
(Vision)
Transformers

Computer Vision and Artificial
Intelligence

Dr Varun Ojha

varun.ojha@ncl.ac.uk

School of Computing

Newcastle University

Apple is sweet

Apple is fast

Learning objectives (Vision Transformer)

By the end of this week, you will be able to:

• Learn the concepts of Transformer Models

• Understand the Self-Attention Mechanisms (the basic building

block of Transformers)

• Understand an image classification using Vision Transformers

3

Content of this week (ViT)
• Part 1: Self-Attention Block

• Basic concept of Transformers

• Word Embedding

• Self-Attention Mechanism

• Part 2: Vision Transformer

• Basic concept of Vision Transformers

• Architecture of a Vision Transformer

• Performance of Vision Transformer

4

Word Embedding

Given a word 𝑊 (e.g. “intelligence”) we want 𝑊 to be a real vector
of dimension 𝑑. Dimension 𝑑 is also called word embedding
dimension.

𝑾: words → ℝ𝑑

“intelligence” → 𝑤1, 𝑤2, … , 𝑤𝑑 → (0.1, −0.8, … , 0.9)

5

Word Embedding

𝑊1 = “I love artificial intelligence”

𝑊2 = “I like computational intelligence”

We create a vocabulary 𝑉 collecting all unique words.

𝑉 = {“I”, “love”, “like”, “artificial”, “computational”, “intelligence”}

For this example, vocabulary size 𝑉 = 6

6

Word Embedding: Word → Integer

𝑉 = {“I”, “love”, “artificial”, “computational”, “intelligence”, “like”}

I → 0

love → 1

like → 2

artificial → 3

computational → 4

intelligence → 5

7

Word Embedding: Integer → Word

𝑉 = {“I”, “love”, “artificial”, “computational”, “intelligence”, “like”}

0 → I

1 → love

2 → like

3 → artificial

4 → computational

5 → intelligence

8

One-Hot Encoding

𝑉 = {“I”, “love”, “like”, “artificial”, “computational”, “intelligence”}

“I” =

𝟏
𝟎
𝟎
𝟎
𝟎
𝟎

 “love” =

𝟎
𝟏
𝟎
𝟎
𝟎
𝟎

 “like” =

𝟎
𝟎
𝟏
𝟎
𝟎
𝟎

 “artificial” =

𝟎
𝟎
𝟎
𝟏
𝟎
𝟎

“intelligence” =

𝟎
𝟎
𝟎
𝟎
𝟎
𝟏

 “computational” =

𝟎
𝟎
𝟎
𝟎
𝟏
𝟎

9

Similarity between words?

“love”

“I”
“like”

“artificial”

“computational”

“intelligence”

Objective is to place similar words close to each other

10

Similarity between words?

“love”

“I”
“like”

“artificial”

“computational”

“intelligence”

Objective is to place similar words close to each other

cos 𝜃 =
𝐴 ⋅ 𝐵

𝐴 ⋅ 𝐵
𝜃

𝜃 large for dissimilar words

11

t-SNE visualisation of words
Turian et al. (2010)

both

all

these
those

some
many

several

other

few

two

three four

six
five

10

20

000 1

15

30
half

chief

head

executive
trader

director

chairman

minister
leader

president

analyst

spokesman

12

t-SNE visualisation
Example Source:

https://towardsdatascience.com/text-classification-in-python-dd95d264c802

politics
All similar topics

are closer to

each other

13

https://towardsdatascience.com/text-classification-in-python-dd95d264c802

Word Embedding: Objective

Given a word 𝑊 (e.g. “intelligence”) we want to 𝑊 a real vector of
dimension 𝑑

𝑾: words → ℝ𝑑

“intelligence” → 𝑤1, 𝑤2, … , 𝑤𝑑 → (0.1, −0.8, … , 0.9)

14

Word Embedding

Document/

a text file
“intelligence” “other layers of a NN”

0

1

0

0

0

0

1

2

|v| -1

|v|

Hidden/

embedding

layer

One-Hot

Vector

0

1

d

15Check online here: https://ronxin.github.io/wevi/

Word Embedding

“intelligence”

0

1

0

0

0

0

1

2

|v| -1

|v|

Hidden/

embedding

layer

One-Hot

Vector

“intelligence” = 0 1 0 … 0 0 ×

0.5 4.6 … 0.9
0.1

:
−0.8

:
… 0.7

:
0.6 0.8 … 0.3
0.3 −0.6 … − 0.8

−0.5 0.5 … 0.1

 1 × 𝑉 ⋅ 𝑉 × 𝑑 ⇒ 1 × 𝑑

0

1

d

16

Check online here: https://ronxin.github.io/wevi/

Word Embedding

“intelligence” = 0 1 0 … 0 0 ×

0.5 4.6 … 0.7
0.1 −0.8 … 0.9
0.6 0.8 … 0.3
0.3 −0.6 … − 0.8

−0.5 0.5 … 0.1

 = [0.1, −0.8, … , 0.9]

17

0.5 4.6 … 0.9
0.1 −0.8 … 0.7
0.6 0.8 … 0.3.

.

.

.

.

.
0.3

.

.

.

.

.

.
−0.6

.

.

.

.

.

.
… − 0.8

−0.5 0.5 … 0.1

Lookup Table

Embedding Weight Matrix

Embedding dimension 𝒏

18

Word
Embedding

https://projector.tensorflow.org/

Word Embedding

0.5 4.6 … 0.9
0.1 −0.8 … 0.7
0.6 0.8 … 0.3.

.

.

.

.

.
0.3

.

.

.

.

.

.
−0.6

.

.

.

.

.

.
… − 0.8

−0.5 0.5 … 0.1

“intelligence”

Lookup Table

Embedding Weight Matrix

Input token

Embedding dimension 𝒅

Vocabulary size

19

Positional Encoding

20

Let’s have a sentence “This is Computer Vision Class” of 𝑛 = 5 sequence length

And each word 𝒙𝒕 (e.g., “Computer”) is represented by an embedding vector of size for

example 𝑑 = 10 (this could be very large number)

That is mathematically t-th word is represented as

𝒙𝒕 ∈ ℝ𝒅

Then the positional encoding will be presented as:

𝑝(𝑝𝑜𝑠, 2𝑖) = 𝑠𝑖𝑛
𝑝𝑜𝑠

100002𝑖/𝑑

𝑝(𝑝𝑜𝑠, 2𝑖 + 1) = 𝑐𝑜𝑠
𝑝𝑜𝑠

100002𝑖/𝑑

For 𝑝𝑜𝑠 = 0, 1, … 𝑛 and 𝑖 = 0,1, …
𝑑

2

Positional Encoding of word: 𝒙𝒕 ∈ ℝ𝒅

21

𝒑𝒑𝒐𝒔 =

sin(𝜔1)
cos(𝜔1)
sin(𝜔2)
cos(𝜔2)

:
:

sin(𝜔𝑑/2)

cos(𝜔𝑑/2)

where

𝜔𝑡
=

𝑝𝑜𝑠

100002𝑖/𝑑

It assign a value relevant to the position of the word in the sentence

Alternating

function and

values

𝑷 =

𝒑𝟎

𝒑𝟏

:
𝒑𝒏

Positional encoding

matrix matrix

𝑛 × 𝑑

Positional Encoding of word: 𝒙𝒕 ∈ ℝ𝒅

22

It assign a value relevant to the position of the word in the sentence

Kazemnejad et al (2024). The impact of positional encoding on length generalization in transformers. NIPS

Positional Encoding of word: 𝒙𝒕 ∈ ℝ𝒅

23

sin(𝜔1 ⋅ 𝑡)

only Sinusoidal

function here because

𝑖 = 2𝑘

to
k
e
n

s

It assign a value relevant to the position of the word in the sentence

Kazemnejad et al (2024). The impact of positional encoding on length generalization in transformers. NIPS

Self-Attention

Vaswani et al. Attention Is All You Need (NIPS 2017) 24

Self-Attention

Attention 𝐐, 𝐊, 𝐕 = softmax
𝐐𝑲𝑇

𝑑𝑘

𝐕

Vaswani et al. Attention Is All You Need (NIPS 2017) 25

Self-Attention

Vaswani et al. Attention Is All You Need (NIPS 2017)

Let’s have a sentence “This is Computer Vision Class” of 𝑛 = 5 sequence length

And each word 𝒙 (e.g., “Computer”) is represented by an embedding vector of size

for example 𝑑 = 10 (this could be very large number)

That is mathematically a word is presented as

𝒙𝒋 ∈ ℝ𝒅

And we have weight matrices

𝐐𝐮𝐞𝐫𝐲 𝐖𝐐 = 𝑑 × 𝑑𝑘 , 𝐊𝐞𝐲 𝐖𝐊 = 𝑑 × 𝑑𝑘 , 𝐕𝐚𝐥𝐮𝐞 𝐖𝐯 = 𝑑 × 𝑑𝑣

Then we perform a liner transformation of the input of 𝒙𝒋 via Query, Key and Value

matrices to obtain Query, Key and Value vectors as:

𝒒𝒊
𝟏×𝒅𝒌 = 𝒙𝒊

𝟏×𝒅 × 𝐖𝐐
𝒅×𝒅𝒌

, 𝒌𝒊
𝟏×𝒅𝒌 = 𝒙𝒊

𝟏×𝒅 × 𝐖𝐊
𝒅×𝒅𝒌

, 𝐚𝐧𝐝 𝒗𝒊
𝟏×𝒅𝒗 = 𝒙𝒊

𝟏×𝒅 × 𝐖𝐕
𝒅×𝒅𝒗

For all words 𝒊 = 𝟏, … , 𝒏 in the sentence.

10 x 2 10 x 210 x 2

1 x 2 1 x 2 1 x 2

26

Self-Attention

Vaswani et al. Attention Is All You Need (NIPS 2017)

We can pack the following Query, Key and Value vectors into a matrix forms:

𝒒𝒊
𝟏×𝒅𝒌 = 𝒙𝒊

𝟏×𝒅 × 𝐖𝐐
𝒅×𝒅𝒌

, 𝒌𝒊
𝟏×𝒅𝒌 = 𝒙𝒊

𝟏×𝒅 × 𝐖𝐊
𝒅×𝒅𝒌

, 𝐚𝐧𝐝 𝒗𝒊
𝟏×𝒅𝒌 = 𝒙𝒊

𝟏×𝒅 × 𝐖𝐕
𝒅×𝒅𝒌

For all words 𝒊 = 𝟏, … , 𝒏 in the sentence.

𝐐 = 𝒒𝟏 𝒒𝟐 … 𝒒𝒏 𝐊 = 𝒌𝟏 𝒌𝟐 … 𝒌𝒏 𝐕 = 𝒗𝟏 𝒗𝟐 … 𝒗𝒏

1 x 2 1 x 2 1 x 2

1 2 5 1 2 5 1 2 5

27

Attention 𝐐, 𝐊, 𝐕 = softmax
𝐐𝑲𝑇

𝑑𝑘

𝐕

Self-Attention
Vaswani et al. Attention Is All You Need (NIPS 2017)

𝒏 is the number of tokens in a sentence

𝐐 =

𝑞1,1 ⋯ 𝑞𝑛,1
𝑞1,2

:
⋱

𝑞𝑛,2

:
𝑞1,𝑑𝑘

⋯ 𝑞𝑛,𝑑𝑘

𝐊 =

𝑘1,1 ⋯ 𝑘𝑛,1

𝑘1,2

:
⋱

𝑘𝑛,2

:
𝑘1,𝑑𝑘

⋯ 𝑘𝑛,𝑑𝑘

𝐐 is a matrix of size 𝑛 × 𝑑𝑘

𝐊 is a matrix of size 𝑛 × 𝑑𝑘

5 x 2

5 x 2

28

Attention 𝐐, 𝐊, 𝐕 = softmax
𝐐𝑲𝑇

𝑑𝑘

𝐕

𝑘1,1 ⋯ 𝑘𝑛,1

𝑘1,2

:
⋱

𝑘𝑛,2

:
𝑘1,𝑑𝑘

⋯ 𝑘𝑛,𝑑𝑘

𝑞1,1 ⋯ 𝑞1,𝑑𝑘

𝑞2,1

:
⋱

𝑞2,𝑑𝑘

:
𝑞𝑛,1 ⋯ 𝑞𝑛,𝑑𝑘

̇

𝒆𝟏,𝟏
𝒆𝟏,𝟐 … 𝒆𝟏,𝒏

𝒆𝟐,𝟏

:

𝒆𝟐,𝟐 …

⋯

𝒆𝟐,𝒏

:
𝒆𝒏,𝟏

𝒆𝒏,𝟐 … 𝒆𝒏,𝒏

alignment scores

dot product

Self-Attention

𝐐 =

𝑞1,1 ⋯ 𝑞𝑛,1
𝑞1,2

:
⋱

𝑞𝑛,2

:
𝑞1,𝑑𝑘

⋯ 𝑞𝑛,𝑑𝑘

𝐊 =

𝑘1,1 ⋯ 𝑘𝑛,1

𝑘1,2

:
⋱

𝑘𝑛,2

:
𝑘1,𝑑𝑘

⋯ 𝑘𝑛,𝑑𝑘

𝐐 is a matrix of size 𝑛 × 𝑑𝑘

𝐊 is a matrix of size 𝑛 × 𝑑𝑘

5 x 2

5 x 2

5 x 2 2 x 5

5 x 5

29

𝒆𝟏,𝟏

𝑑𝑘

𝒆𝟏,𝟐

𝑑𝑘

…
𝒆𝟏,𝒏

𝑑𝑘
𝒆𝟐,𝟏

𝑑𝑘
:

𝒆𝟐,𝟐

𝑑𝑘

…

⋯

𝒆𝟐,𝒏

𝑑𝑘
:

𝒆𝒏,𝟏

𝑑𝑘

𝒆𝒏,𝟐

𝑑𝑘

…
𝒆𝒏,𝒏

𝑑𝑘

Attention 𝐐, 𝐊, 𝐕 = softmax
𝐐𝑲𝑇

𝑑𝑘

𝐕

Scaling of alignment scores

Self-Attention

𝐐 =

𝑞1,1 ⋯ 𝑞𝑛,1
𝑞1,2

:
⋱

𝑞𝑛,2

:
𝑞1,𝑑𝑘

⋯ 𝑞𝑛,𝑑𝑘

𝐊 =

𝑘1,1 ⋯ 𝑘𝑛,1

𝑘1,2

:
⋱

𝑘𝑛,2

:
𝑘1,𝑑𝑘

⋯ 𝑘𝑛,𝑑𝑘

𝐐 is a matrix of size 𝑛 × 𝑑𝑘

𝐊 is a matrix of size 𝑛 × 𝑑𝑘

5 x 5

5 x 2

5 x 2

30

𝒆𝟏,𝟏

𝑑𝑘

−∞ −∞

𝒆𝟐,𝟏

𝑑𝑘
:

𝒆𝟐,𝟐

𝑑𝑘

…

⋯

−∞
:

𝒆𝒏,𝟏

𝑑𝑘

𝒆𝒏,𝟐

𝑑𝑘

…
𝒆𝒏,𝒏

𝑑𝑘

Attention 𝐐, 𝐊, 𝐕 = softmax
𝐐𝑲𝑇

𝑑𝑘

𝐕

Apply Mask (optional)

Self-Attention

𝐐 =

𝑞1,1 ⋯ 𝑞𝑛,1
𝑞1,2

:
⋱

𝑞𝑛,2

:
𝑞1,𝑑𝑘

⋯ 𝑞𝑛,𝑑𝑘

𝐊 =

𝑘1,1 ⋯ 𝑘𝑛,1

𝑘1,2

:
⋱

𝑘𝑛,2

:
𝑘1,𝑑𝑘

⋯ 𝑘𝑛,𝑑𝑘

𝐐 is a matrix of size 𝑛 × 𝑑𝑘

𝐊 is a matrix of size 𝑛 × 𝑑𝑘

5 x 5

5 x 2

5 x 2

31

𝐬𝐨𝐟𝐭𝐦𝐚𝐱
𝒆𝟏,𝟏

𝑑𝑘

 𝟎 … 𝟎

𝐬𝐨𝐟𝐭𝐦𝐚𝐱
𝒆𝟐,𝟏

𝑑𝑘

𝒆𝟐,𝟐

𝑑𝑘

… 𝟎

:

𝐬𝐨𝐟𝐭𝐦𝐚𝐱
𝒆𝒏,𝟏

𝑑𝑘

𝒆𝒏,𝟐

𝑑𝑘

…
𝒆𝒏,𝒏

𝑑𝑘

Attention 𝐐, 𝐊, 𝐕 = softmax
𝐐𝑲𝑇

𝑑𝑘

𝐕

SoftMax of Scaled dot product

Self-Attention

1

𝑑𝑘
 is the scaling factor

𝐐 =

𝑞1,1 ⋯ 𝑞𝑛,1
𝑞1,2

:
⋱

𝑞𝑛,2

:
𝑞1,𝑑𝑘

⋯ 𝑞𝑛,𝑑𝑘

𝐊 =

𝑘1,1 ⋯ 𝑘𝑛,1

𝑘1,2

:
⋱

𝑘𝑛,2

:
𝑘1,𝑑𝑘

⋯ 𝑘𝑛,𝑑𝑘

𝐐 is a matrix of size 𝑛 × 𝑑𝑘

𝐊 is a matrix of size 𝑛 × 𝑑𝑘

5 x 5

5 x 2

5 x 2

32

𝐬𝐨𝐟𝐭𝐦𝐚𝐱
𝒆𝟏,𝟏

𝑑𝑘

 𝟎 … 𝟎

𝐬𝐨𝐟𝐭𝐦𝐚𝐱
𝒆𝟐,𝟏

𝑑𝑘

𝒆𝟐,𝟐

𝑑𝑘

… 𝟎

:

𝐬𝐨𝐟𝐭𝐦𝐚𝐱
𝒆𝒅𝒌,𝟏

𝑑𝑘

𝒆𝒅𝒌,𝟐

𝑑𝑘

…
𝒆𝒅𝒌,𝒅𝒌

𝑑𝑘

⋅

𝑣1,1 ⋯ 𝑣1,𝑑𝑣

𝑣2,1 ⋱ 𝑞2,𝑑𝑣

:
𝑣𝑛,1

⋯
:
𝑣𝑛,𝑑𝑣

Attention 𝐐, 𝐊, 𝐕 = softmax
𝐐𝑲𝑇

𝑑𝑘

𝐕

resulting self-attention weights

𝐕 =

𝑣1,1 ⋯ 𝑣1,𝑑𝑣

𝑣2,1 ⋱ 𝑞2,𝑑𝑣

:
𝑣𝑛,1

⋯
:
𝑣𝑛,𝑑𝑣

𝐕 is a matrix of size 𝑛 × 𝑑𝑣

Self-Attention
Vaswani et al. Attention Is All You Need (NIPS 2017)

𝐐 =

𝑞1,1 ⋯ 𝑞𝑛,1
𝑞1,2

:
⋱

𝑞𝑛,2

:
𝑞1,𝑑𝑘

⋯ 𝑞𝑛,𝑑𝑘

𝐊 =

𝑘1,1 ⋯ 𝑘𝑛,1

𝑘1,2

:
⋱

𝑘𝑛,2

:
𝑘1,𝑑𝑘

⋯ 𝑘𝑛,𝑑𝑘

𝐐 is a matrix of size 𝑛 × 𝑑𝑘

𝐊 is a matrix of size 𝑛 × 𝑑𝑘

5 x 5

5 x 2

5 x 2
5 x 2

5 x 2

33

𝑎1,1 ⋯ 𝑎1,𝑑𝑣

𝑎2,1 ⋱ 𝑎2,𝑑𝑣

:
𝑎𝑛,1

⋯
:
𝑎𝑛,𝑑𝑣

Attention 𝐐, 𝐊, 𝐕 = softmax
𝐐𝑲𝑇

𝑑𝑘

𝐕

resulting self-attention weights

𝐕 =

𝑣1,1 ⋯ 𝑣1,𝑑𝑣

𝑣2,1 ⋱ 𝑞2,𝑑𝑣

:
𝑣𝑑,1

⋯
:
𝑣𝑑,𝑑𝑣

𝐕 is a matrix of size 𝑑 × 𝑑𝑣

Self-Attention
Vaswani et al. Attention Is All You Need (NIPS 2017)

𝐐 =

𝑞1,1 ⋯ 𝑞𝑛,1
𝑞1,2

:
⋱

𝑞𝑛,2

:
𝑞1,𝑑𝑘

⋯ 𝑞𝑛,𝑑𝑘

𝐊 =

𝑘1,1 ⋯ 𝑘𝑛,1

𝑘1,2

:
⋱

𝑘𝑛,2

:
𝑘1,𝑑𝑘

⋯ 𝑘𝑛,𝑑𝑘

𝐐 is a matrix of size 𝑛 × 𝑑𝑘

𝐊 is a matrix of size 𝑛 × 𝑑𝑘

5 x 2

𝐇𝐞𝐚𝐝𝟏 =

34

Multi Head Self-Attention
Vaswani et al. Attention Is All You Need (NIPS 2017)

MultiHead 𝐐, 𝐊, 𝐕
= Concat Head1, Head2, ⋯ , Headh 𝐖𝐎𝐮𝐭

35

36

Attention Map

37

A Mathematical Framework for Transformer Circuitshttps://transformer-circuits.pub/2021/framework/index.html

How Query and Key might work

38

A Mathematical Framework for Transformer Circuitshttps://transformer-circuits.pub/2021/framework/index.html

The query searches for "similar" key vectors, but because keys are shifted, it finds the next token.

Source: https://community.deeplearning.ai/t/w4-a1-is-there-a-typo-in-multi-head-attention-slides/135478
39

Transformer Visualisations &
Explainers (Online Resources)

• https://bbycroft.net/llm

• https://poloclub.github.io/transformer-explainer/

• https://jalammar.github.io/illustrated-transformer/ 40

https://bbycroft.net/llm
https://poloclub.github.io/transformer-explainer/
https://jalammar.github.io/illustrated-transformer/

41

Convolutional Neural Nets

[Input - Convolution - RELU - POOLING - Fully Connected - Output]

height

width

42

3×3 convolution layer and the
3×3 local relation layer
Hu et al. (2019). Local relation networks for image recognition. ICCV

43

Convolutional Nets Vs Transformer

3 × 3 convolution.

The output is the inner product

between the local window and

the learned weights
Self-attention around image local region

The output is local self attention

Ramachandran et al. Stand-alone self-attention in vision models. NIPS 2019

44

Standalone Self-attention in Vision Models

Image Conv Pool Conv FC CLS Image Attention MLP CLSAttention MLP Attention MLP

Ramachandran et al. Stand-alone self-attention in vision models. NIPS 2019

45

Convolutional Nets Vs Transformers

Check Latest Models Here: https://paperswithcode.com/sota/image-classification-on-cifar-10 46

https://paperswithcode.com/sota/image-classification-on-cifar-10

How Vision Transformer Models Works

Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR 2017
47

Splitting an Image into Patches

a patch

a patch

MIST dataset

Split the image into patches, each of size (H’xW’xD)

48

Flatten

array (n-

dim)

 Patches

Linear mapping
Linear projection to D-dimensional vector

Linear

Mapping

h-dim

Flatten pixels of the patch Mapping dimension

∑𝑥𝑊 + 𝑏

49

Positional Encoding

Linear

Mapping

h-dim

Inform the model where the patch’s position in the image is. In other word use sine and cosine

values for respective patch number

Flatten

array (n-

dim)

 Patches 50

Positional Encoding and Vectors

Linear

Mapping

h-dim

Inform the model where the patch’s position in the image is. In other word use sine and cosine

values for respective patch number

Flatten

array (n-

dim)

 Patches 51

Patches

Flatten

the array

(n-dim)

Add a Learnable Classification Token

Linear

Mapping

h-dim

Transformer Encoder

52

Patches

Flatten

the array

(n-dim)

Output vector of Transformer Encoder

Linear

Mapping

h-dim

Transformer Encoder

53

Same as ChatGPT Transformer

Patches

Flatten

the array

(n-dim)

Linear

Mapping

h-dim

Transformer Encoder

Classification

54

Same as ChatGPT Transformer

Patches

Flatten the

array (n-

dim)

Linear

Mapping

h-dim

Transformer Encoder

Classification

Multi Head Attention

55

Same as ChatGPT Transformer

Patches

Flatten

the array

(n-dim)

Linear

Mapping

h-dim

Transformer Encoder

Classificat

ion

Multi Head Attention

Attention 𝐐, 𝐊, 𝐕 = softmax
𝐐𝑲𝑇

𝑑𝑘

𝐕

Self-attention

56

ViT Performance

Check Latest Models Here: https://paperswithcode.com/sota/image-classification-on-cifar-10

Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR 2017

ResNet (BiT)

Note that this

performance is only

achieved when ViT is

pre-trained on large

dataset (in this case

JFT-300M is a 300

million image dataset of

Google)

57

https://paperswithcode.com/sota/image-classification-on-cifar-10

ViT on CIFAR-10 (without Pre-Training)

Source: https://github.com/ShivamRajSharma/Vision-Transformer?tab=readme-ov-file

Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR 2017

ResNet (BiT)

Note that the

performance depends

on hyper parameter

tuning models' size etc.

58

ViT Performance

• Worse than ResNet when trained just on ImageNet

• Performance improved when pre-trained on very large dataset

• Pretrained outperforms much bigger CNNs

• You need large GPUs (Computational Cost is very high)

59

Coursework Brief (Part III)

Implement Convolutional Neural Networks (specifically using VGG16) on
CIFAR-10 dataset and solve following three problems:

• For the training use early stopping and save the model that produce best
validation results. (you will need to use some of training data as validation
set) [Marks 10: 5+3+2]

• What would be the performance of VGG16 with or without batch
normalization to it. Show using a convergence graph [Marks 10: 5+5]

• Visualise the Convolutional Features / Filters. This could be done by using
imshow or similar methods. Show how filters features changes over
different layers over a test image. [Marks 20: 10+10]

60

More details to be released this week (before Practical Session)

	Slide 1: (Vision) Transformers
	Slide 2: Apple is sweet Apple is fast
	Slide 3: Learning objectives (Vision Transformer)
	Slide 4: Content of this week (ViT)
	Slide 5: Word Embedding
	Slide 6: Word Embedding
	Slide 7: Word Embedding: Word goes to Integer
	Slide 8: Word Embedding: Integer goes to Word
	Slide 9: One-Hot Encoding
	Slide 10: Similarity between words?
	Slide 11: Similarity between words?
	Slide 12: t-SNE visualisation of words
	Slide 13: t-SNE visualisation
	Slide 14: Word Embedding: Objective
	Slide 15: Word Embedding
	Slide 16: Word Embedding
	Slide 17: Word Embedding
	Slide 18: Word Embedding
	Slide 19: Word Embedding
	Slide 20: Positional Encoding
	Slide 21: Positional Encoding of word: bold italic x sub bold italic t element of , double-struck cap R to the bold italic d
	Slide 22: Positional Encoding of word: bold italic x sub bold italic t element of , double-struck cap R to the bold italic d
	Slide 23: Positional Encoding of word: bold italic x sub bold italic t element of , double-struck cap R to the bold italic d
	Slide 24: Self-Attention
	Slide 25: Self-Attention
	Slide 26: Self-Attention
	Slide 27: Self-Attention
	Slide 28: Self-Attention
	Slide 29: Self-Attention
	Slide 30: Self-Attention
	Slide 31: Self-Attention
	Slide 32: Self-Attention
	Slide 33: Self-Attention
	Slide 34: Self-Attention
	Slide 35: Multi Head Self-Attention
	Slide 36
	Slide 37: Attention Map
	Slide 38: How Query and Key might work
	Slide 39
	Slide 40: Transformer Visualisations & Explainers (Online Resources)
	Slide 41
	Slide 42: Convolutional Neural Nets
	Slide 43: 3×3 convolution layer and the 3×3 local relation layer
	Slide 44: Convolutional Nets Vs Transformer
	Slide 45: Standalone Self-attention in Vision Models
	Slide 46: Convolutional Nets Vs Transformers
	Slide 47: How Vision Transformer Models Works
	Slide 48: Splitting an Image into Patches
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57: ViT Performance
	Slide 58: ViT on CIFAR-10 (without Pre-Training)
	Slide 59: ViT Performance
	Slide 60: Coursework Brief (Part III)

