot \boldsymbol{U}(B, C)$

Artificial Intelligence

CS3AI18/ CSMAI19
Lecture - 5/10: Learning (Algorithms)

Part 5
 Practical Exercise

(available In a separate video)

DR VARUN OJHA
Department of Computer Science
*** University of
Reading

[^0]: Example Source: Kubat, M., 2017. An introduction to machine learning (Vol. 2). Cham, Switzerland: Springer International Publishing.

[^1]: Example Source: Kubat, M., 2017. An introduction to machine learning (Vol. 2). Cham, Switzerland: Springer International Publishing.

