## Artificial Intelligence

CS3AI18/ CSMAI19

Lecture - 5/10: Learning, Markov Decision Processes, and Decision Network

DR VARUN OJHA

Department of Computer Science



#### Learning objectives

- By the end of this week, you will be able to
- Learn Bayesian Classifier
- Markov Chain and Markova Decision Process
- Valuer Function and Optima Policy Design
- Decision Network
- Apply concept of Bayesian classify to two or more objects.

#### Content of this week

- Part 1: Basics of Bayesian Theorem
- Part 2: Naïve Bayesian Classifier (NBC)
  - Discrete Values Attributes
  - Continuous Values Attributes
- Part 3: Markov Decision Process (MDP)
  - Markov Chain
  - Value Function
  - Policy design
- Part 4: Decision Network (DN)
- Part 5: Practical Exercise (NBC)
- Quiz

### **Artificial Intelligence**

CS3AI18/ CSMAI19 Lecture - 5/10: Learning (Algorithms)

# Part 1 Bayesian Theorem

#### DR VARUN OJHA

**Department of Computer Science** 



Probability

E KY



#### Probability of choosing either 0 or 1

## $P \text{ (either 0 or 1)} = \frac{1}{2}$

#### Probability of choosing either 1 and 10

# $P \text{ (EVEN number between 1 and 10)} = \frac{5}{10}$

### Training data



#### Training data



### Training data

I LIKE these types of cake



#### I DO NOT LIKE these types of cake



Example Source: Kubat, M., 2017. An introduction to machine learning (Vol. 2). Cham, Switzerland: Springer International Publishing.

6:56 PM

### Training data: Positive example

| I LIKE these types of cake |         |          | Crust |       | Filling |       |       |
|----------------------------|---------|----------|-------|-------|---------|-------|-------|
|                            | Example | Shape    | Size  | Shade | Size    | Shade | Class |
|                            | Ex1     | Circle   | Thick | Grey  | Thick   | Dark  | Pos   |
|                            | Ex2     | Circle   | Thick | White | Thick   | Dark  | Pos   |
|                            | Ex3     | Triangle | Thick | Dark  | Thick   | Grey  | Pos   |
|                            | Ex4     | Circle   | Thin  | White | Thin    | Dark  | Pos   |
|                            | Ex5     | Square   | Thick | Dark  | Thin    | White | Pos   |
|                            | Ex6     | Circle   | Thick | White | Thin    | Dark  | Pos   |

### Training data: Negative example

| I DO NOT LIKE these types of cake |         | Crust    |       | Filling |       |       |       |
|-----------------------------------|---------|----------|-------|---------|-------|-------|-------|
|                                   | Example | Shape    | Size  | Shade   | Size  | Shade | Class |
|                                   | Ex7     | Circle   | Thick | Grey    | Thick | White | Neg   |
|                                   | Ex8     | Square   | Thick | White   | Thick | Grey  | Neg   |
|                                   | Ex9     | Triangle | Thin  | Grey    | Thin  | Dark  | Neg   |
|                                   | Ex10    | Circle   | Thick | Dark    | Thin  | White | Neg   |
|                                   | Ex11    | Square   | Thick | White   | Thick | Dark  | Neg   |
|                                   | Ex12    | Triangle | Thick | White   | Thick | Grey  | Neg   |

#### Training data: All examples

| #    |          | Crust |       | Filling |       | _     |
|------|----------|-------|-------|---------|-------|-------|
|      | Shape    | Size  | Shade | Size    | Shade | Class |
| Ex1  | Circle   | Thick | Grey  | Thick   | Dark  | Pos   |
| Ex2  | Circle   | Thick | White | Thick   | Dark  | Pos   |
| Ex3  | Triangle | Thick | Dark  | Thick   | Grey  | Pos   |
| Ex4  | Circle   | Thin  | White | Thin    | Dark  | Pos   |
| Ex5  | Square   | Thick | Dark  | Thin    | White | Pos   |
| Ex6  | Circle   | Thick | White | Thin    | Dark  | Pos   |
| Ex7  | Circle   | Thick | Grey  | Thick   | White | Neg   |
| Ex8  | Square   | Thick | White | Thick   | Grey  | Neg   |
| Ex9  | Triangle | Thin  | Grey  | Thin    | Dark  | Neg   |
| Ex10 | Circle   | Thick | Dark  | Thick   | White | Neg   |
| Ex11 | Square   | Thick | White | Thick   | Dark  | Neg   |
| Ex12 | Triangle | Thick | White | Thick   | Grey  | Neg   |

### Instance space

 $|Shape| \times |Crust_{size}| \times |Crust_{shape}| \times |Fill_{size}| \times |Fill_{shade}|$ 

#### $3 \times 2 \times 3 \times 2 \times 3$

108

#### **Bayes Theorem**





# Probability picking a "pos" example randomly?



6:56 PM

#### The Prior Probability: probability of picking a "pos" example randomly?

 $P(pos) = \frac{N_{pos examples}}{N_{all examples}} = \frac{6}{12} = 0.5$ 

6:56 PM

## The Conditional Probability:

The probability of picking a "pos" from all "thick filling" example randomly?

$$P(\text{pos} | \text{thick}) = \frac{N_{\text{pos} | \text{thick}}}{N_{\text{thick}}} = \frac{3}{8} = 0.375$$

### The Conditional Probability:

The probability of picking a "thick filling" from all "pos" example randomly?

$$P(\text{thick} | \text{pos}) = \frac{N_{\text{thick} | \text{pos}}}{N_{\text{pos}}} = \frac{3}{6} = 0.5$$

The Joint Probability: The probability of picking a "pos" <u>and</u> "thick filling" example randomly?

#### P(pos , thick) = P(pos | thick). P(thick)

$$=\frac{3}{8}\cdot\frac{8}{12}=\frac{3}{12}$$

6:56 PM

#### The Joint Probability:

The probability of picking a "thick filling" <u>and</u> "pos" example randomly?

#### P(thick, pos) = P(thick | pos).P(pos)

$$=\frac{3}{6}\cdot\frac{6}{12}=\frac{3}{12}$$

#### The Joint Probability: Two important things

#### $P(pos , thick) \le P(pos | thick)$

Joint probability of two events will always be  $\leq$  their conditional probability

#### P(pos, thick) = P(thick, pos)

#### The Posterior Probability:

# $P(\mathbf{pos} \mid \text{thick}) = \frac{P(\text{thick} \mid \mathbf{pos})P(\mathbf{pos})}{P(\text{thick})}$





#### **Bayes Theorem**



Where *H* and *E* are events

P(H | E) is a conditional probability, the likelihood of *H* given *E* is true. P(E | H) is a conditional probability, the likelihood of *E* given *H* is true. P(H) and P(E) are probabilities of observing *H* and *E* 

#### **Artificial Intelligence**

CS3AI18/ CSMAI19 Lecture - 5/10: Learning (Algorithms)

# Part 2 Bayesian Classifier

#### DR VARUN OJHA

**Department of Computer Science** 



#### Training data: All examples

| #    |          | Crust |       | Filling |       |       |
|------|----------|-------|-------|---------|-------|-------|
|      | Shape    | Size  | Shade | Size    | Shade | Class |
| Ex1  | Circle   | Thick | Grey  | Thick   | Dark  | Pos   |
| Ex2  | Circle   | Thick | White | Thick   | Dark  | Pos   |
| Ex3  | Triangle | Thick | Dark  | Thick   | Grey  | Pos   |
| Ex4  | Circle   | Thin  | White | Thin    | Dark  | Pos   |
| Ex5  | Square   | Thick | Dark  | Thin    | White | Pos   |
| Ex6  | Circle   | Thick | White | Thin    | Dark  | Pos   |
| Ex7  | Circle   | Thick | Grey  | Thick   | White | Neg   |
| Ex8  | Square   | Thick | White | Thick   | Grey  | Neg   |
| Ex9  | Triangle | Thin  | Grey  | Thin    | Dark  | Neg   |
| Ex10 | Circle   | Thick | Dark  | Thick   | White | Neg   |
| Ex11 | Square   | Thick | White | Thick   | Dark  | Neg   |
| Ex12 | Triangle | Thick | White | Thick   | Grey  | Neg   |

### Instance space

 $|Shape| \times |Crust_{size}| \times |Crust_{shape}| \times |Fill_{size}| \times |Fill_{shade}|$ 

#### $3 \times 2 \times 3 \times 2 \times 3$

108

The posterior probability of a class given input data



The posterior probability of a class  $c_i$  given an input vector **x** 



The posterior probability of a class  $c_i$  given an input vector **x** 

$$P(\mathbf{c}_j \mid \mathbf{x}) = P(\mathbf{x} \mid \mathbf{c}_j)P(\mathbf{c}_j)$$

Where  $\mathbf{x} = \langle x_1, x_2, ..., x_n \rangle$  is a data and  $c_i = f(\mathbf{x})$ , class label

Since  $P(\mathbf{x})$  being same for all classes in question, we will label data with class which maximises the numerator  $P(\mathbf{x} | c_j)P(c_j)$ 

## The Prior Probability $P(c_j)$ is easy!

# $P(c_j) = \frac{N_{\text{examples of class labled } c_j}{N_{\text{all examples}}}$

## The Prior Probability $P(\mathbf{x} | \mathbf{c}_j)$ is hard!

$$P(\mathbf{x} | \mathbf{c}_j) = \frac{N_{\text{examples represent vector } \mathbf{x} \text{ where class is } \mathbf{c}_j}{N_{\text{all examples labled as class } \mathbf{c}_j}}$$

6:56 PM

## The Prior Probability $P(\mathbf{x} | \mathbf{c}_j)$ is hard!

Instance space can be huge! What if the vector **x** does not belong to the training set?



## The Prior Probability $P(\mathbf{x} | \mathbf{c}_j)$ is hard!

Instance – space can be huge! What if the vector **x** does not belong to the training set?

$$P(\mathbf{x} \mid \mathbf{c}_j) = 0$$

#### Bayes formula will give **0**

### Hope! Try individual attributes

Assumption! Mutually independent attributes



The posterior probability of a class given input data vector



## Naïve Bayes Classifier (NBC):

Maximum a Posteriori (MAP)



6:56 PM

# Naïve Bayes Classifier (NBC):

#### Maximum a Posteriori (MAP) using log likelihood



6:56 PM



Assuming a **uniform** prior  $P(c_j)$  over the hypothesis space, MAP reduces to Maximum Likelihood learning:



#### Maximum Likelihood learning :

Assuming a **uniform** prior  $P(c_j)$  over the hypothesis space, MAP reduces to Maximum Likelihood learning:



## Bayesian Classifier Continuous domain



# Does NBC also work for continuous attributes?

If we try to find frequency of mutually independent attribute  $x_i$  which is a *real number* and not discrete, the Prior Probability  $P(x | c_j)$  is super hard to find in a continuous domain.

Instance-space is too vast!

#### **Binning of Continues Variables**



#### Probability Density Function (pdf)

Gaussian function



 $\boldsymbol{\chi}$ 

#### Probability Density Function (pdf)

Gaussian function



 $\boldsymbol{\chi}$ 

#### The Posterior Probability:

The posterior probability of a class given input (continuous) variable x

$$P(c_j \mid x_i) = \frac{p_{c_j}(x_i) \cdot P(c_j)}{p_{c_j}(x_i)}$$

$$p(x) \text{ is a probability density function over variable } x \text{ and } c_j = f(x) \text{ is a class label}$$

#### Naïve Bayes Classifier:

Assuming a **uniform** prior  $P(c_j)$  over the hypothesis space, MAP reduces to Maximum Likelihood learning:



#### Combining Gaussian function (pdfs)



m being total number of examples in a training set labelled as  $c_i$ 

#### Example Table

|          | Attributes |     |     | _    |             |
|----------|------------|-----|-----|------|-------------|
| Set      | Examples   | А   | В   | С    | Class       |
|          | Ex1        | 3.2 | 2.1 | 2.1  | Pos         |
|          | Ex2        | 5.2 | 6.1 | 7.5  | Pos         |
| Training | Ex3        | 8.5 | 1.3 | 0.5  | Pos         |
|          | Ex4        | 2.3 | 5.4 | 2.45 | Neg         |
|          | Ex5        | 6.2 | 3.1 | 4.4  | Neg         |
|          | Ex6        | 1.3 | 6.0 | 3.35 | Neg         |
| Test     | Ex7        | 9.0 | 3.6 | 3.3  | Pos / Neg ? |

#### Naïve Bayes Classifier: Homework

For the given training example (Table in Slide #44), computer the following

If 
$$p_{\text{pos}}(A_{ex_7}) = \frac{1}{3\sqrt{2\pi}} \left[ e^{-0.5(A_{ex_7} - A_{ex_1})} + e^{-0.5(A_{ex_7} - A_{ex_2})} + e^{-0.5(A_{ex_7} - A_{ex_3})} \right]$$
  
**compute**  $p_{\text{pos}}(\mathbf{x}_7) = p_{\text{pos}}(A_{ex_7}) \cdot p_{\text{pos}}(B_{ex_7}) \cdot p_{\text{pos}}(C_{ex_7})$   
If  $p_{\text{neg}}(A_{ex_7}) = \frac{1}{3\sqrt{2\pi}} \left[ e^{-0.5(A_{ex_7} - A_{ex_4})} + e^{-0.5(A_{ex_7} - A_{ex_5})} + e^{-0.5(A_{ex_7} - A_{ex_6})} \right]$   
**compute**  $p_{\text{neg}}(\mathbf{x}_7) = p_{\text{neg}}(A_{ex_7}) \cdot p_{\text{neg}}(B_{ex_7}) \cdot p_{\text{neg}}(C_{ex_7})$ 

**determine** the output class by computing  $\hat{y} = \operatorname{argmax}(p_{\text{pos}}(\mathbf{x}_7), p_{\text{neg}}(\mathbf{x}_7))$ 

6:56 PM

### Artificial Intelligence

CS3AI18/ CSMAI19 Lecture - 5/10: MDP

# Part 3 Markov Decision Process

#### DR VARUN OJHA

**Department of Computer Science** 



#### Markov Process/ Markov Chain

A sequence of random states  $S_1, S_2, \dots S_t$  with the *Markov property,* i.e., future state  $S_{t+1}$  depends only on current state  $S_t$ , where  $S_t$  capture all relevant information for  $S_{t+1}$  from past sequence  $S_{t-1}, S_{t-2}, \dots S_0$ .



Source Demo: http://setosa.io/ev/markov-chains/

#### Markov Process/ Markov Chain



|          | S: Sunny                              | R: Rain             |
|----------|---------------------------------------|---------------------|
| S: Sunny | <i>P</i> ( <i>S</i>   <i>S</i> ): 0.7 | $P(S \mid R)$ : 0.3 |
| R: Rain  | $P(R \mid S): 0.8$                    | $P(R \mid R)$ : 0.2 |

#### Markov Chain State Space

Transition Probability Matrix (State Transition Matrix)

Source Demo: http://setosa.io/ev/markov-chains/

(Accessed on 07 Feb 2021)

Dr Varun Ojha, University of Reading, UK

#### Markov Decision Process

 Markov decision processes (MDPs) are an extension of Markov Chains with the addition of rewards for each action.

 Conversely, if only one action exists for each state (e.g. "wait") and all rewards are the same (e.g. "zero"), a Markov decision process reduces to a Markov Chain.

#### Markov Decision Processes

- A Markov decision process (MDP) is a discrete time stochastic control process.
- It provides a mathematical framework for modelling decision making in situations where outcomes are partly random and partly under the control of a decision maker.
- MDPs are useful for studying **optimization problems** solved via dynamic programming and reinforcement learning.

#### Markov Decision Process: Definition

- A Markov Decision Process is a 4-tuple  $(S, A, P_a, R_a, \gamma)$ , where
  - $S = \{s_1, s_2, ...\}$  is a finite set of states.
  - A = {a<sub>1</sub>, a<sub>2</sub>, ...} is a finite set of actions (alternatively, A<sub>s</sub> is the finite set of actions available from state S),
  - *P<sub>a</sub>(s,s')* = P(*s<sub>t+1</sub> = s'* | *s<sub>t</sub> = s*, *a<sub>t</sub> = a*) is the probability that action *a* in state *s* at time *t* will lead to state *s'* at time *t* + 1,
  - *R<sub>a</sub>(s, s')* is the immediate **reward** (or expected immediate reward) received after transitioning from state *s* to state *s'*, due to action *a*.
  - $\gamma \in [0, 1]$  is a **discount factor**, 0 being insignificant and 1 being significant reward

#### MDP: Example

- three states  $S_0, S_1, S_2, T_1$
- two actions  $a_0, a_1, a_2$ .
- $P_a(s,s')$
- $R_a(s,s')$
- e.g., rewards {-1, 0, and +1} (green arrows).



#### MDP: Example

- three states  $S_0, S_1, T_1$
- two actions  $a_0, a_1, a_2$ .
- $P_a(s,s')$
- $R_a(s,s')$
- e.g., rewards {-1, 0, and +1}
  (green arrows).



#### Policy $\pi$

- Optimal "policy" design for the decision maker is the core problem of MDPs.
- A policy denoted as π is its recommended action a for state s, i.e., what to do next when at state s.

$$\pi(a|s) = P[A = a \mid S = s]$$

- It is the of distribution over actions given states. It fully defines the behaviour of an agent. This means a MDP depends on current state not all the history.
- If a decision maker has a complete policy  $\pi$  it will know what to do next.

#### **State Value Function** $v_{\pi}(s)$

**State Function**  $v_{\pi}(s)$  is the expected return (reward) value accumulated at a state *s* and following policy  $\pi$ .

 $v_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S = s]$ 

$$v_{\pi}(s) = \sum_{a \in A} \pi(a \mid s) \ (R_s + \gamma \sum_{s' \in S} P(s', s) v_{\pi}(s'))$$

This is **Bellman Expectation State-Value Equation**. Where reward intermediate *R* and state value *s*.

State-value function tells us how good is it to be in state *s* by following policy  $\pi$ .

#### Action Value Function $q_{\pi}(s, a)$

Action Function  $q_{\pi}(s, a)$  is the expected return (reward) value accumulated at a state *s* and following policy  $\pi$ .

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t | S = s, A = a]$$

$$= R_s^a + \gamma \sum_{s' \in S} P^a(s',s) v_{\pi}(s')$$

$$= R_s^a + \gamma \sum_{s' \in S} P^a(s',s) \sum_{a' \in A} \pi(a' | s') q_{\pi}(s',a')$$

This **Bellman Action-Value Equation function** tells us how good is it to take an action at state *s* by following policy  $\pi$ .

This give us an idea how good it is to take an action *a* at state *s*.

### **π**: Policy Design

- **Policy** design for the decision maker is the core problem of MDPs.
- A **policy** denoted as  $\pi$  and  $\pi(s)$  for its recommended action for state s, i.e., what to do next when at state s.
- If a decision maker has a **complete policy**  $\pi$  it will know what to do next when on state s. In that case, Markov Decision process will behave like a Markov Chain since  $P(s_{t+1} = s' | s_t = s, a_t = a)$  will reduce to  $P(s_{t+1} = s' | s_t = s)$  because determinacy of  $\pi(s)$ .

# $\pi^*$ : Optimal Policy Design

**Optimal Policy**  $\pi^*$  is the one that gives the highest **expected utility**. That is a policy  $\pi$  that will **maximise** some cumulative function of the random rewards  $R_{a_t}$ , typically, the expected discounted sum over a potentially infinite horizon:

$$U = \sum_{t=0}^{\infty} \gamma^{t} R_{a_{t}}(s_{t}, s_{t+1})$$

where  $\gamma \in [0, 1]$  is a **discount factor**, 0 being insignificant and 1 being significant reward, and  $a_t = \pi(s_t)$ 

6:56 PM

### Artificial Intelligence

CS3AI18/ CSMAI19 Lecture - 5/10: DN

# Part 4 Decision Network

#### DR VARUN OJHA

**Department of Computer Science** 



#### Decision Network (Influence Diagrams)

- Decision networks (aka influence diagrams) provide a representation for sequential decision making
- Basic idea
  - Random variables like in Bayes Nets
  - Decision variables that you "control"
  - Utility variables which state how good certain states are (e.g., metrics, objective function, measurements).

#### Decision Network: Example

**Random Variables** Test (denoted by circles). Result Cold Variables the decision maker sets (denoted by squares). **Blood Test** Drug Fever optional Disease Utility

#### Decision Network: Chance Node

Random Variable

(denoted by circles).

Each nodes have probabilistic dependence on parent nodes



#### Decision Network: Decision Node

Variables the **decision maker** sets (denoted by squares).

Parents reflect the **information available** at a time of decision making



#### Decision Network: Value Node



#### Assumptions

- Decision nodes are totally ordered
  - Given variables  $D_1, D_2, ..., D_n$ , the decision nodes are made in sequence.
- No forgetting property
  - Any information available for a decision  $D_i$  is available for decision  $D_j$  for j > i
  - All parents of decision  $D_i$  are also the parents of decision  $D_j$  for j > i



#### Policy

- Let *Parent*(*Di*) be the **parents** of a decision node *D<sub>i</sub>* 
  - Domain(Parent(Di)) is the set of assignments to Parent(D<sub>i</sub>),
  - e.g., {cold, ~ cold) and {fever, ~fever}
- A **policy**  $\pi$  is a set of mappings  $\pi_i$ , one for each decision node  $D_i$ 
  - $\pi_i(Di)$  associates a decision for each parent assignment
  - $\pi_i$ : Domain(Parent(Di))  $\rightarrow$  Domain(Di)



#### Value of a Policy

- Given assignment x to random variables X, let  $\pi(x)$  be the assignment to decision variables denoted by  $\pi$ .
- Value of  $\pi$ , i.e., the expected utility,  $EU(\pi)$ , is:

$$EU(\pi) = \sum_{x} P(x, \pi(x)) U(x, \pi(x))$$

• Where, **P** is the probability of the outcome and **U** is utility function and

6:56 PM

#### Optimal Policy $\pi^*$

#### An optimal policy $\pi^*$ is given by $EU(\pi^*) \ge EU(\pi)$ for all $\pi$

Maximisation over all other

#### **Computing Optimal Policy**

- Compute backward direction
  - Compute optimal policy of the last decision node in a sequence
  - E.g., Drugs in this case
  - For each parent {C, F, BT, TR} and for each decision value  $D \in \{drug_{flue}, drug_{ache}, no_{drug}\}$ , compute the expected utility, EU of choosing a decision value D.
  - For each Domain(Parent(D)), set a **policy choice**  $\pi_D(C, F, BT, TR)$  where the value of *D* is maximum.



#### **Computing Optimal Policy**

- Compute backward direction
  - Compute optimal policy of the second last decision node in a sequence based on last policy  $\pi_D(C, F, BT, TR)$
  - E.g., Blood Test is just before Drug
  - Since  $\pi_D(C, F, BT, TR)$  is already computed its **fixed**.
  - Treat **D** as a random variable with a deterministic probability
  - Computer **policy choice** for Blood Test, *BT*, where the value of *BT* is maximum.



#### **Computing Expected Utilities**

- Computing expected utilities with Bayes Net is straightforward
- Utility nodes are just **factors** that can be dealt with using **variable elimination**
- $EU = \sum_{A,B,C} P(A,B,C) U(B,C)$
- $EU = \sum_{A,B,C} P(A) \cdot P(B|A) \cdot P(C|B) \cdot U(B,C)$



6:56 PM

### Artificial Intelligence

CS3AI18/ CSMAI19 Lecture - 5/10: Learning (Algorithms)

# Part 5 Practical Exercise

(available In a separate video)

DR VARUN OJHA

Department of Computer Science

