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Learning objectives (Convolutional Nets)

By the end of this week, you will be able to:

» Learn the concepts of convolutional neural networks (CNNs or ConvNets)
 Design various convolutional architectures

« Understand computer vision tasks and models:
* Image classification
* Image segmentation
* object detection

* Image generation

* Apply and evaluate a ConvNet on image classification task.



Content of this week (CNNS)

- Part 1. Design of Convolutional Nets

Image Data

Components of ConvNets

Regularisation in ConvNets / DNNs

ConvNet Architectures

« Part 2: Convolutional Neural Nets Applications and Models
* Image Segmentation Models

» Object Detection Models

* Generative Models Concept

- Part 3: Practical Exercise (CNN) Goodfellow et al (2017) Deep Learning, MIT Press
https://www.deeplearningbook.org/



https://www.deeplearningbook.org/

Part 1
Design of Convolutional Nets
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Data: 2D

Image: Gary scale
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Data: 2D

Image: Gary scale
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Data

Image: Colour




Data: 3D

Image: Colour
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Data

Image: Colour

P11
| = :
PH1
P11
IGreen= [ E
PH1
P11
. =[;
PH1

Channel /Depth (D)

P1:w
PH;.I’W

P1:w
PH».PW
P1:W

PH, Pw

Hight (H)

Width (W)




Deep Learning
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Convolutional Neural Network (CNN)
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Convolutional Neural Network (ConvNet)

A ConvNet arranges its neurons in
three dimensions (width, height,
depth).

Every layer of a ConvNet transforms
the 3D input volume to a 3D output
volume of neuron activations.

= In this example, the red input layer
holds the image, so its width and
height would be the dimensions of the
Image, and the depth would be 3 (Red,
Green, Blue channels)

Ch 9 Goodfellow, Deep Learning, MIT Press

A very good source: http://cs231n.github.io/convolutional-networks/



ConvNet/ CNN

Architecture: A Simple ConvNet / CNN
[INPUT - CONV - RELU - POOL - FC]

j o}

Convolution - RELU - POOLING - Fully Connected - Output]




ConvNet/ CNN

Architecture: A Simple ConvNet / CNN
[INPUT - CONV - RELU - POOL - FC]

INPUT [64x64x3] holds the raw pixel values of the image.
Image width 64, height 64, and with three colour channels R,G,B.

3 Channels
/ Red, Green, Blue

height 64

width 64

A very good source: http://cs231n.github.io/convolutional-networks/



ConvNet/ CNN

Architecture: A Simple ConvNet/CNN
[INPUT - CONV - RELU - POOL - FC]

CONV layer computes the output of neurons that are connected
to local regions in the input, each computing a dot product

between their weights and a small region they are connected to
In the input volume.

E.g. The Convolution of INPUT [64x64%x3] may result in volume
[32x32x12] if we decided to use 12 filters

A very good source: http://cs231n.github.io/convolutional-networks/



ConvNet
Convolution Layer

32

32

3

A very good source: http://cs231n.github.io/convolutional-networks/
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An input volume in red
(e.g. a 32x32x3), and
an example volume of
neurons in the first
Convolutional layer.



ConvNet
Convolution Layer

« CONV layer’s parameters consist of a set of learnable filters.

 Every filter Is small spatially (along width and height) but
extends through the full depth of the input volume.

A typical filter on a first layer of a ConvNet might have size
5x5x3 (I.e. 5 pixels width and height, and 3 because images
have depth 3, the colour channels)

A very good source: http://cs231n.github.io/convolutional-networks/



ConvNet
Convolution Layer

* Forward pass: we slide (convolve) each filter across the width
and height of the input volume and compute dot products
between the entries of the filter and the input at any position.

 When we slide the filter over the width and height of the input
volume, we will produce a 2-dimensional activation map that
gives the responses of that filter at every spatial position

» We can have a set of filters (e.g., 12)

A very good source: http://cs231n.github.io/convolutional-networks/



ConvNet
Convolution Layer
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Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
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http://cs231n.github.io/convolutional-networks/
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http://cs231n.github.io/convolutional-networks/
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http://cs231n.github.io/convolutional-networks/

Simple Convolution Example

Output Volume

Input Vol_ume and Convolution bias W,= (W,- F+2P)/S+1=2
G utiona =P 2P)S 12
Image Depth D, = 3 COHYO utiona Do =K=1
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Number of Filters K = 1 -
Stride S = 2 mage X Bl 2 Convoluted
Padding P =0
3 | 4 L] e 30 | 41 | Xxw  image
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Note that each 2D map performs element-wise multiplication instead a dot product as may be advised in most text. However, if you flatten the tensors (i.e., make
them vectors), you can do a dot product. Note that is only 1 filter but we may have many filters.



Effect of Learned Convolutional Filter on Images

This is most likely scenario as we do not know exactly what will be the filter weights after training. Hence CNN is a Blackbox

These
weights/valu
of 3x3

kernels/filters
are learned
during training

(filter values and outputs are
mere representative)

AV

S)

|dentity Sharpen Blur Laplacian Gaussian
0 -1 0 1/5 | 1/5 | 1/5 1 1/8 | 2/8 | 1/8
-1 7 -1 1/5 | 1/5 | 1/5 -5 218 | 418 | 2/8
0 -1 0 1/5 | 1/5 | 1/5 1 1/8 | 2/8 | 2/8

Original

Laplacian

Gaussian




ConvNet/ CNN f"“"'%é

Architecture: A Simple ConvNet / CNN
[INPUT - CONV - RELU - POOL - FC]

RELU layer will apply an elementwise activation
function, such as the max(0, x) thresholding at zero. This
leaves the size of the volume unchanged ([32x32x12]).

RELU layer
No change in dimension

[32x32x12] [32x32x12]

A very good source: http://cs231n.github.io/convolutional-networks/




ConvNet/ CNN f"“"'%é

Architecture: A Simple ConvNet / CNN
[INPUT - CONV - RELU - POOL - FC]

POOL layer will perform a down sampling operation along the

spatial dimensions (width, height), resulting in volume such as
[16x16x12]

12

12
POOL layer
32 » 16

A very good source: http://cs231n.github.io/convolutional-networks/




ConvNet
Pooling Layer

224x224x64

112x112x64

pool
—_—

- o 112
224 downsampling

112
224

A very good source: http://cs231n.github.io/convolutional-networks/

Pooling layer down
samples the volume
spatially,
iIndependently In
each depth slice of
the input volume



ConvNet
Pooling Layer

Single depth slice

max pool with 2x2 filters
and stride 2

>

A very good source: http://cs231n.github.io/convolutional-networks/

Max Pooling
layer



ConvNet/ CNN 5’"%<

Architecture: A Simple ConvNet / CNN
[INPUT - CONV - RELU - POOL - FC]

FC (i.e. fully-connected) layer may compute the class scores, resulting in
volume of size [1x1x10], where each of the 10 neurone correspond to a
class score, such as among the 10 categories.

A single neuron of the
volume. There are as
many neuron as the
volume size

An FC layer is also a

linear layer. It can have as
O many neurons/nodes as a

user defines them to be




ConvNet
Fully Connected (Dense) Layer

Classes
(e.g. 10 for
MNIST
dataset)

‘

A

This
typically
outputs
SoftMax




ConvNet
ConvNet Architecture

INPUT — [CONV — RELU —> POOL]*2 — FC — RELU — F(]

____________________________________________________________________________________________________________________________________________________

A very good source: http://cs231n.github.io/convolutional-networks/
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ConvNet: Image Classification Example

Live demo http://cs231n.stanford.edu/

http://cs231n.github.io/convolutional-networks/

A very good source:


http://cs231n.stanford.edu/

VGG Net

Image
% .
& >
o

* Visual Geometry
Group (VGG)
Network (VGG
Net)

56'\
44
) N\
00000000 Q
Bo) 9 N o
S & & NN N
[9) o o
@) @) @) N

N\
s & &

14 x 14 x 512 ‘ 1 x 1 x 4096 1 x 1 x 1000

Tl SE2

28 x 28 x 512

56 x 56 x 256

* VGG 16 - an
example
architecture: 13
Convolution
layers 3 fc layer. 224 224 x 4

2.7 .

1124 112 x 128
@ convolution+ReLU

@ max pooling
,, i T
ﬁ fully connected+ReLLU

Simonyan et al. (2014) Very deep convolutional networks for large-scale image recognition. ICLR 2015



Regularization: Avoid Overfitting

L,-norm regularization / L,-norm regularization

N
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- Both Lasso and Ridge regularization help DNNs and CNNs avoid overfitting.

« As weights can get zero in Lasso regularization introduce sparsity in the networks and help feature selection
because some weights goes to zero. Thus, eliminating effect of some input features, while in ridge regression
weights can only get close to zeros and not exactly (see images).

« L2 penalizes large errors much more heavily than small errors (compared to L1), thus on optimization of
network, it is safe to assume that all the errors are roughly of the same order of magnitude



Regularization: Dropouts Layer

Regularisation of DNNs and CNNs

1
Slows down training in Convolutional Nets

* It drop nodes with some probability
* It reqularise Deep Neural Nets and Convolutional Neural Nets
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Number of weight updates

Sec 7.12, Goodfellow, Deep Learning, MIT Press
Srivastava et al (2014) Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JIMLR

1000000



Batch Normalization Layer

Regularisation of Convolutional Neural Networks

* It eliminates the need of dropout

« Accelerates ConvNet training
* |t reduces sensitivity to network weight initialisation

® Normalized activation/input

Z T Batch norm layer

yi = Y& + B = BN, g(z:)

loffe and Szegedy (2017) Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift ICML.

Image Conv ReLU Norm Pool FC CLS



Batch Normalization Layer

Regularisation of Convolutional Neural Networks

Optimization/ cost function

Optimization/ cost function : :
space on unnormalized inputs

space on unnormalized inputs

ynorm axits

N

XnormaXis

Y original data values

~
Tl

N

v X original data values



Residual Network (ResNet)

ResNet Block

weight layer
]—“(X) l relu .
weight layer identity

He et al (2016) Deep Residual Learning for Image Recognition, CVPR

Image

v

7x7 conv, 64, /2

v

pool, /2

F

3x3 conv, 64

\ 4

3x3 conv, 64

3x3 conv, 64

\ 4

3x3 conv, 64

3x3 conv, 64

\ 4

3x3 conv, 64

3x3 cony, 512 ‘/

v

avg pool

v

fc 1000




Simple Example of ResNet Block

identity

ldentity x 2 1
1 2
convolution
2 1 2 -5 -3 2 -1 3
1 2 4 3 2 -7 & 3 -5
addition
input x Convolution relu Convolution ResNet Block relu
These values are These values are y=F(x)+x
This is typically an  representative representative

input from previous |

J Output of a single

convolution layer

| ResNet Block
F(x)



gpV!

Dense Net

X]

Huang et al (2017) Densely Connected Convolutional Networks

X3
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Applications
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Image Classification Exam

Live demo http://cs231n.stanford.edu/

http://cs231n.github.io/convolutional-networks/

A very good source:


http://cs231n.stanford.edu/

Image Classification Models

* Residual Networks (ResNet)

* Visual Geometry Group (VGG) Network
(VGG Net)

s N s |

* DenseNet S Ix 12409 1x1x1000

14 x 14 x 512
28 x 28 x 512

X% 512

* InceptionNet

AN
11/ 112 x 128

@ convolution+ReLLU
7] max pooling

~—1’] fully connected+ReLU

 Other pre-trained Image Classification

Nets on pytorch library: 224 x 224 x 64

https://pytorch.org/vision/main/models.html

VGG Net 16


https://pytorch.org/vision/main/models.html

Image Segmentation (Concept)

Encoder Decoder

1h

RGB Image
(Input)

Segmentation Mask
(Output)

_1

48



Intersection over Union (loU)

loU measure the performance of image segmentation and object detection algorithms performance

ground truth

»

prediction

Area of Intersection

loU =

Area of Union

ground truth

prediction



Image Segmentation used for
water level estimation

Pixel-wise water segmentation of RGB images for river water-level monitoring or flood monitoring

Vandaele, R., Dance, S. L., & Ojha, V. (2020). Automated water segmentation and river level detection on camera images using transfer learning. GCPR

50



Image Segmentation (Concept)

Segment Anything Model from Meta (2023)

https://segment-anything.com/

51


https://segment-anything.com/

UNet

U-Net is a typical CNN architecture for semantic segmentation.
It has a contracting path (down sampling) and an expansive path (up sampling).

— —

— concatenate —_—
I —

overlay with ground
truth segmentation

raW |nput - L_E’E‘}"_‘S_“_"QE"E,IZ:: :___EES_E'_”[@‘E_}:: ) U'Net generated

image l mask

map with a pixel-wise loss
weight to force the network
to learn the border pixels

Ronneberger et al (2015). U-net: Convolutional networks for biomedical image segmentation. MICCAI



U-Net

128 G4 64 2
« Contracting path is a repeated |
application of two 3x3 gt lele o, output
convolutions and a ReLU and a tle ol o d o pearoen
2x2 Max Pooling operation with R E o 4 o =
stride 2 JEE

* Expansive path is an up sampling
of the feature map followed by a
2x2 Convolution (“up-
convolution”) that halves the
number of feature channels, a
concatenation with the
correspondingly cropped feature ol"."- E-"-"- ¥ max pool 2x2
map from the contracting path, and v-*&_ .: ;‘E,;f,“l”:f"z

two 3x3 convolutions, each ”
followed by a RelLU.

Ronneberger et al (2015). U-net: Convolutional networks for biomedical image segmentation. MICCAI

2002
'_uas-' ! ,
196° : =

2842

212 256

u11 = Cconv 3x3, RelLU

copy and crop

1024 51




Object Detection

Semantic Classification Object Instance
Segmentation + Localization Detection Segmentation

i

.8: . - e

GRASS, CAT, DOG, DOG, CAT

. TREE,SKY o /
N e A

No objects, just pixels Single Object Multiple Object



Application: Boat (Object) Detection and boat speed measurement

One of my Undergraduate student’s project

STURE LR Ay TN
LU R
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Application: Instance Segmentation and
Object Detection: Plastic Pollution Detection

Jaikumar P et al. (2020) ISDA 56



Object Detection

(plastic pollution detection - One of my student’s project)

Input Video Output Video

Published work: Jaikumar P et al. (2020) ISDA, https://centaur.reading.ac.uk/98569/



https://centaur.reading.ac.uk/98569/

Mask RCNN

RolAlign

Input Image

He et al. (2017) Mask-RCNN, ICCV

conv

conv

Output

* A bounding box

« Aclass label (e.g., person)
* A Segmentation mask



Mask-RCNN

Class (Softmax)
conv .:>COHV E
9 Bounding box
= = Regression
7x7 x 256
Feature Region Region of
Pyramid Int t
Backbone proposal nteres'
ResNet | Network Network = Align
conv|/=>|conv
14 x 14 x 256

Jaikumar P et al. (2020) ISDA 59
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Obiject detection in YOLO
models are as a regression
problem. It divides the
image intoan S x S grid and
for each grid cell it predicts
B bounding boxes,
confidence for those boxes,
and C class probabilities.



You Look Only Once (YOLO) Model

Original input Ground Truth

Redmon, J. (2016). You only look once: Unified, real-time object detection. CVPR



You Look Only Once (YOLO) Model
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You Look Only Once (YOLO) Model

SRR DR AT N
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Check the

class
prediction

(class
probability,  F N

l.e.,
SoftMax)

Class
Prediction

Ground Truth



You Look Only Once (YOLO) Model

Check the
box
prediction
and its
confidence | |
. ] v a2y ¥ LR
AL B . o il

ES .
-..l 'y -. i(T ki B
AR

Ground Truth Prediction




You Look Only Once (YOLO) Model

Non-maximal suppression (NMS) Box = argmax(C(Pq),C(P3),...,C(P,))

— 2

Perform NMS,
l.e., keep only
boxes with
maximal
confidence
score

Box Prediction with
confidence scores

Final Detection

Redmon, J. (2016). You only look once: Unified, real-time object detection. CVPR



Training Loss of YOLO models

LYOLO =R lsssl b Lo elization

SZ
bj n 2
L = YT (- )
1=0

ceclasses

pobject _ 1 if objectinboxi
g 0 otherwise

Lloclization — Lconfidance T Lcoordinate



Training Loss of YOLO models

Lyoro = Leisss T Lioclization
Lloclization — Lconfidance + Lcoordinate
S%? B
- object
Lcoordinate - Acoordinate Z Z Hij l
i=0 j=0

[ = (\/Wl - \/Wi)z + (\/hl - \/i\li)z + (Xi - Xl')z + (yl — yi)z

2

S“ B
b t bj t
confldance z z [ o e ( Ci — Cl) ] + AnoOb]ectz z [ HO e ) ]

=0 j=0 =0 =

Where w, h,x,y,s are grid size, width, height, x-axis, and y-axis position of the box B, and the grid size



Generative Models

Which one Is
Real,

and which
one Is Fake?




Super Realistic Generative Adversarial Networks

bicubic SRResNet SRGAN original
(21.59dB/0.6423) | (23.53dB/0.7832) | (21.15dB/0.6868)
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!‘V S . :‘. L S
’ . < evs v
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real images

Generative
Adversarial rﬂm
Networks

Image: Bishop, Deep Learning

Random noise

y

Z

Discriminator aims to

minimize the error to become
better at distinguishing real

and fake/synthetic images

r d(x, )
]

g(z, w)
Generator aims to maximize
error of discriminator

synthetic images



Generative
Adversarial
Networks

g(z,w)

synthetic images

real images

T

T

X

—p-|
—>|

G(2)

?)

(B}

d(x,

D(G(2))

Goodfellow et al. (2014). Generative adversarial nets. NIPS 2024

min-max loss

real image from dataset, Synthetic image from
i.e., label ‘1’ so D should generator, i.e. label ‘0’ so
output ‘1’ for real D should output ‘0’ for fake

o l l
min max V(D,G) = E,|log(D(x))] +E, llog (1 - D(G(Z)))]

Generator aims to maximize error of discriminator, i.e., G to minimize:

E, [1og (1 - D(G(z)))]

low value means generator create realistic images, i.e., if D(G(z)) = 1 means generator
fool Discriminator and its wins

Discriminator aims to minimize the error to become better at
distinguishing real and fake/synthetic images, i.e., D to maximize the
probability of assigning the correct label to both training examples
and samples from G by maximizing:

E,|log(D(x))]| + E, [log (1 — D(G(Z)))]

low value means discriminator is able to identify the real vs fake (i.e., if D(x) = 1 and
D(G(z)) = 0 will give log 1 + Log 1 = 0) that will let Discriminator win



Deep Convolutional GAN

The task of the generator is to produce data which the discriminator predicts as being ‘real’, meaning that it closely
resembles the training dataset.

Generator Discriminator
Generated Real/Original
syntactic images images x
Convolution Convolution
| =

Latent Project and Binary
SREE rel-sthape Input to Discriminator are both classification

atent generator images and real between real

space images in separate batches and fake

images



StyleGAN to Generate China City Scape

(Jia 2022)
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