

Convolutional Neural Network

Computer Vision and Artificial Intelligence

Dr Varun Ojha

varun.ojha@ncl.ac.uk

School of Computing Newcastle University

Learning objectives (Convolutional Nets)

By the end of this week, you will be able to:

- Learn the concepts of convolutional neural networks (CNNs or ConvNets)
- Design various convolutional architectures
- Understand computer vision tasks and models:
 - image classification
 - image segmentation
 - object detection
 - Image generation
- Apply and evaluate a ConvNet on image classification task.

Content of this week (CNNs)

- Part 1: Design of Convolutional Nets
 - Image Data
 - Components of ConvNets
 - Regularisation in ConvNets / DNNs
 - ConvNet Architectures
- Part 2: Convolutional Neural Nets Applications and Models
 - Image Segmentation Models
 - Object Detection Models
 - Generative Models Concept
- Part 3: Practical Exercise (CNN)

Goodfellow et al (2017) Deep Learning, MIT Press https://www.deeplearningbook.org/

Part 1 Design of Convolutional Nets

Data

Image: Gary scale

— Width (W) ——

Data

Image: Colour

Deep Learning

flatten image

Convolutional Neural Network (CNN)

Deep Neural Network (DNN)

Convolutional Neural Network (CNN)

Convolutional Neural Network (ConvNet)

A **ConvNet** arranges its neurons in three dimensions (**width, height, depth**).

Every layer of a **ConvNet** transforms the 3D input volume to a 3D output volume of neuron activations.

In this example, the red input layer holds the image, so its width and height would be the dimensions of the image, and the depth would be 3 (Red, Green, Blue channels)

Ch 9 Goodfellow, Deep Learning, MIT Press

ConvNet/ CNN Architecture: A Simple ConvNet / CNN [INPUT - CONV - RELU - POOL - FC]

ConvNet/ CNN

Architecture: A Simple ConvNet / CNN [INPUT - CONV - RELU - POOL - FC]

INPUT [64x64x3] holds the raw pixel values of the image. Image *width* 64, *height* 64, and with *three* colour channels R,G,B.

height 64

3 Channels
 Red, Green, Blue

ConvNet/ CNN Architecture: A Simple ConvNet / CNN [INPUT - CONV - RELU - POOL - FC]

CONV layer computes the output of neurons that are connected to local regions in the input, each computing a dot product between their weights and a small region they are connected to in the input volume.

E.g. The Convolution of INPUT [64x64x3] may result in volume [32x32x12] if we decided to use 12 filters

An input volume in red (e.g. a 32x32x3), and an example volume of neurons in the first Convolutional layer.

- CONV layer's parameters consist of a set of learnable filters.
- Every filter is small spatially (along width and height) but extends through the full depth of the input volume.
- A typical filter on a first layer of a ConvNet might have size
 5x5x3 (i.e. 5 pixels width and height, and 3 because images have depth 3, the colour channels)

- Forward pass: we slide (**convolve**) each filter across the width and height of the input volume and compute dot products between the entries of the filter and the input at any position.
- When we slide the **filter** over the width and height of the input volume, we will produce a **2-dimensional activation map** that gives the responses of that filter at every spatial position
- We can have a set of filters (e.g., 12)

Input volume of size W1×H1×D1

Requires four hyperparameters:

- Number of filters K,
- their spatial extent F,
- the stride **S**,
- the amount of zero padding P.

Output volume of size W₂×H₂×D₂ where:

- $W_2 = (W_1 F + 2P)/S + 1$
- $H_2 = (H_1 F + 2P)/S + 1$
- (i.e. width and height are computed equally by symmetry)
- $D_2 = K$

Input Volume (+pad 1) (7x7x3) Filter W0 (3x3x3)												
x[:	<i>,</i> :,	0]		w0[:,:,0]								
0	0	0	0	0	0	0	1 1 -1					
0	2	2	0	1	1	0	-1 1 0					
0	0	0	0	0	0	0	0 1 -1					
0	1	0	2	2	1	0	w0[:,:,1]					
0	0	1	1	0	2	0	0 -1 0					
0	1	1	2	2	X	0	1 0 -1					
0	0	0	0	0	0	0	-1 1 1					
x[,1] w0[:,2]												
0	0	0	0	0	0	V	0 -1 1					
0	2	0	V	0	2	ø	0 7 -1					
0	0	2	0	X	1	ø	1 -1 1					
0	2	0	0	0	2	0	Bias b P(1x1x1)					
0	0	1	2	1	1	0/	<u>b0(</u> :,:,0]					
0	1	1/	0	0	9/	X	1					
0	V	0	0	8/	6	0						
×	, : ,	2]	//	/		/						
0	0	0	0	0	0/	0						
0	2/	2	0	2/	0	0						
9	0	2	V	2	0	0						
0	0	1	1	1	0	0						
0	1	0	2	0	0	0						
0	0	0	1	2	0	0						
0	0	0	0	0	0	0						

w1[:, 1 0 0 1	,:,0] -1 -1	o[: 7	,÷,	01
0 1	-1		0	2
1 1		2	5	1
	1	-1	0	1
• •	• 11	1	Č.	11
0 -1	1 0	-4	-6	2
0 0	0	-3	-5	1
1 -1	1 -1	-1	-2	2
w1[:,	,:,21			
-1 0	-1			
1 1	-1			
-1 -1	1 -1			
Bias b1 01 [: , <mark>0</mark>	1(1x1x1) ,:,0]			

Input volume of size 5×5×3

Requires four hyperparameters:

- Number of filters **K** = 2,
- their spatial extent F = 3,
- the stride S = 2,
- the amount of zero padding **P** = 1.

Output volume of size W₂×H₂×D₂ where:

- $W_2 = (5 3 + 2^*1)/2 + 1$
- $H_2 = (5 3 + 2^*1)/2 + 1$
- (i.e. width and height are computed equally by symmetry)
- $D_2 = 2$

Input volume of size 5×5×3

Requires four hyperparameters:

- Number of filters **K** = 2,
- their spatial extent F = 3,
- the stride **S** = **2**, (moved 2 pixels)
- the amount of zero padding **P** = 1.

Output volume of size $W_2 \times H_2 \times D_2$ where:

- W₂=3
- $H_2 = 3$
- (i.e. width and height are computed equally by symmetry)
- $D_2 = 2$

Source: http://cs231n.github.io/convolutional-networks/

Simple Convolution Example

Note that each 2D map performs element-wise multiplication instead a dot product as may be advised in most text. However, if you flatten the tensors (i.e., make them vectors), you can do a dot product. Note that is only 1 filter but we may have many filters.

Effect of Learned Convolutional Filter on Images

This is most likely scenario as we do not know exactly what will be the filter weights after training. Hence CNN is a Blackbox

These weights/values	Identity			Sharpen			Blur			Laplacian			Gaussian		
of 3x3 kernels/filters	0	0	0	0	-1	0	1/5	1/5	1/5	0	1	0	1/8	2/8	1/8
are learned	0	1	0	-1	7	-1	1/5	1/5	1/5	1	-5	1	2/8	4/8	2/8
(filter values and outputs are mere representative)	0	0	0	0	-1	0	1/5	1/5	1/5	0	1	0	1/8	2/8	2/8

Original

Identity

Sharpen

Blur

Laplacian

Gaussian

ConvNet/CNN Architecture: A Simple ConvNet / CNN [INPUT - CONV - RELU - POOL - FC]

RELU layer will apply an elementwise activation function, such as the max(0, x) thresholding at zero. This leaves the size of the volume unchanged ([32x32x12]).

ConvNet/CNN Architecture: A Simple ConvNet / CNN [INPUT - CONV - RELU - POOL - FC]

POOL layer will perform a **down sampling** operation along the spatial dimensions (width, height), resulting in volume such as [16x16x12]

ConvNet Pooling Layer

Pooling layer **down samples** the volume spatially, independently in each depth slice of the input volume

ConvNet Pooling Layer

Max Pooling layer

ConvNet/CNN Architecture: A Simple ConvNet / CNN [INPUT - CONV - RELU - POOL - FC]

FC (i.e. fully-connected) layer may compute the class scores, resulting in volume of size [1x1x10], where each of the 10 neurone correspond to a class score, such as among the 10 categories.

An FC layer is also a linear layer. It can have as many neurons/nodes as a user defines them to be

ConvNet **Fully Connected (Dense) Layer**

Classes (e.g. 10 for MNIST dataset)

> This typically outputs SoftMax

ConvNet ConvNet Architecture

 $INPUT \rightarrow [CONV \rightarrow RELU \rightarrow POOL] * 2 \rightarrow FC \rightarrow RELU \rightarrow FC]$

ConvNet: Image Classification Example

Live demo http://cs231n.stanford.edu/

VGG Net

- Visual Geometry Group (VGG) Network (VGG Net)
- VGG 16 an example architecture: 13 Convolution layers 3 fc layer.

Regularization: Avoid Overfitting

- Both Lasso and Ridge regularization help DNNs and CNNs avoid overfitting.
- As weights can get zero in Lasso regularization introduce sparsity in the networks and help feature selection because some weights goes to zero. Thus, eliminating effect of some input features, while in ridge regression weights can only get close to zeros and not exactly (see images).
- L2 penalizes large errors much more heavily than small errors (compared to L1), thus on optimization of network, it is safe to assume that all the errors are roughly of the same order of magnitude

Regularization: Dropouts Layer

Regularisation of DNNs and CNNs

Slows down training in Convolutional Nets

- It drop nodes with some probability
- It regularise Deep Neural Nets and Convolutional Neural Nets

!!!

Sec 7.12, Goodfellow, Deep Learning, MIT Press

Srivastava et al (2014) Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JMLR

Batch Normalization Layer

Regularisation of Convolutional Neural Networks

- It eliminates the need of dropout
- Accelerates ConvNet training
- It reduces sensitivity to network weight initialisation

Batch Normalization Layer

Regularisation of Convolutional Neural Networks

Optimization/ cost function space on unnormalized inputs

Optimization/ cost function space on unnormalized inputs

Residual Network (ResNet)

ResNet Block

He et al (2016) Deep Residual Learning for Image Recognition, CVPR

Dense Net

Huang et al (2017) Densely Connected Convolutional Networks

Part 2 Convolutional Neural Network Applications

Image Classification Example

Live demo http://cs231n.stanford.edu/

Image Classification Models

- Residual Networks (ResNet)
- Visual Geometry Group (VGG) Network
 (VGG Net)
- DenseNet
- InceptionNet
- Other pre-trained Image Classification
 Nets on pytorch library:

https://pytorch.org/vision/main/models.html

VGG Net 16

Image Segmentation (Concept)

Intersection over Union (IoU)

IoU measure the performance of image segmentation and object detection algorithms performance

loU

prediction

Image Segmentation used for water level estimation

Pixel-wise water segmentation of RGB images for river water-level monitoring or flood monitoring

Vandaele, R., Dance, S. L., & Ojha, V. (2020). Automated water segmentation and river level detection on camera images using transfer learning. GCPR

Image Segmentation (Concept)

Segment Anything Model from Meta (2023)

https://segment-anything.com/

UNet

U-Net is a typical CNN architecture for semantic segmentation. It has a contracting path (down sampling) and an expansive path (up sampling).

U-Net

- Contracting path is a repeated application of two 3x3 convolutions and a ReLU and a 2x2 Max Pooling operation with stride 2
- Expansive path is an up sampling of the feature map followed by a 2x2 Convolution ("upconvolution") that halves the number of feature channels, a concatenation with the correspondingly cropped feature map from the contracting path, and two 3x3 convolutions, each followed by a ReLU.

Ronneberger et al (2015). U-net: Convolutional networks for biomedical image segmentation. MICCAI

Object Detection

Application: Boat (Object) Detection and boat speed measurement

One of my Undergraduate student's project

Application: Instance Segmentation and Object Detection: Plastic Pollution Detection

Object Detection

(plastic pollution detection - One of my student's project)

Input Video

Output Video

Published work: Jaikumar P et al. (2020) ISDA, https://centaur.reading.ac.uk/98569/

Mask RCNN

Input Image

He et al. (2017) Mask-RCNN, ICCV

A class label (e.g., person)A Segmentation mask

• A bounding box

Mask-RCNN

Object detection in YOLO models are as a regression problem. It divides the image into an S × S grid and for each grid cell it predicts B bounding boxes, confidence for those boxes, and C class probabilities.

Ground Truth

Original input

Ground Truth

Match predicted cell with ground through

Cell Prediction

Ground Truth

Check the class prediction (class probability, i.e., SoftMax)

Class Prediction

Ground Truth

Check the box prediction and its confidence (i.e., IoU)

Box Prediction

Non-maximal suppression (NMS) $Box = argmax(C(P_1), C(P_2), ..., C(P_n))$

Box Prediction with confidence scores

Perform NMS, i.e., keep only boxes with maximal confidence score

Final Detection

Training Loss of YOLO models

 $L_{YOLO} = L_{clsss} + L_{loclization}$

 $L_{\text{loclization}} = L_{\text{confidance}} + L_{\text{coordinate}}$

Training Loss of YOLO models

 $L_{YOLO} = L_{clsss} + L_{loclization}$

 $L_{\text{loclization}} = L_{\text{confidance}} + L_{\text{coordinate}}$

$$L_{\text{coordinate}} = \lambda_{\text{coordinate}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{I}_{ij}^{\text{object}} l$$

$$l = (\sqrt{w_i} - \sqrt{\hat{w}_i})^2 + (\sqrt{h_i} - \sqrt{\hat{h}_i})^2 + (x_i - x_i)^2 + (y_i - y_i)^2$$

$$L_{\text{confidance}} = \sum_{i=0}^{S^2} \sum_{j=0}^{B} \left[\mathbb{I}_{ij}^{\text{object}} (c_i - \hat{c}_i)^2 \right] + \lambda_{\text{noObject}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \left[\mathbb{I}_{ij}^{\text{object}} (c_i - \hat{c}_i)^2 \right]$$

Where w, h, x, y, s are grid size, width, height, x-axis, and y-axis position of the box B, and the grid size

Generative Models

Which one is Real, and which one is Fake?

Super Realistic Generative Adversarial Networks

bicubic (21.59dB/0.6423)

SRResNet (23.53dB/0.7832)

SRGAN (21.15dB/0.6868)

original

Generative Adversarial Networks

Image: Bishop, Deep Learning

Random noise

real images

Generator aims to maximize error of discriminator

 $\mathbf{g}(\mathbf{z}, \mathbf{w})$

Generator

synthetic images

Generative Adversarial Networks

min-max loss

real image from dataset, i.e., label '1' so D should output '1' for real Synthetic image from generator, i.e. label '0' so D should output '0' for fake

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x} \left[\log \left(D(x) \right) \right] + \mathbb{E}_{z} \left[\log \left(1 - D(G(z)) \right) \right]$$

Generator aims to maximize error of discriminator, i.e., G to minimize: $\mathbb{E}_{z}\left[\log\left(1-D(G(z))\right)\right]$

low value means generator create realistic images, i.e., if D(G(z)) = 1 means generator fool Discriminator and its wins

Discriminator aims to minimize the error to become better at distinguishing real and fake/synthetic images, i.e., D to maximize the probability of assigning the correct label to both training examples and samples from G by maximizing:

$$\mathbb{E}_{x}\left[\log(D(x))\right] + \mathbb{E}_{z}\left[\log\left(1 - D(G(z))\right)\right]$$

low value means discriminator is able to identify the real vs fake (i.e., if D(x) = 1 and D(G(z)) = 0 will give log 1 + Log 1 = 0) that will let Discriminator win

Deep Convolutional GAN

The task of the generator is to produce data which the discriminator predicts as being 'real', meaning that it closely resembles the training dataset.

Radford et al (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. ICLR 2016

StyleGAN to Generate China City Scape

My student project

(Jia 2022)