Artificial Intelligence

CS3AI18/ CSMAI19 Lecture – 6/10: Learning (Fundamental Theory)

DR VARUN OJHA

Department of Computer Science

Learning objectives

By the end of this week, you will be able to

- Learn basic concepts of learning
- Gradient descent and backpropagation learning
- Learn to avoid overfitting learning models.
- Workout an example problem

Content of this week

- Part 1: Introduction
- Part 2: Fundamental Theory
 - Types of Learning
 - Supervised Learning Problem Definition
 - Learning process design
- Part 3: Algorithms
 - Gradient Descent
 - Online (Stochastic) Vs Offline (Batch) training
 - The Backpropagation algorithm
 - Avoiding Overfitting
- Part 4: Practical Exercise
- Quiz

Artificial Intelligence

CS3AI18/ CSMAI19 Lecture - 6/10: Learning

Part 1 Introduction

DR VARUN OJHA

Department of Computer Science

Common Sense → Intelligence?

Dr Varun Ojha, University of Reading, UK

Common Sense: Inside a baby's mind Slide inspiration: Josh Tenenbaum, Prof. MIT, USA Video Source:

https://www.youtube.com/watch?v=dEnDjyWHN4A (Accessed on 21 Feb 2021)

0.0

Common Sense: Inside a baby's mind

Slide inspiration: Tenenbaum J, MIT, USA

Experiment: Warneken & Tomasello (2006)

Video Source: https://www.youtube.com/watch?v=cUWIIxpUfM0 (Accessed on 21 Feb 2021)

Understanding → **Intelligence**?

Causal understanding of water displacement by a crow

Slide inspiration: Tenenbaum J, MIT, USA Experiment: Sarah et al. (2014), Auckland and Cambridge Video Source: <u>https://www.youtube.com/watch?v=ZerUbHmuY04</u>

What is a Learning?

Learning / Training

Video Source: <u>https://www.youtube.com/watch?v=Ak7bPuR2rDw</u> (Accessed on 21 Feb 2021)

Learning/ Training

Video source: https://www.youtube.com/watch?v=nbrTOcUnjNY (Accessed on 21 Feb 2021)

Learning → Intelligence?

Artificial Intelligence

CS3AI18/ CSMAI19 Lecture - 6/10: Learning

Part 2 Learning: Theory

DR VARUN OJHA

Department of Computer Science

Unsupervised

Supervised

Learning $\equiv X \rightarrow Y$

Supervised learning is a mapping f of inputs \boldsymbol{X} to outputs \boldsymbol{Y}

Learning $f: \mathcal{X} \to \mathcal{Y}$

Supervised learning is a mapping f of inputs \boldsymbol{X} to outputs \boldsymbol{Y}

Inputs $\mathbf{X} \in$ Input space \mathcal{X}

outputs $y \in \text{concept space } \mathcal{Y}_{20}$

Learning $f: X \rightarrow y$

Supervised learning is a mapping f of inputs \boldsymbol{X} to outputs \boldsymbol{Y}

Inputs $\mathbf{X} \in$ Input space \mathcal{X}

outputs $y \in \text{concept space } \mathcal{Y}$

Learning $f: X \rightarrow y$

Supervised learning is a mapping f of inputs \boldsymbol{X} to outputs \boldsymbol{Y}

Inputs $X \in$ Input space X

outputs $y \in$ output space \mathcal{Y}

Learning $f: X \rightarrow y$

We need to find the unwon target function *f* that does the task of mapping

Inputs $\mathbf{X} \in$ Input space \mathcal{X}

hypothesis space \mathcal{H}

outputs $y \in$ concept space C

Learning $f: X \rightarrow y$

Supervised learning is a mapping f of inputs X to outputs y

Learning

Example Training Task: AND Logic Problem

	<i>x</i> ₁	<i>x</i> ₂	<u> </u>
1:	0	0	0
2:	0	1	0
3:	1	0	0
4:	1	1	1

 $y = f(\mathbf{X}),$ where $\mathbf{X} = (\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}, \mathbf{x_4})^T, \mathbf{x}_i = (x_{i1}, x_{i2}),$ and $y = (y_1, y_2, y_3, y_4)^T$

number of Inputs d = 2each input x takes 2 options 0 or 1 input-space $\mathcal{X} = 2^d = 2^2 = 4$

number of outputs 1 output y takes 2 options from $\{0,1\}$ **concept-space** $C = 2^{I} = 2^{2^{2}} = 16$

Learning

Example Training Task: AND Logic Problem

	<i>x</i> ₁	<i>x</i> ₂	<u> </u>
1:	0	0	0
2:	0	1	0
3:	1	0	0
4:	1	1	1

input-space $|\mathcal{X}| = 2^d = 2^2 = 4$ inputs $\mathbf{X} \in$ Input space \mathcal{X}

concept-space $C = 2^{|\mathcal{X}|} = 2^{2^2} = 16$ outputs $y \in$ concept space C

Hypothesis space: \mathcal{H} is a set of all possible functions such that $h_t \in \mathcal{H}$ produces a function $g: \mathbf{X} \to \mathbf{y}$ that approximates f i.e., $g \approx f$.

data-space (training data): $\mathcal{D} = \{(\mathbf{x}_1, f(\mathbf{x}_1)), ..., (\mathbf{x}_N, f(\mathbf{x}_N))\},\$ where $\mathcal{D} \in \mathcal{C}$ are *N* training examples.

How to produces a function $g: X \rightarrow y$

What Learning Needs

Learning needs the method(s) to

Represent

Evaluate

Optimize

a hypothesis h_t :

A line separating data can be consider a hypothesis

A line separating data can be consider a hypothesis

A hypothesis h_t as a **perceptron**.

Perceptron : a simple linear combination of inputs.

$$h_t = g(x) = \sum_{i=1}^d w_i \, x_i \ge x_0 w_0$$
,

where w_0 is a threshold.

The hypothesis h_t has the weights w_i and the threshold w_0 as its trainable parameters.

A line separating data can be consider a hypothesis

A hypothesis h_t as a perceptron. $\sum_{i=1}^d w_i x_i \ge x_0 w_0$

$$\sum_{i=1}^{d} w_i x_i - x_0 w_0 = 0$$

For an artificial input $x_0 = 1$

$$\sum_{i=0}^d w_i \, x_i = 0$$

perceptron

A line separating data can be consider a hypothesis

Which hypothesis $h_t \in H$ to pick?

How to evaluate a hypothesis: compute cost of hypothesis

Which hypothesis $h_t \in H$ to pick?

How to evaluate a hypothesis: compute cost of hypothesis

	<i>x</i> ₁	<i>x</i> ₂	$y = f(\mathbf{x})$
1:	0	0	0
2:	0	1	0
3:	1	0	0
4:	1	1	1

Cost function such as the error rate: $E(h_t(\mathcal{D})) = \frac{1}{N} \sum_{j=1}^{N} (g(\mathbf{x}_j) \neq f(\mathbf{x}_j))$

 \mathcal{D}

How to search optimum hypothesis $h_t \in H$

How to evaluate a hypothesis: compute cost of hypothesis

Function *g* of the hypothesis has parameter **w**:

$$\hat{y} = g_{\mathbf{w}}(\mathbf{x}) = \sum_{i=0}^{d} w_i x_i = 0$$

Simple algorithm:

Repeat parameter **w** update for t = 2, 3, ..., M.

 $\mathbf{w}_t = \mathbf{w}_{t-1} + \hat{y} \mathbf{x}$

Until error rate $E(h_t(\mathcal{D}))$ is acceptable.

Let's see an example (house price):

	$x = area(m^2)$	$y = price \ (in \ fl)$
1:	1000	100K
2:	2000	200K
3:	3000	300K

Now, cost function is a squared error:

$$E(h_t(\mathbf{x}) = \frac{1}{2N} \sum_{j=1}^{N} (g(\mathbf{x}_j) - f(\mathbf{x}_j))^2$$

Hypothesis h_t for $w_0 = 0$ and $w_1 = 0.0$:

 $g(x_i) = w_0 + w_1 x_i$ for i = 1,2,3

Error $E(w_1)$ for $w_0 = 0$ and $w_1 = 0.0$:

$$E(g_{\mathbf{w}}(\mathbf{x})) = \frac{(1-0)^2 + (2-0)^2 + (3-0)^2}{2*3} = 2.33$$

 $E(g_{w_1}(x))$ 3 2.5 2 1.5 Х 0.5 0.0 W_1 0.5 1.0 0.0 1.5 2

Hypothesis h_t for $w_0 = 0$ and $w_1 = 0.5$:

 $g(x_i) = w_0 + w_1 x_i$

Error $E(w_1)$ for $w_0 = 0$ and $w_1 = 0.5$:

$$E(g_{\mathbf{w}}(\mathbf{x})) = \frac{(1-0.5)^2 + (2-1)^2 + (3-1.5)^2}{2*3} = 0.58$$

Hypothesis h_t for $w_0 = 0$ and $w_1 = 1$:

 $g(x_i) = w_0 + w_1 x_i$

Error $E(w_1)$ for $w_0 = 0$ and $w_1 = 1$:

$$E(g_{\mathbf{w}}(\mathbf{x})) = \frac{(1-1)^2 + (2-2)^2 + (3-3)^2}{2*3} = 0.0$$

Artificial Intelligence

CS3AI18/ CSMAI19 Lecture - 6/10: Learning

Part 3 Learning Algorithms

DR VARUN OJHA

Department of Computer Science

Gradient Descent Algorithm:

Optimizer : Gradient Descent

 $g_{\mathbf{w}}(\mathbf{x}) = \sum_{i=0}^{a} w_i x_i = 0$

Repeat parameter **w** update for t = 2, 3, ..., M.

Function *g* of the hypothesis has parameter **w**:

$\mathbf{w}_t = \mathbf{w}_{t-1} + \eta \; \frac{\partial E(g_{\mathbf{w}}(\mathbf{x}))}{\partial \mathbf{w}_t} \mathbf{x}$ for learning rate η

Until error rate $E(g_{\mathbf{w}}(\mathbf{x}))$ is acceptable.

41

42

9:59 PM

Optimizer : Gradient Descent

Function g of the hypothesis has parameter w:

$$g_{\mathbf{w}}(\mathbf{x}) = \sum_{i=0}^{d} w_i \, x_i = 0$$

Gradient Descent Algorithm:

Repeat parameter w update for t = 2, 3, ..., M.

 $\mathbf{w}_t = \mathbf{w}_{t-1} + \Delta \mathbf{w}_t$, where Δ is weight change (step) at t

Until error rate $E(g_w(\mathbf{x}))$ is acceptable.

W

Gradient Descent: Versions

Stochastic Gradient Descent

t = 0

w initial weights

for t in epochs do

 $\mathcal{D} \leftarrow shuffle(\mathcal{D})$

for $\mathbf{x}_i \in \mathcal{D}$ do // for each sample

 $\nabla \mathbf{w}_j = \partial E(g_{\mathbf{w}_t}(\mathbf{x}_j)) / (\partial \mathbf{w}_t) / \text{gradient of}$ error *with respect to* weight \mathbf{w}_i

 $\mathbf{w}_j = \mathbf{w}_{j-1} + \boldsymbol{\eta} \nabla \mathbf{w}_j \mathbf{x}_j$

t = t + 1

Batch Gradient Descent t = 0w initial weights for t in epochs do $\mathcal{D} \leftarrow shuffle(\mathcal{D})$ for $\mathbf{x}_i \in \mathcal{D}$ do // for each sample $\nabla \mathbf{w} = \nabla \mathbf{w} + \partial E(g_{\mathbf{w}}(\mathbf{x}_{i})) / (\partial \mathbf{w}) \mathbf{x}_{i} / / \text{gradient}$ error with respect to weight \mathbf{w}_i of $\mathbf{w}_t = \mathbf{w}_{t-1} + \boldsymbol{\eta} \, \frac{\nabla \mathbf{w}}{|\mathcal{D}|}$ t = t + 1

Gradient Descent: Versions

Stochastic Gradient Descent

Batch Gradient Descent

Gradient Descent: Versions

Stochastic Gradient Descent

Batch Gradient Descent

How do we choose a hypothesis class? 9:59 PM

How do we choose a hypothesis class? 9:59 PM

Example Training Task: XOR Logic Problem

Which hypothesis $h_t \in H$ to pick?

How to evaluate a hypothesis: compute cost of hypothesis

Backpropagation Algorithm

Backpropagation: Forward Pass

Backpropagation: Error at Output layer 9:59 PM

Backpropagation: Backward pass

Output layer delta (δ_k) considering sigmoidal output node(s)

Backpropagation: Backward pass

Hidden layer delta (δ_i) considering sigmoidal hidden node(s)

$$\delta_j = h_j (1 - h_j) \sum_k \delta_k w_{kj}$$

Backpropagation: Backward pass

Hidden layer delta (δ_i) considering sigmoidal hidden node(s)

Training Method

Training Set

Test Set

Training Method

Bias-Variance Issue

Is the chosen hypothesis good?

Avoid Overfitting

Training Set

Validation Set Test Set

Training Method: Cross Validation

Artificial Intelligence

CS3AI18/ CSMAI19 Lecture - 6/10: Learning

Part 4 Practical Exercise

DR VARUN OJHA

Department of Computer Science

