Artificial Intelligence
 CS3AI18/ CSMAI19
 Lecture - 8/10: Natural Language Processing

DR VARUN OJHA

Department of Computer Science
*** University of
Reading

Natural Language*

Example of Machine Translation

MALAYALAM

Learning objectives

By the end of this week, you will be able to:

- Learn basic tasks of natural language processing
- Learn basic concepts of TEXT DATA classification
- Learn basic text data processing techniques
- Understand basic functioning of recurrent neural
- Workout an example problem of recurrent neural networks

Content of this week

- Part 1: Introduction
- Tasks of natural language processing (NLP)
- K-Nearest neighbour classification
- Part 2: Text Data Pre-processing
- Word to Vector
- Bag of word
- Understanding Sequential Data
- Part 3: Recurrent Neural Networks
- Basic Concepts
- Long-Short Memory Networks
- Part 4: Practical Exercise (RNN)
- Quiz

Artificial Intelligence

CS3AI18/ CSMAI19
 Lecture - 8/10: Natural Language Processing

 Part 1

 Part 1 Introductions

DR VARUN OJHA

Department of Computer Science
*** University of
Reading

Artificial Intelligence

Text Classification

Natural
Language Generation

> Natural
> Language Understanding

Unstructured Data

Suppose this text is a message in your mailbox

History of natural language processing : The history of natural language processing (NLP) generally started in the 1950s, although work can be found from earlier periods. In 1950, Alan Turing published an article titled "Computing Machinery and Intelligence" which proposed what is now called the Turing test as a criterion of intelligence[clarification needed].

The Georgetown experiment in 1954 involved fully automatic translation of more than sixty Russian sentences into English. The authors claimed that within three or five years, machine translation would be a solved problem.[2] However, real progress was much slower, and after the ALPAC report in 1966, which found that ten-year-long research had failed to fulfill the expectations, funding for machine translation was dramatically reduced. Little further research in machine translation was conducted until the late 1980s when the first statistical machine translation systems were developed.

Some notably successful natural language processing systems developed in the 1960s were SHRDLU, a natural language system working in restricted "blocks worlds" with restricted vocabularies, and ELIZA, a simulation of a Rogerian psychotherapist, written by Joseph Weizenbaum between 1964 and 1966. Using almost no information about human thought or emotion, ELIZA sometimes provided a startlingly human-like interaction. When the "patient" exceeded the very small knowledge base, ELIZA might provide a generic response, for example, responding to "My head hurts" with "Why do you say your head hurts?".Text Source: https://en.wikipedia.org/wiki/Natural language_processing

Dataset

No apparent structure in the data

Is it possible to classify a SPAM or Genuine message

Is it possible to identify a positive or negative sentence?

Is it possible to predict the following email text or a reply from the current?

Text Classification

Example Source:
https://towardsdatascience.com/text-classification-in-python-dd95d264c802

Question: The following text belongs to which category?

The use of electronic devices in the Commons chamber has long been frowned on. The sound of a mobile phone or a pager can result in a strong rebuke from either the Speaker or his deputies. The Speaker chairs debates in the Commons and is charged with ensuring order in the chamber and enforcing rules and conventions of the House. He or she is always an MP chosen by colleagues who, once nominated, gives up all partypolitical allegiances.
t-SNE decomposition

Instance-based algorithm (Lazy Lerner)

Discrete labeled data

$\#$	Inputs		Target
	Some Attr1	Some Attr2	Document Type
Ex. 1	5	300	Tech
Ex. 2	3	500	Entertainment
Ex. 3	4	600	Entertainment
Ex. 4	10	400	Politics
Ex. 5	12	200	Politics
Ex. 6	2	300	Tech
Ex. 7	3	150	Tech
Ex. 8	7	550	Entertainment
Ex. 9	5	500	Entertainment
Ex. 10	10	200	Politics

K-Nearest Neighbor

Question: What is the label of a new instance?

Unseen instance:

	Inputs		Target
\#	Some Attr1	Some Attr2	Document Type
Ex. 11	7	450	$?$

Answer: Find the K-Nearest Neighbors
How we do that?

Euclidean distance:

$$
d\left(p_{1}, p_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

K-Nearest Neighbor

Which neighbor is the nearest?

All examples Euclidean distance:

EX. 1	$\rightarrow 150.02$
EX. 2	- 50.16
EX. 3	- 150.03
EX. 4	- 50.09
EX. 5	- 250.05
EX. 6	$\bullet \quad 150.08$
EX. 7	- 300.03
EX. 8	- 100.00
EX. 9	$\rightarrow 50.04$
EX. 10	$\longrightarrow 250.02$

K-Nearest Neighbor
Shortest distance first?

EX. 9	$\rightarrow 50.04$
EX. 4	$\rightarrow 50.09$
EX. 2	- 50.16
EX. 8	- 100.00
EX. 3	- 150.03
EX. 1	- 150.02
EX. 6	- 150.08
EX. 10	- 250.02
EX. 5	- 250.05
EX. 7	$\rightarrow 300.03$

K-Nearest Neighbor

Let's set $\mathrm{K}=3$

Ex. $9 \bullet$	50.04 Neighbor 1
Ex. 4	\bullet
Ex. $2 ~ \bullet$	50.09 Neighbor 2
	50.16 Neighbor 3

Majority of neighbors have label
"Green \rightarrow Entertainment"
Unseen instance:

\#	Inputs		Target
	Some Attr1	Some Attr2	Document Type
Ex. 11	7	450	Entertainment

Natural Language Understanding

Artificial Intelligence based
\section*{Sentiment analysis} and Emotion detection

Natural Language Generation

2Tweet Generator
@nlp_tweetgen

Follow

\checkmark
Barack obama should be a great golfer and the great decision in the republican to have to make it. When they have a great thing you amp; her full and replace this is a great time and get a great.
@realdonaldtrump did you!
6:34 PM - 26 Feb 2020
Q $\uparrow \downarrow \quad 0 \quad \square$

Artificial Intelligence

CS3AI18/ CSMAI19
Lecture - 8/10: Natural Language Processing

Part 2

Text Data Pre-Processing

DR VARUN OJHA

Department of Computer Science
*** University of
Reading

Word Embedding

Given a word W (e.g. "intelligence") we want W to be a real vector of dimension n. Dimension n is also called word embedding dimension.

$$
W: \text { words } \rightarrow \mathbb{R}^{n}
$$

"intelligence" $\rightarrow\left(w_{1}, w_{2}, \ldots, w_{n}\right) \rightarrow(0.1,-0.8, \ldots, 0.9)$

Word Embedding

$W_{1}=$ "I love artificial intelligence"
$W_{2}=$ "I like computational intelligence"

We create a vocabulary V collecting all unique words.
$V=\{" l ", " l o v e "$, "like", "artificial", "computational", "intelligence"\}

For this example vocabulary size $|V|=6$

Word Embedding: Word \rightarrow Integer

$$
V=\{" l ", \text { "love", "artificial", "computational", "intelligence", "like"\} }
$$

$$
I \rightarrow 0
$$

$$
\text { love } \rightarrow 1
$$

like $\rightarrow 2$
artificial $\rightarrow 3$
computational $\rightarrow 4$ intelligence $\rightarrow 5$

Word Embedding: Integer \rightarrow Word

$V=\{$ "l", "love", "artificial", "computational", "intelligence", "like"\}
$0 \rightarrow 1$
$1 \rightarrow$ love
$2 \rightarrow$ like
$3 \rightarrow$ artificial
$4 \rightarrow$ computational
$5 \rightarrow$ intelligence

One-Hot Encoding

$V=\{$ "l", "love", "like", "artificial", "computational", "intelligence"\}

$$
\text { "l" }=\left[\begin{array}{l}
\mathbf{1} \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right] \quad \text { "love" }=\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{1} \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right] \quad \text { "like" }=\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{0} \\
\mathbf{1} \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right] \quad \text { "artificial" }=\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{1} \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right]
$$

$$
\text { "computational" }=\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{1} \\
\mathbf{0}
\end{array}\right] \quad \text { "intelligence" }=\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{1}
\end{array}\right]
$$

Similarity between words?

Objective is to place similar words close to each other

Similarity between words?

Objective is to place similar words close to each other

t-SNE visualisation of words

Turian et al. (2010)

t-SNE visualisation

Example Source
https://towardsdatascience.com/text-classification-in-python-dd95d264c802

All similar topics are closer to each other

Word Embedding: Objective

Given a word W (e.g. "intelligence") we want to W a real vector of dimension n

$W:$ words $\rightarrow \mathbb{R}^{n}$

"intelligence" $\rightarrow\left(w_{1}, w_{2}, \ldots, w_{n}\right) \rightarrow(0.1,-0.8, \ldots, 0.9)$

Word Embedding: Objective

Word Embedding: Objective

Word Embedding: Objective

$$
\begin{aligned}
\text { "intelligence" } & =\left[\begin{array}{llllll}
0 & 1 & 0 & \ldots & 0 & 0
\end{array}\right] \times\left[\begin{array}{cccr}
0.5 & 4.6 & \ldots & 0.7 \\
0.1 & -0.8 & \ldots & 0.9 \\
0.6 & 0.8 & \ldots & 0.3 \\
0.3 & -0.6 & \ldots & -0.8 \\
-0.5 & 0.5 & \ldots & 0.1
\end{array}\right] \\
& =[0.1,-0.8, \ldots, 0.9
\end{aligned}
$$

Word Embedding: Objective

Bag of Words (BoW)

$D_{1}=$ "John likes to watch movies. Mary likes movies too."
$D_{2}=$ "John also likes to watch football games."

$$
\begin{aligned}
& \text { BoW }=\text { = \{"John":1,"likes":2,"to":1,"watch":1,"movies":2,"Mary":1,"too":1\} } \\
& \text { BoW }_{2}=\{\text { " John ":1,"also":1,"likes":1,"to":1,"watch":1,"football":1,"games":1\} }
\end{aligned}
$$

$$
B o W_{3}=B o W_{1} \biguplus B o W_{2}
$$

$V=\{j o h n$, likes, to, watch, movies, mary, too, also, football games $\}$

$$
V=[0,0,0,0,0,0,0,0,0,0]
$$

Bag of Words (BoW): Union of Documents

$V=\{j o h n$, likes, to, watch, movies, mary, too, also, football games $\}$
BoW $=$ = $\{$ "John":1, "likes":2, "to":1, "watch":1, "movies":2, "Mary":1, "too":1\}

$$
B o W_{1}=[1,2,1,1,2,1,1,0,0,0]
$$

BoW $_{2}=\{$ " John ":1, "also":1, "likes":1, "to":1, "watch":1, "football":1, "games":1\}

$$
B o W_{2}=[1,1,1,1,0,0,0,1,1,1]
$$

n-gram language model

Document = "Varun likes to watch football games"

We can compute probability of a sequence of words

$$
\begin{gathered}
P\left(w_{1}, w_{2}, \ldots, w_{n}\right)=\prod_{i} P\left(w_{i} \mid w_{1}, w_{2}, w_{i-1}\right) \quad \text { n-gram language model } \\
P(\text { Varun, likes, to, watch, football, games) }
\end{gathered}
$$

Or Probability of a word given a sequence of \mathbf{n} words

$$
P\left(w_{n} \mid w_{1}, w_{2}, \ldots, w_{n-1}\right)
$$

$$
P\left(w_{i} \mid w_{i-1}\right)=P(\text { games } \mid \text { football })
$$

[^0]
n-gram language model

> Document in Hindi = वरुण को फुटबॉल खेल देखना पसंद है (roughly read as varun ko phutabol khel dekhana pasand hai)

Actual English Translation (by human): Varun likes to watch football games

Machine Translation

$$
P\left(w_{1}, w_{2}, \ldots, w_{n}\right)
$$

$P($ Varun, likes, to, watch, football, games $)>P($ Varun, love, to, watch, football, games)

Grammar correction

$P($ Varun, likes, to, watch, football, games) $>P($ Varun, like, to, watch, football, games)

Common Bag of Word Encoding: 1-gram

SoftMax Layer provide probabilistic context y_{i} to a word (1-gram) $\left\{x_{i}\right\}$ in the Bag of size V

Common Bag of Word Encoding: 1-gram

Let's represent dense layer like a block

Common Bag of Word (COBW) Encoding:

C-gram

Sequential Data

Let's say, we have data (document) $\mathbf{x}=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{L}\right\}$ of length L arriving at time $t=0$ until time $t=L$

Sequential Data

Latest data
data set $\mathbf{x}=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{L}\right\}$ of length L arriving at time $t=0$ until time $t=L$. Hence latest data is x_{L} and it depends on its previous data

Sequential Data

Artificial Intelligence

CS3AI18/ CSMAI19
Lecture - 8/10: Natural Language Processing

Part 3

Recurrent Neural Network

DR VARUN OJHA

Department of Computer Science
*** University of
Reading

RECURRENT NEURAL NETWORK (RNN)
 Architecture

RECURRENT
 NEURAL
 NETWORK
 (RNN)

Architecture

$\boldsymbol{x}_{\boldsymbol{t}}$

RECURRENT NEURAL NETWORK (RNN)

Architecture

Architecture Unrolled version for sequential data

A nice example: http://colah.github.io/posts/2015-08-Understanding-LSTMs

Architecture Unrolled version for sequential data

RECURRENT NEURAL NETWORK (RNN)

Architecture

Architecture Unrolled version for sequential data

Long-Short Term Memory Networks

Forgetting and Adding Memory

Adding (updating) previous learning (memory)

Forgetting Memory

$$
f_{t}=\sigma\left(W_{f} \cdot\left[h_{t-1}, x_{t}\right]+b_{f}\right)
$$

Adding new information to Memory

$$
\begin{aligned}
i_{t} & =\sigma\left(W_{i} \cdot\left[h_{t-1}, x_{t}\right]+b_{i}\right) \\
\tilde{C}_{t} & =\tanh \left(W_{C} \cdot\left[h_{t-1}, x_{t}\right]+b_{C}\right)
\end{aligned}
$$

Updating Memory (for next step) C_{t}

$$
C_{t}=f_{t} * C_{t-1}+i_{t} * \tilde{C}_{t}
$$

Producing new outputs (for next step) h_{t}

$$
\begin{aligned}
o_{t} & =\sigma\left(W_{o}\left[h_{t-1}, x_{t}\right]+b_{o}\right) \\
h_{t} & =o_{t} * \tanh \left(C_{t}\right)
\end{aligned}
$$

RNN Optimisation

- Stochastic gradient descent
- Mini-batch gradient descent
- Batch gradient descent
- Backpropagation

Loss function: Cross Entropy loss, \boldsymbol{E}

$$
E=-\frac{1}{n} \sum_{i=1}^{n} \log \left(P\left(x_{i+1} \mid x_{i}\right)\right)
$$

$P\left(x_{i+1} \mid x_{i}\right)$ predictive probabilities next word x_{i+1} given input x_{i}
y_{i} - target output
n - number of examples in training/test set

[^0]: bi-gram language model because its word words

