
Convolutional
Neural

Network

Computer Vision and Artificial
Intelligence

Dr Varun Ojha

varun.ojha@ncl.ac.uk

School of Computing

Newcastle University

Learning objectives (Convolutional Nets)

By the end of this week, you will be able to:

• Learn the concepts of convolutional neural networks (CNNs or ConvNets)

• Design various convolutional architectures

• Understand computer vision tasks and models:

• image classification

• image segmentation

• object detection

• Image generation

• Apply and evaluate a ConvNet on image classification task.

Content of this week (CNNs)
• Part 1: Design of Convolutional Nets

• Image Data

• Components of ConvNets

• Regularisation in ConvNets / DNNs

• ConvNet Architectures

• Part 2: Convolutional Neural Nets Applications and Models

• Image Segmentation Models

• Object Detection Models

• Generative Models Concept

• Part 3: Practical Exercise (CNN) Goodfellow et al (2017) Deep Learning, MIT Press

https://www.deeplearningbook.org/

https://www.deeplearningbook.org/

Part 1

Design of Convolutional Nets

Data

Image: Gary scale

𝐻𝑖𝑔ℎ𝑡 (𝐻)

𝑊𝑖𝑑𝑡ℎ (𝑊)

𝐼 =

𝒑𝟏𝟏 ⋯ 𝒑𝟏,𝑾

⋮ ⋱ ⋮
𝒑𝑯,𝟏 ⋯ 𝒑𝑯, 𝒑𝑾

𝐼 =

𝑝11 ⋯ 𝑝1,256

⋮ ⋱ ⋮
𝑝256,1 ⋯ 𝑝256, 𝑝256

For 𝐻𝑖𝑔ℎ𝑡 = 256, 𝑊𝑖𝑑𝑡ℎ = 256

Data: 2D

Image: Gary scale

𝐻𝑖𝑔ℎ𝑡 (𝐻)

𝒑𝟏𝟏

𝒑𝒊𝒋 ∈ {0,1,2. , … , 256}

For 𝐻𝑖𝑔ℎ𝑡 = 256, 𝑊𝑖𝑑𝑡ℎ = 256

𝐼 =

𝑝11 ⋯ 𝑝1,256

⋮ ⋱ ⋮
𝑝256,1 ⋯ 𝑝256, 𝑝256

𝑊𝑖𝑑𝑡ℎ (𝑊)

Data: 2D

Image: Gary scale

Data

Image: Colour

𝐻𝑖𝑔ℎ𝑡 (𝐻)

𝑊𝑖𝑑𝑡ℎ (𝑊)

𝑰𝑹𝑬𝑫 =

𝒑𝟏𝟏 ⋯ 𝒑𝟏,𝑾

⋮ ⋱ ⋮
𝒑𝑯,𝟏 ⋯ 𝒑𝑯, 𝒑𝑾

𝑰𝑮𝒓𝒆𝒆𝒏 =

𝒑𝟏𝟏 ⋯ 𝒑𝟏,𝑾

⋮ ⋱ ⋮
𝒑𝑯,𝟏 ⋯ 𝒑𝑯, 𝒑𝑾

𝑰𝑩𝒍𝒖𝒆 =

𝒑𝟏𝟏 ⋯ 𝒑𝟏,𝑾

⋮ ⋱ ⋮
𝒑𝑯,𝟏 ⋯ 𝒑𝑯, 𝒑𝑾

Data: 3D

Image: Colour

𝐻𝑖𝑔ℎ𝑡 (𝐻)

𝑊𝑖𝑑𝑡ℎ (𝑊)

𝐶ℎ𝑎𝑛𝑛𝑒𝑙 /𝐷𝑒𝑝𝑡ℎ (𝐷)

𝑰𝑹𝑬𝑫 =

𝒑𝟏𝟏 ⋯ 𝒑𝟏,𝑾

⋮ ⋱ ⋮
𝒑𝑯,𝟏 ⋯ 𝒑𝑯, 𝒑𝑾

𝑰𝑮𝒓𝒆𝒆𝒏 =

𝒑𝟏𝟏 ⋯ 𝒑𝟏,𝑾

⋮ ⋱ ⋮
𝒑𝑯,𝟏 ⋯ 𝒑𝑯, 𝒑𝑾

𝑰𝑩𝒍𝒖𝒆 =

𝒑𝟏𝟏 ⋯ 𝒑𝟏,𝑾

⋮ ⋱ ⋮
𝒑𝑯,𝟏 ⋯ 𝒑𝑯, 𝒑𝑾

Data

Image: Colour

Deep Learning

Hidden

layer 1

input layer

flatten image

Hidden

layer 2

Output

layer

Hidden

layer M-1
Hidden

layer M

Gary scale image of size

[256 x 256] pixels 𝒙𝟔𝟓𝟓𝟑𝟔

𝒙𝟏

256

256

pixels

pixels

a pixel

Convolutional Neural Network (CNN)

Deep Neural Network (DNN) Convolutional Neural Network (CNN)

Convolutional Neural Network (ConvNet)

A ConvNet arranges its neurons in

three dimensions (width, height,

depth).

Every layer of a ConvNet transforms

the 3D input volume to a 3D output

volume of neuron activations.

In this example, the red input layer

holds the image, so its width and

height would be the dimensions of the

image, and the depth would be 3 (Red,

Green, Blue channels)

A very good source: http://cs231n.github.io/convolutional-networks/

Ch 9 Goodfellow, Deep Learning, MIT Press

ConvNet/ CNN
Architecture: A Simple ConvNet / CNN
[INPUT - CONV - RELU - POOL - FC]

[Input - Convolution - RELU - POOLING - Fully Connected - Output]

height

width

INPUT [64x64x3] holds the raw pixel values of the image.

Image width 64, height 64, and with three colour channels R,G,B.

ConvNet/ CNN
Architecture: A Simple ConvNet / CNN
[INPUT - CONV - RELU - POOL - FC]

A very good source: http://cs231n.github.io/convolutional-networks/

width 64

height 64

3 Channels

Red, Green, Blue

CONV layer computes the output of neurons that are connected
to local regions in the input, each computing a dot product
between their weights and a small region they are connected to
in the input volume.

E.g. The Convolution of INPUT [64x64x3] may result in volume
[32x32x12] if we decided to use 12 filters

ConvNet/ CNN
Architecture: A Simple ConvNet / CNN
[INPUT - CONV - RELU - POOL - FC]

A very good source: http://cs231n.github.io/convolutional-networks/

An input volume in red
(e.g. a 32x32x3), and
an example volume of
neurons in the first
Convolutional layer.

ConvNet
Convolution Layer

A very good source: http://cs231n.github.io/convolutional-networks/

ConvNet
Convolution Layer

A very good source: http://cs231n.github.io/convolutional-networks/

• CONV layer’s parameters consist of a set of learnable filters.

• Every filter is small spatially (along width and height) but
extends through the full depth of the input volume.

• A typical filter on a first layer of a ConvNet might have size
5x5x3 (i.e. 5 pixels width and height, and 3 because images
have depth 3, the colour channels)

ConvNet
Convolution Layer

A very good source: http://cs231n.github.io/convolutional-networks/

• Forward pass: we slide (convolve) each filter across the width
and height of the input volume and compute dot products
between the entries of the filter and the input at any position.

• When we slide the filter over the width and height of the input
volume, we will produce a 2-dimensional activation map that
gives the responses of that filter at every spatial position

• We can have a set of filters (e.g., 12)

ConvNet
Convolution Layer

64 x 64 x 3

32 x 32 x 3

filter 1

32 x 32 x 3

filter 2

32 x 32 x 3

filter 3

32 x 32 x 3

filter 12

32 x 32 x 12

…

ConvNet
Convolution
Layer

Source: http://cs231n.github.io/convolutional-networks/

Input volume of size W1×H1×D1

Requires four hyperparameters:

• Number of filters K,

• their spatial extent F,

• the stride S,

• the amount of zero padding P.

Output volume of size W2×H2×D2

where:
• W2 = (W1 − F + 2P)/S + 1

• H2 = (H1 − F + 2P)/S + 1

• (i.e. width and height are

computed equally by symmetry)

• D2 = K

http://cs231n.github.io/convolutional-networks/

Source: http://cs231n.github.io/convolutional-networks/

ConvNet
Convolution
Layer

Input volume of size 5×5×3

Requires four hyperparameters:

• Number of filters K = 2,

• their spatial extent F = 3,

• the stride S = 2,

• the amount of zero padding P = 1.

Output volume of size W2×H2×D2

where:
• W2=(5 − 3 + 2*1)/2 + 1

• H2 =(5 − 3 + 2*1)/2 + 1

• (i.e. width and height are

computed equally by symmetry)

• D2 = 2

http://cs231n.github.io/convolutional-networks/

Source: http://cs231n.github.io/convolutional-networks/

1 1

Stride (central cell/pixels jump) = 2

ConvNet
Convolution
Layer

Input volume of size 5×5×3

Requires four hyperparameters:

• Number of filters K = 2,

• their spatial extent F = 3,

• the stride S = 2, (moved 2 pixels)

• the amount of zero padding P = 1.

Output volume of size W2×H2×D2

where:
• W2=3

• H2 =3

• (i.e. width and height are

computed equally by symmetry)

• D2 = 2

http://cs231n.github.io/convolutional-networks/

18

Simple Convolution Example

Note that each 2D map performs element-wise multiplication instead a dot product as may be advised in most text. However, if you flatten the tensors (i.e., make

them vectors), you can do a dot product. Note that is only 1 filter but we may have many filters.

width 4

height 4

1 2

3 4 1 0

0 1

2 1

1 2

2 5

4 3

convolutional

filter w 1*1

=1

2*0

=0

3*0

=0

4*1

=4

2*1

=2

1*1

=1

1*0

=0

2*0

=0

2*0

=0

5*1

=5

4*1

=4

3*0

=0

5

3

9

1

bias

Convoluted

image

image 𝑥𝑟

image 𝑥𝑔

image 𝑥𝑏

𝑥𝑔𝑤

𝑥𝑏𝑤

𝑥𝑟𝑤

∑𝑥𝑟𝑤

∑𝑥𝑔𝑤

∑𝑥𝑏𝑤

∑𝑥𝑤 + 𝑏

𝑏

red

values

green

values

blue

values

1 2

3 4

1 1

0 0

0 1

1 0

Output Volume

W2 = (W1 − F + 2P)/S + 1 = 2

H2 = (H1 − F + 2P)/S + 1 = 2

D2 = K = 1

Input Volume and Convolution

Image Width W1 = 4

Image Height H1 = 4

Image Depth D1 = 3

Filter spatial dimension F = 2

Number of Filters K = 1

Stride S = 2

Padding P = 0

Effect of Learned Convolutional Filter on Images

0 -1 0

-1 7 -1

0 -1 0

1/5 1/5 1/5

1/5 1/5 1/5

1/5 1/5 1/5

1/8 2/8 1/8

2/8 4/8 2/8

1/8 2/8 2/8

0 0 0

0 1 0

0 0 0

0 1 0

1 -5 1

0 1 0

Identity Sharpen Blur Laplacian Gaussian

Identity Sharpen Blur Laplacian GaussianOriginal

These

weights/values

of 3x3

kernels/filters

are learned

during training
(filter values and outputs are

mere representative)

This is most likely scenario as we do not know exactly what will be the filter weights after training. Hence CNN is a Blackbox

RELU layer will apply an elementwise activation
function, such as the 𝒎𝒂𝒙(𝟎, 𝒙) thresholding at zero. This
leaves the size of the volume unchanged ([32x32x12]).

ConvNet/ CNN
Architecture: A Simple ConvNet / CNN
[INPUT - CONV - RELU - POOL - FC]

A very good source: http://cs231n.github.io/convolutional-networks/

RELU layer

No change in dimension

[32x32x12] [32x32x12]

POOL layer will perform a down sampling operation along the
spatial dimensions (width, height), resulting in volume such as
[16x16x12]

ConvNet/ CNN
Architecture: A Simple ConvNet / CNN
[INPUT - CONV - RELU - POOL - FC]

A very good source: http://cs231n.github.io/convolutional-networks/

POOL layer

32

32

12

12

16

16

Pooling layer down
samples the volume
spatially,
independently in
each depth slice of
the input volume

ConvNet
Pooling Layer

A very good source: http://cs231n.github.io/convolutional-networks/

Max Pooling
layer

ConvNet
Pooling Layer

A very good source: http://cs231n.github.io/convolutional-networks/

FC (i.e. fully-connected) layer may compute the class scores, resulting in
volume of size [1x1x10], where each of the 10 neurone correspond to a
class score, such as among the 10 categories.

ConvNet/ CNN
Architecture: A Simple ConvNet / CNN
[INPUT - CONV - RELU - POOL - FC]

A single neuron of the

volume. There are as

many neuron as the

volume size
An FC layer is also a

linear layer. It can have as

many neurons/nodes as a

user defines them to be

ConvNet
Fully Connected (Dense) Layer

Classes

(e.g. 10 for

MNIST

dataset)

This

typically

outputs

SoftMax

𝐈𝐍𝐏𝐔𝐓 ⟶ [𝐂𝐎𝐍𝐕 ⟶ 𝐑𝐄𝐋𝐔 −> 𝐏𝐎𝐎𝐋] ∗ 𝟐 ⟶ 𝐅𝐂 ⟶ 𝐑𝐄𝐋𝐔 ⟶ 𝐅𝐂]

ConvNet
ConvNet Architecture

A very good source: http://cs231n.github.io/convolutional-networks/

ConvNet: Image Classification Example

A very good source:

http://cs231n.github.io/convolutional-networks/

Live demo http://cs231n.stanford.edu/

http://cs231n.stanford.edu/

VGG Net

• Visual Geometry
Group (VGG)
Network (VGG
Net)

• VGG 16 - an
example
architecture: 13
Convolution
layers 3 fc layer.

Simonyan et al. (2014) Very deep convolutional networks for large-scale image recognition. ICLR 2015

Image

Regularization: Avoid Overfitting

𝑤1

𝑤2

𝐿1-norm regularization /

Lasso regularization

𝐿2-norm regularization

Ridge regularization

𝑤1

𝑤2

𝐸 =
1

𝑛
෍

𝑖

𝑛

(𝑦 − 𝑓 𝒙) + 𝜆 ෍

𝑖

𝑛

𝑤𝑖
2

• Both Lasso and Ridge regularization help DNNs and CNNs avoid overfitting.

• As weights can get zero in Lasso regularization introduce sparsity in the networks and help feature selection

because some weights goes to zero. Thus, eliminating effect of some input features, while in ridge regression

weights can only get close to zeros and not exactly (see images).

• L2 penalizes large errors much more heavily than small errors (compared to L1), thus on optimization of

network, it is safe to assume that all the errors are roughly of the same order of magnitude

𝐸 =
1

𝑛
෍

𝑖

𝑛

(𝑦 − 𝑓 𝒙) + 𝜆 ෍

𝑖

𝑛

𝑤𝑖
2

Regularization: Dropouts Layer

• It drop nodes with some probability

• It regularise Deep Neural Nets and Convolutional Neural Nets

Regularisation of DNNs and CNNs
!!!

Slows down training in Convolutional Nets

Srivastava et al (2014) Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JMLR

Sec 7.12, Goodfellow, Deep Learning, MIT Press

Batch Normalization Layer

• It eliminates the need of dropout

• Accelerates ConvNet training

• It reduces sensitivity to network weight initialisation

Regularisation of Convolutional Neural Networks

Ioffe and Szegedy (2017) Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift ICML.

Normalized activation/input

Batch norm layer

Image Conv ReLU Norm Pool FC CLS

Batch Normalization Layer
Regularisation of Convolutional Neural Networks

X original data values

Y
 o

ri
g
in

a
l
d
a
ta

 v
a
lu

e
s

𝑥𝑛𝑜𝑟𝑚𝑎𝑥𝑖𝑠

Optimization/ cost function

space on unnormalized inputs

Optimization/ cost function

space on unnormalized inputs

sensitivity to learning rate

(large learning rate let

overshoot minima)

sensitivity to weight

initialization

Can use large learning

rate for faster learning

No sensitivity to weight

initialization

𝑦𝑛𝑜𝑟𝑚𝑎𝑥𝑖𝑠

Residual Network (ResNet)

ResNet Block

Image

He et al (2016) Deep Residual Learning for Image Recognition, CVPR

Simple Example of ResNet Block

2 0

4 3

2 1

1 2

2 -5

4 3

Convolution

These values are

representative

input 𝑥

This is typically an

input from previous

convolution layer

𝑥𝑔𝑤

relu

-1 3

3 -5

-3 2

2 -7

2 1

1 2

0 3

3 0

Identity 𝑥

reluResNet Block

𝑦 = 𝐹 𝑥 + 𝑥

Output of a single

ResNet Block

𝐹 𝑥

+

addition

convolution

Convolution

These values are

representative

Dense Net

Huang et al (2017) Densely Connected Convolutional Networks

Part 2
Convolutional

Neural Network
Applications

Image Classification Example

A very good source:

http://cs231n.github.io/convolutional-networks/

Live demo http://cs231n.stanford.edu/

http://cs231n.stanford.edu/

Image Classification Models

• Residual Networks (ResNet)

• Visual Geometry Group (VGG) Network

(VGG Net)

• DenseNet

• InceptionNet

• Other pre-trained Image Classification

Nets on pytorch library:

https://pytorch.org/vision/main/models.html
VGG Net 16

https://pytorch.org/vision/main/models.html

48

Image Segmentation (Concept)

Image source: https://towardsdatascience.com/espnetv2-for-semantic-segmentation-9e80f155d522

Intersection over Union (IoU)
IoU measure the performance of image segmentation and object detection algorithms performance

Area of Intersection

Area of Union

IoU =

Cat: ground truth

Cat: prediction

ground truth

prediction

prediction

ground truth

Image Segmentation used for
water level estimation

50

Pixel-wise water segmentation of RGB images for river water-level monitoring or flood monitoring

Vandaele, R., Dance, S. L., & Ojha, V. (2020). Automated water segmentation and river level detection on camera images using transfer learning. GCPR

51

Segment Anything Model from Meta (2023)

Image Segmentation (Concept)

https://segment-anything.com/

https://segment-anything.com/

UNet

Ronneberger et al (2015). U-net: Convolutional networks for biomedical image segmentation. MICCAI

U-Net is a typical CNN architecture for semantic segmentation.
It has a contracting path (down sampling) and an expansive path (up sampling).

raw input

image

U-Net generated

mask

overlay with ground

truth segmentation

+
error

map with a pixel-wise loss

weight to force the network

to learn the border pixels

U-Net

Ronneberger et al (2015). U-net: Convolutional networks for biomedical image segmentation. MICCAI

• Contracting path is a repeated
application of two 3x3
convolutions and a ReLU and a
2x2 Max Pooling operation with
stride 2

• Expansive path is an up sampling
of the feature map followed by a
2x2 Convolution (“up-
convolution”) that halves the
number of feature channels, a
concatenation with the
correspondingly cropped feature
map from the contracting path, and
two 3x3 convolutions, each
followed by a ReLU.

Object Detection

Application: Boat (Object) Detection and boat speed measurement

One of my Undergraduate student’s project

Application: Instance Segmentation and
Object Detection: Plastic Pollution Detection

56Jaikumar P et al. (2020) ISDA

Input Video Output Video

Published work: Jaikumar P et al. (2020) ISDA, https://centaur.reading.ac.uk/98569/

Object Detection
(plastic pollution detection - One of my student’s project)

https://centaur.reading.ac.uk/98569/

Mask RCNN

He et al. (2017) Mask-RCNN, ICCV

Input Image Output

• A bounding box

• A class label (e.g., person)

• A Segmentation mask

Mask-RCNN

59Jaikumar P et al. (2020) ISDA

You Look Only Once (YOLO) Model

Redmon, J. (2016). You only look once: Unified, real-time object detection. CVPR

Object detection in YOLO

models are as a regression

problem. It divides the

image into an S × S grid and

for each grid cell it predicts

B bounding boxes,

confidence for those boxes,

and C class probabilities.

You Look Only Once (YOLO) Model

Redmon, J. (2016). You only look once: Unified, real-time object detection. CVPR

Original input Ground Truth

You Look Only Once (YOLO) Model

Redmon, J. (2016). You only look once: Unified, real-time object detection. CVPR

Cell PredictionGround Truth

Match

predicted

cell with

ground

through

You Look Only Once (YOLO) Model

Redmon, J. (2016). You only look once: Unified, real-time object detection. CVPR

Class

PredictionGround Truth

Check the

class

prediction

(class

probability,

i.e.,

SoftMax)

You Look Only Once (YOLO) Model

Redmon, J. (2016). You only look once: Unified, real-time object detection. CVPR

Box

PredictionGround Truth

Check the

box

prediction

and its

confidence

(i.e., IoU)

You Look Only Once (YOLO) Model

Redmon, J. (2016). You only look once: Unified, real-time object detection. CVPR

Box Prediction with

confidence scores

Perform NMS,

i.e., keep only

boxes with

maximal

confidence

score

Final Detection

Dog, 90%

Bike, 70%

Van, 80%

Non-maximal suppression (NMS) 𝑩𝒐𝒙 = 𝒂𝒓𝒈𝒎𝒂𝒙(𝑪(𝑷𝟏), 𝑪(𝑷𝟐), … , 𝑪(𝑷𝒏))

Training Loss of YOLO models

𝐿𝑌𝑂𝐿𝑂 = 𝐿clsss + 𝐿loclization

𝐿clsss = ෍

𝑖=0

𝑆2

𝕀𝑖
object

 ෍

𝑐∈classes

𝑝𝑖 𝑐 − Ƹ𝑝𝑖 𝑐
2

𝕀𝑖
object

= ቊ
1
0

 if object in box 𝑖
otherwise

𝐿loclization = 𝐿confidance + 𝐿coordinate

Training Loss of YOLO models

𝐿𝑌𝑂𝐿𝑂 = 𝐿clsss + 𝐿loclization

𝐿loclization = 𝐿confidance + 𝐿coordinate

𝐿coordinate = 𝜆coordinate ෍

𝑖=0

𝑆2

෍

𝑗=0

𝐵

𝕀𝑖𝑗
object

 𝑙

𝑙 = √𝑤𝑖 − √ ෝ𝑤𝑖
2

+ √ℎ𝑖 − √෠ℎ𝑖
2

+ 𝑥𝑖 − 𝑥𝑖
2 + 𝑦𝑖 − 𝑦𝑖

2

𝐿confidance = ෍

𝑖=0

𝑆2

෍

𝑗=0

𝐵

 𝕀𝑖𝑗
object

𝑐𝑖 − Ƹ𝑐𝑖
2 + 𝜆noObject ෍

𝑖=0

𝑆2

෍

𝑗=0

𝐵

 𝕀𝑖𝑗
object

𝑐𝑖 − Ƹ𝑐𝑖
2

Where 𝑤, ℎ, 𝑥, 𝑦, 𝑠 are grid size, width, height, x-axis, and y-axis position of the box B, and the grid size

Generative Models

Which one is
Real,
and which
one is Fake?

1 2

Super Realistic Generative Adversarial Networks

Ledig et al.. (2017). Photo-realistic single image super-resolution using a generative adversarial network. CVPR

Generative
Adversarial
Networks

Random noise

Generator aims to maximize

error of discriminator

Discriminator aims to

minimize the error to become

better at distinguishing real

and fake/synthetic images

Image: Bishop, Deep Learning

Generative
Adversarial
Networks

min
𝐺

max
𝐷

𝑉 𝐷, 𝐺 = 𝔼𝑥 log 𝐷 𝑥 + 𝔼𝑧 log 1 − 𝐷 𝐺 𝑧

min-max loss

Generator aims to maximize error of discriminator, i.e., G to minimize:

𝔼𝑧 log 1 − 𝐷 𝐺 𝑧

low value means generator create realistic images, i.e., if D(G(z)) = 1 means generator

fool Discriminator and its wins

Discriminator aims to minimize the error to become better at

distinguishing real and fake/synthetic images, i.e., D to maximize the

probability of assigning the correct label to both training examples

and samples from G by maximizing:

𝔼𝑥 log 𝐷 𝑥 + 𝔼𝑧 log 1 − 𝐷 𝐺 𝑧

low value means discriminator is able to identify the real vs fake (i.e., if D(x) = 1 and

D(G(z)) = 0 will give log 1 + Log 1 = 0) that will let Discriminator win

Goodfellow et al. (2014). Generative adversarial nets. NIPS 2024

Synthetic image from

generator, i.e. label ‘0’ so

D should output ‘0’ for fake

real image from dataset,

i.e., label ‘1’ so D should

output ‘1’ for real

𝑥

𝐺(𝑧)

𝐷(𝑥)

𝐷(𝐺(𝑧))

Deep Convolutional GAN

Latent

space

Binary

classification

between real

and fake

images

Generated

syntactic images
Real/Original

images x

Radford et al (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. ICLR 2016

Project and

re-shape

latent

space

The task of the generator is to produce data which the discriminator predicts as being ‘real’, meaning that it closely
resembles the training dataset.

Convolution
Convolution

Input to Discriminator are both

generator images and real

images in separate batches

Generator Discriminator

StyleGAN to Generate China City Scape

(Jia 2022)

My student project

	Default Section
	Slide 1: Convolutional Neural Network
	Slide 2: Learning objectives (Convolutional Nets)
	Slide 3: Content of this week (CNNs)
	Slide 4
	Slide 5: Data
	Slide 6
	Slide 7: Data: 2D
	Slide 8: Data
	Slide 9: Data: 3D
	Slide 10: Data
	Slide 11: Deep Learning
	Slide 12: Convolutional Neural Network (CNN)
	Slide 13: Convolutional Neural Network (ConvNet)
	Slide 14: ConvNet/ CNN Architecture: A Simple ConvNet / CNN [INPUT - CONV - RELU - POOL - FC]
	Slide 15: ConvNet/ CNN Architecture: A Simple ConvNet / CNN [INPUT - CONV - RELU - POOL - FC]
	Slide 16: ConvNet/ CNN Architecture: A Simple ConvNet / CNN [INPUT - CONV - RELU - POOL - FC]
	Slide 17: ConvNet Convolution Layer
	Slide 18: ConvNet Convolution Layer
	Slide 19: ConvNet Convolution Layer
	Slide 20: ConvNet Convolution Layer
	Slide 21: ConvNet Convolution Layer
	Slide 22: ConvNet Convolution Layer
	Slide 23: ConvNet Convolution Layer
	Slide 24: Simple Convolution Example
	Slide 25: Effect of Learned Convolutional Filter on Images
	Slide 26: ConvNet/ CNN Architecture: A Simple ConvNet / CNN [INPUT - CONV - RELU - POOL - FC]
	Slide 27: ConvNet/ CNN Architecture: A Simple ConvNet / CNN [INPUT - CONV - RELU - POOL - FC]
	Slide 28: ConvNet Pooling Layer
	Slide 29: ConvNet Pooling Layer
	Slide 30: ConvNet/ CNN Architecture: A Simple ConvNet / CNN [INPUT - CONV - RELU - POOL - FC]
	Slide 31: ConvNet Fully Connected (Dense) Layer
	Slide 35: ConvNet ConvNet Architecture
	Slide 36: ConvNet: Image Classification Example
	Slide 37: VGG Net
	Slide 38: Regularization: Avoid Overfitting
	Slide 39: Regularization: Dropouts Layer
	Slide 40: Batch Normalization Layer
	Slide 41: Batch Normalization Layer
	Slide 42: Residual Network (ResNet)
	Slide 43: Simple Example of ResNet Block
	Slide 44: Dense Net
	Slide 45: Part 2 Convolutional Neural Network Applications
	Slide 46: Image Classification Example
	Slide 47: Image Classification Models
	Slide 48
	Slide 49: Intersection over Union (IoU)
	Slide 50: Image Segmentation used for water level estimation
	Slide 51: Segment Anything Model from Meta (2023)
	Slide 52: UNet
	Slide 53: U-Net
	Slide 54: Object Detection
	Slide 55: Application: Boat (Object) Detection and boat speed measurement
	Slide 56: Application: Instance Segmentation and Object Detection: Plastic Pollution Detection
	Slide 57: Object Detection (plastic pollution detection - One of my student’s project)
	Slide 58: Mask RCNN
	Slide 59: Mask-RCNN
	Slide 60: You Look Only Once (YOLO) Model
	Slide 61: You Look Only Once (YOLO) Model
	Slide 62: You Look Only Once (YOLO) Model
	Slide 63: You Look Only Once (YOLO) Model
	Slide 64: You Look Only Once (YOLO) Model
	Slide 65: You Look Only Once (YOLO) Model
	Slide 66: Training Loss of YOLO models
	Slide 67: Training Loss of YOLO models
	Slide 68: Generative Models
	Slide 69: Super Realistic Generative Adversarial Networks
	Slide 70: Generative Adversarial Networks

	Untitled Section
	Slide 71: Generative Adversarial Networks
	Slide 72: Deep Convolutional GAN
	Slide 73: StyleGAN to Generate China City Scape

