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Apple is sweet

Apple is fast



Learning objectives (Vision Transformer)

By the end of this week, you will be able to:

• Learn the concepts of Transformer Models

• Understand the Self-Attention Mechanisms (the basic building 

block of Transformers)

• Understand an image classification using Vision Transformers
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Content of this week (ViT)  
• Part 1: Self-Attention Block

• Basic concept of Transformers

• Word Embedding

• Self-Attention Mechanism

• Part 2: Vision Transformer

• Basic concept of Vision Transformers

• Architecture of a Vision Transformer

• Performance of Vision Transformer
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Word Embedding

Given a word 𝑊 (e.g. “intelligence”) we want 𝑊 to be a real vector 
of dimension 𝑑. Dimension 𝑑 is also called word embedding 
dimension. 

𝑾: words → ℝ𝑑

“intelligence” → 𝑤1, 𝑤2, … , 𝑤𝑑 → (0.1, −0.8, … , 0.9)
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Word Embedding

𝑊1 = “I love artificial intelligence”

𝑊2 = “I like computational intelligence”

We create a vocabulary 𝑉 collecting all unique words.

𝑉 = {“I”, “love”, “like”, “artificial”, “computational”, “intelligence”}

For this example, vocabulary size 𝑉 = 6    
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Word Embedding: Word → Integer 

𝑉 = {“I”, “love”, “artificial”, “computational”, “intelligence”, “like”}

I → 0 

love → 1

like → 2

artificial → 3

computational → 4

intelligence → 5
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Word Embedding: Integer → Word

𝑉 = {“I”, “love”, “artificial”, “computational”, “intelligence”, “like”}

0 → I 

1 → love

2 → like

3 → artificial

4 → computational

5 → intelligence      
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One-Hot Encoding

𝑉 = {“I”, “love”, “like”, “artificial”, “computational”, “intelligence”}

“I” =  

𝟏
𝟎
𝟎
𝟎
𝟎
𝟎

 “love” =  

𝟎
𝟏
𝟎
𝟎
𝟎
𝟎

 “like” =  

𝟎
𝟎
𝟏
𝟎
𝟎
𝟎

 “artificial” =  

𝟎
𝟎
𝟎
𝟏
𝟎
𝟎

 

“intelligence” =  

𝟎
𝟎
𝟎
𝟎
𝟎
𝟏

 “computational” =  

𝟎
𝟎
𝟎
𝟎
𝟏
𝟎
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Similarity between words?

“love”

“I”
“like”

“artificial”

“computational”

“intelligence”

Objective is to place similar words close to each other 
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Similarity between words?

“love”

“I”
“like”

“artificial”

“computational”

“intelligence”

Objective is to place similar words close to each other 

cos 𝜃 =
𝐴 ⋅ 𝐵

𝐴 ⋅ 𝐵
𝜃

𝜃 large for dissimilar words
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t-SNE visualisation of words
Turian et al. (2010)
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t-SNE visualisation
Example Source:

https://towardsdatascience.com/text-classification-in-python-dd95d264c802 

politics
All similar topics 

are closer to 

each other
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Word Embedding: Objective

Given a word 𝑊 (e.g. “intelligence”) we want to 𝑊 a real vector of 
dimension 𝑑

𝑾: words → ℝ𝑑

“intelligence” → 𝑤1, 𝑤2, … , 𝑤𝑑 → (0.1, −0.8, … , 0.9)
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Word Embedding

Document/ 

a text file
“intelligence” “other layers of a NN”
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Word Embedding

“intelligence”

0

1

0

0

0

0

1

2

|v| -1

|v|

Hidden/ 

embedding 

layer

One-Hot 

Vector

“intelligence” = 0 1 0 … 0 0 ×  

0.5 4.6 …  0.9
0.1

:
−0.8

:
…  0.7

:
0.6 0.8 …  0.3
0.3 −0.6 … − 0.8

−0.5 0.5 …  0.1

 

  
                       1 × 𝑉 ⋅ 𝑉 × 𝑑  ⇒ 1 × 𝑑  

0

1

d
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Word Embedding

“intelligence” = 0 1 0 … 0 0 ×  

0.5 4.6 …  0.7
0.1 −0.8 …  0.9
0.6 0.8 …  0.3
0.3 −0.6 … − 0.8

−0.5 0.5 …  0.1

 

   = [0.1, −0.8, … , 0.9 ] 
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0.5 4.6 …  0.9
0.1 −0.8 …  0.7
0.6 0.8 …  0.3.

.

.

.

.

.
0.3

.

.

.

.

.

.
−0.6

.

.

.

.

.

.
… − 0.8

−0.5 0.5 …  0.1

 

Lookup Table

Embedding Weight Matrix

Embedding dimension 𝒏
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Word Embedding

 

0.5 4.6 …  0.9
0.1 −0.8 …  0.7
0.6 0.8 …  0.3.

.

.

.

.

.
0.3

.

.

.

.

.

.
−0.6

.

.

.

.

.

.
… − 0.8

−0.5 0.5 …  0.1

 
“intelligence”

Lookup Table

Embedding Weight Matrix

Input token

Embedding dimension 𝒅

Vocabulary size
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Positional Encoding

20

Let’s have a sentence “This is Computer Vision Class” of 𝑛 =  5 sequence length 

And each word 𝒙𝒕 (e.g., “Computer”) is represented by an embedding vector of size for 

example 𝑑 = 10 (this could be very large number)

That is mathematically t-th word is represented as 

𝒙𝒕 ∈  ℝ𝒅 

Then the positional encoding will be presented as:

𝑝(𝑝𝑜𝑠, 2𝑖)  = 𝑠𝑖𝑛
𝑝𝑜𝑠

100002𝑖/𝑑

𝑝(𝑝𝑜𝑠, 2𝑖 + 1)  = 𝑐𝑜𝑠
𝑝𝑜𝑠

100002𝑖/𝑑

For 𝑝𝑜𝑠 = 0, 1, … 𝑛 and 𝑖 = 0,1, …
𝑑
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Positional Encoding of word: 𝒙𝒕 ∈  ℝ𝒅 

21

𝒑𝒑𝒐𝒔 =

sin(𝜔1)
cos(𝜔1)
sin(𝜔2)
cos(𝜔2)

:
:

sin(𝜔𝑑/2)

cos(𝜔𝑑/2)

where

𝜔𝑡 
=

𝑝𝑜𝑠

100002𝑖/𝑑

It assign a value relevant to the position of the word in the sentence

Alternating 

function and 

values

𝑷 =

𝒑𝟎

𝒑𝟏

:
𝒑𝒏

Positional encoding 

matrix matrix

𝑛 ×  𝑑



Positional Encoding of word: 𝒙𝒕 ∈  ℝ𝒅 

22

It assign a value relevant to the position of the word in the sentence

Kazemnejad et al (2024). The impact of positional encoding on length generalization in transformers. NIPS



Positional Encoding of word: 𝒙𝒕 ∈  ℝ𝒅 

23

sin(𝜔1 ⋅ 𝑡)

only Sinusoidal 

function here because 

𝑖 =  2𝑘

to
k
e
n

s

It assign a value relevant to the position of the word in the sentence

Kazemnejad et al (2024). The impact of positional encoding on length generalization in transformers. NIPS



Self-Attention

Vaswani et al. Attention Is All You Need (NIPS 2017) 24



Self-Attention

Attention 𝐐, 𝐊, 𝐕 = softmax
𝐐𝑲𝑇

𝑑𝑘

𝐕

Vaswani et al. Attention Is All You Need (NIPS 2017) 25



Self-Attention

Vaswani et al. Attention Is All You Need (NIPS 2017)

Let’s have a sentence “This is Computer Vision Class” of 𝑛 =  5 sequence length 

And each word 𝒙 (e.g., “Computer”) is represented by an embedding vector of size 

for example 𝑑 = 10 (this could be very large number)

That is mathematically a word is presented as 

𝒙𝒋 ∈  ℝ𝒅 

And we have weight matrices  

𝐐𝐮𝐞𝐫𝐲 𝐖𝐐 = 𝑑 × 𝑑𝑘 , 𝐊𝐞𝐲 𝐖𝐊 = 𝑑 × 𝑑𝑘 ,  𝐕𝐚𝐥𝐮𝐞 𝐖𝐯 = 𝑑 × 𝑑𝑣

Then we perform a liner transformation of the input of 𝒙𝒋 via Query, Key and Value 

matrices to obtain Query, Key and Value vectors as: 

𝒒𝒊
𝟏×𝒅𝒌 = 𝒙𝒊

𝟏×𝒅 × 𝐖𝐐
𝒅×𝒅𝒌 

,  𝒌𝒊
𝟏×𝒅𝒌 = 𝒙𝒊

𝟏×𝒅 × 𝐖𝐊
𝒅×𝒅𝒌 

, 𝐚𝐧𝐝 𝒗𝒊
𝟏×𝒅𝒗 = 𝒙𝒊

𝟏×𝒅 × 𝐖𝐕
𝒅×𝒅𝒗 

For all words 𝒊 = 𝟏, … , 𝒏 in the sentence.

10 x 2 10 x 210 x 2

1 x 2 1 x 2 1 x 2
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Self-Attention

Vaswani et al. Attention Is All You Need (NIPS 2017)

We can pack the following Query, Key and Value vectors into a matrix forms:

𝒒𝒊
𝟏×𝒅𝒌 = 𝒙𝒊

𝟏×𝒅 × 𝐖𝐐
𝒅×𝒅𝒌 

,  𝒌𝒊
𝟏×𝒅𝒌 = 𝒙𝒊

𝟏×𝒅 × 𝐖𝐊
𝒅×𝒅𝒌 

, 𝐚𝐧𝐝 𝒗𝒊
𝟏×𝒅𝒌 = 𝒙𝒊

𝟏×𝒅 × 𝐖𝐕
𝒅×𝒅𝒌 

For all words 𝒊 = 𝟏, … , 𝒏 in the sentence.

𝐐 = 𝒒𝟏 𝒒𝟐 … 𝒒𝒏 𝐊 = 𝒌𝟏 𝒌𝟐 … 𝒌𝒏 𝐕 = 𝒗𝟏 𝒗𝟐 … 𝒗𝒏

1 x 2 1 x 2 1 x 2

1     2             5 1     2             5 1     2             5
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Attention 𝐐, 𝐊, 𝐕 = softmax
𝐐𝑲𝑇

𝑑𝑘

𝐕

Self-Attention
Vaswani et al. Attention Is All You Need (NIPS 2017)

𝒏 is the number of tokens in a sentence

𝐐 =

𝑞1,1 ⋯ 𝑞𝑛,1
𝑞1,2

:
⋱

𝑞𝑛,2

:
𝑞1,𝑑𝑘

⋯ 𝑞𝑛,𝑑𝑘

𝐊 =

𝑘1,1 ⋯ 𝑘𝑛,1

𝑘1,2

:
⋱

𝑘𝑛,2

:
𝑘1,𝑑𝑘

⋯ 𝑘𝑛,𝑑𝑘

𝐐 is a matrix of size 𝑛 × 𝑑𝑘

𝐊 is a matrix of  size 𝑛 × 𝑑𝑘

5 x 2

5 x 2
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Attention 𝐐, 𝐊, 𝐕 = softmax
𝐐𝑲𝑇

𝑑𝑘

𝐕

𝑘1,1 ⋯ 𝑘𝑛,1

𝑘1,2

:
⋱

𝑘𝑛,2

:
𝑘1,𝑑𝑘

⋯ 𝑘𝑛,𝑑𝑘

𝑞1,1 ⋯ 𝑞1,𝑑𝑘

𝑞2,1

:
⋱

𝑞2,𝑑𝑘

:
𝑞𝑛,1 ⋯ 𝑞𝑛,𝑑𝑘

̇

𝒆𝟏,𝟏
𝒆𝟏,𝟐 … 𝒆𝟏,𝒏

𝒆𝟐,𝟏

:

𝒆𝟐,𝟐 …

⋯

𝒆𝟐,𝒏

:
𝒆𝒏,𝟏

𝒆𝒏,𝟐 … 𝒆𝒏,𝒏

alignment scores

dot product

Self-Attention

𝐐 =

𝑞1,1 ⋯ 𝑞𝑛,1
𝑞1,2

:
⋱

𝑞𝑛,2

:
𝑞1,𝑑𝑘

⋯ 𝑞𝑛,𝑑𝑘

𝐊 =

𝑘1,1 ⋯ 𝑘𝑛,1

𝑘1,2

:
⋱

𝑘𝑛,2

:
𝑘1,𝑑𝑘

⋯ 𝑘𝑛,𝑑𝑘

𝐐 is a matrix of size 𝑛 × 𝑑𝑘

𝐊 is a matrix of  size 𝑛 × 𝑑𝑘

5 x 2

5 x 2

5 x 2 2 x 5

5 x 5
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𝒆𝟏,𝟏

𝑑𝑘

𝒆𝟏,𝟐

𝑑𝑘

…
𝒆𝟏,𝒏

𝑑𝑘
𝒆𝟐,𝟏

𝑑𝑘
:

𝒆𝟐,𝟐

𝑑𝑘

…

⋯

𝒆𝟐,𝒏

𝑑𝑘
:

𝒆𝒏,𝟏

𝑑𝑘

𝒆𝒏,𝟐

𝑑𝑘

…
𝒆𝒏,𝒏

𝑑𝑘

Attention 𝐐, 𝐊, 𝐕 = softmax
𝐐𝑲𝑇

𝑑𝑘

𝐕

Scaling of alignment scores

Self-Attention

𝐐 =

𝑞1,1 ⋯ 𝑞𝑛,1
𝑞1,2

:
⋱

𝑞𝑛,2

:
𝑞1,𝑑𝑘

⋯ 𝑞𝑛,𝑑𝑘

𝐊 =

𝑘1,1 ⋯ 𝑘𝑛,1

𝑘1,2

:
⋱

𝑘𝑛,2

:
𝑘1,𝑑𝑘

⋯ 𝑘𝑛,𝑑𝑘

𝐐 is a matrix of size 𝑛 × 𝑑𝑘

𝐊 is a matrix of  size 𝑛 × 𝑑𝑘

5 x 5

5 x 2

5 x 2
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𝒆𝟏,𝟏

𝑑𝑘

−∞ −∞

𝒆𝟐,𝟏

𝑑𝑘
:

𝒆𝟐,𝟐

𝑑𝑘

…

⋯

−∞
:

𝒆𝒏,𝟏

𝑑𝑘

𝒆𝒏,𝟐

𝑑𝑘

…
𝒆𝒏,𝒏

𝑑𝑘

Attention 𝐐, 𝐊, 𝐕 = softmax
𝐐𝑲𝑇

𝑑𝑘

𝐕

Apply Mask (optional)

Self-Attention

𝐐 =

𝑞1,1 ⋯ 𝑞𝑛,1
𝑞1,2

:
⋱

𝑞𝑛,2

:
𝑞1,𝑑𝑘

⋯ 𝑞𝑛,𝑑𝑘

𝐊 =

𝑘1,1 ⋯ 𝑘𝑛,1

𝑘1,2

:
⋱

𝑘𝑛,2

:
𝑘1,𝑑𝑘

⋯ 𝑘𝑛,𝑑𝑘

𝐐 is a matrix of size 𝑛 × 𝑑𝑘

𝐊 is a matrix of  size 𝑛 × 𝑑𝑘

5 x 5

5 x 2

5 x 2
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𝐬𝐨𝐟𝐭𝐦𝐚𝐱
𝒆𝟏,𝟏

𝑑𝑘

 𝟎 … 𝟎

𝐬𝐨𝐟𝐭𝐦𝐚𝐱
𝒆𝟐,𝟏

𝑑𝑘

𝒆𝟐,𝟐

𝑑𝑘

…  𝟎

: 

𝐬𝐨𝐟𝐭𝐦𝐚𝐱
𝒆𝒏,𝟏

𝑑𝑘

𝒆𝒏,𝟐

𝑑𝑘

…
𝒆𝒏,𝒏

𝑑𝑘

Attention 𝐐, 𝐊, 𝐕 = softmax
𝐐𝑲𝑇

𝑑𝑘

𝐕

SoftMax of Scaled dot product

Self-Attention

1

𝑑𝑘
 is the scaling factor

𝐐 =

𝑞1,1 ⋯ 𝑞𝑛,1
𝑞1,2

:
⋱

𝑞𝑛,2

:
𝑞1,𝑑𝑘

⋯ 𝑞𝑛,𝑑𝑘

𝐊 =

𝑘1,1 ⋯ 𝑘𝑛,1

𝑘1,2

:
⋱

𝑘𝑛,2

:
𝑘1,𝑑𝑘

⋯ 𝑘𝑛,𝑑𝑘

𝐐 is a matrix of size 𝑛 × 𝑑𝑘

𝐊 is a matrix of  size 𝑛 × 𝑑𝑘

5 x 5

5 x 2

5 x 2
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𝐬𝐨𝐟𝐭𝐦𝐚𝐱
𝒆𝟏,𝟏

𝑑𝑘

 𝟎 … 𝟎

𝐬𝐨𝐟𝐭𝐦𝐚𝐱
𝒆𝟐,𝟏

𝑑𝑘

𝒆𝟐,𝟐

𝑑𝑘

…  𝟎

: 

𝐬𝐨𝐟𝐭𝐦𝐚𝐱
𝒆𝒅𝒌,𝟏

𝑑𝑘

𝒆𝒅𝒌,𝟐

𝑑𝑘

…
𝒆𝒅𝒌,𝒅𝒌

𝑑𝑘

⋅

𝑣1,1 ⋯ 𝑣1,𝑑𝑣

𝑣2,1 ⋱ 𝑞2,𝑑𝑣

:
𝑣𝑛,1

⋯
:
𝑣𝑛,𝑑𝑣

Attention 𝐐, 𝐊, 𝐕 = softmax
𝐐𝑲𝑇

𝑑𝑘

𝐕

resulting self-attention weights

𝐕 =

𝑣1,1 ⋯ 𝑣1,𝑑𝑣

𝑣2,1 ⋱ 𝑞2,𝑑𝑣

:
𝑣𝑛,1

⋯
:
𝑣𝑛,𝑑𝑣

𝐕 is a matrix of size 𝑛 × 𝑑𝑣

Self-Attention
Vaswani et al. Attention Is All You Need (NIPS 2017)

𝐐 =

𝑞1,1 ⋯ 𝑞𝑛,1
𝑞1,2

:
⋱

𝑞𝑛,2

:
𝑞1,𝑑𝑘

⋯ 𝑞𝑛,𝑑𝑘

𝐊 =

𝑘1,1 ⋯ 𝑘𝑛,1

𝑘1,2

:
⋱

𝑘𝑛,2

:
𝑘1,𝑑𝑘

⋯ 𝑘𝑛,𝑑𝑘

𝐐 is a matrix of size 𝑛 × 𝑑𝑘

𝐊 is a matrix of  size 𝑛 × 𝑑𝑘

5 x 5

5 x 2

5 x 2
5 x 2

5 x 2

33



𝑎1,1 ⋯ 𝑎1,𝑑𝑣

𝑎2,1 ⋱ 𝑎2,𝑑𝑣

:
𝑎𝑛,1

⋯
:
𝑎𝑛,𝑑𝑣

Attention 𝐐, 𝐊, 𝐕 = softmax
𝐐𝑲𝑇

𝑑𝑘

𝐕

resulting self-attention weights

𝐕 =

𝑣1,1 ⋯ 𝑣1,𝑑𝑣

𝑣2,1 ⋱ 𝑞2,𝑑𝑣

:
𝑣𝑑,1

⋯
:
𝑣𝑑,𝑑𝑣

𝐕 is a matrix of size 𝑑 × 𝑑𝑣

Self-Attention
Vaswani et al. Attention Is All You Need (NIPS 2017)

𝐐 =

𝑞1,1 ⋯ 𝑞𝑛,1
𝑞1,2

:
⋱

𝑞𝑛,2

:
𝑞1,𝑑𝑘

⋯ 𝑞𝑛,𝑑𝑘

𝐊 =

𝑘1,1 ⋯ 𝑘𝑛,1

𝑘1,2

:
⋱

𝑘𝑛,2

:
𝑘1,𝑑𝑘

⋯ 𝑘𝑛,𝑑𝑘

𝐐 is a matrix of size 𝑛 × 𝑑𝑘

𝐊 is a matrix of  size 𝑛 × 𝑑𝑘

5 x 2

𝐇𝐞𝐚𝐝𝟏 = 
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Multi Head Self-Attention
Vaswani et al. Attention Is All You Need (NIPS 2017)

MultiHead 𝐐, 𝐊, 𝐕
=  Concat Head1, Head2, ⋯ , Headh  𝐖𝐎𝐮𝐭
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Attention Map

37

A Mathematical Framework for Transformer Circuitshttps://transformer-circuits.pub/2021/framework/index.html



How Query and Key might work

38

A Mathematical Framework for Transformer Circuitshttps://transformer-circuits.pub/2021/framework/index.html

The query searches for "similar" key vectors, but because keys are shifted, it finds the next token.



Source: https://community.deeplearning.ai/t/w4-a1-is-there-a-typo-in-multi-head-attention-slides/135478
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Transformer Visualisations & 
Explainers (Online Resources)

• https://bbycroft.net/llm

• https://poloclub.github.io/transformer-explainer/ 

• https://jalammar.github.io/illustrated-transformer/ 40

https://bbycroft.net/llm
https://poloclub.github.io/transformer-explainer/
https://jalammar.github.io/illustrated-transformer/
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Convolutional Neural Nets

[Input           -             Convolution   -        RELU           -       POOLING   -   Fully Connected -    Output]   

height

width
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3×3 convolution layer and the 
3×3 local relation layer
Hu et al. (2019). Local relation networks for image recognition. ICCV
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Convolutional Nets Vs Transformer

3 × 3 convolution. 

The output is the inner product 

between the local window and 

the learned weights
Self-attention around image local region

The output is local self attention

Ramachandran et al. Stand-alone self-attention in vision models. NIPS 2019
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Standalone Self-attention in Vision Models

Image Conv Pool Conv FC CLS Image Attention MLP CLSAttention MLP Attention MLP

Ramachandran et al. Stand-alone self-attention in vision models. NIPS 2019
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Convolutional Nets Vs Transformers

Check Latest Models Here: https://paperswithcode.com/sota/image-classification-on-cifar-10 46

https://paperswithcode.com/sota/image-classification-on-cifar-10


How Vision Transformer Models Works

Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,  ICLR 2017
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Splitting an Image into Patches

a patch

a patch

MIST dataset

Split the image into patches, each of size (H’xW’xD)
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Flatten 

array (n-

dim)

 Patches

Linear mapping
Linear projection to D-dimensional vector

Linear 

Mapping

h-dim

Flatten pixels of the patch Mapping dimension

∑𝑥𝑊 + 𝑏
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Positional Encoding

Linear 

Mapping

h-dim

Inform the model where the patch’s position in the image is. In other word use sine and cosine 

values for respective patch number

Flatten 

array (n-

dim)

 Patches 50



Positional Encoding and Vectors

Linear 

Mapping

h-dim

Inform the model where the patch’s position in the image is. In other word use sine and cosine 

values for respective patch number

Flatten 

array (n-

dim)

 Patches 51



Patches

Flatten 

the array 

(n-dim)

Add a Learnable Classification Token

Linear 

Mapping

h-dim

Transformer Encoder
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Patches

Flatten 

the array 

(n-dim)

Output vector of Transformer Encoder

Linear 

Mapping

h-dim

Transformer Encoder
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Same as ChatGPT Transformer 

Patches

Flatten 

the array 

(n-dim)

Linear 

Mapping

h-dim

Transformer Encoder

Classification
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Same as ChatGPT Transformer 

Patches

Flatten the 

array (n-

dim)

Linear 

Mapping

h-dim

Transformer Encoder

Classification

Multi Head Attention
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Same as ChatGPT Transformer 

Patches

Flatten 

the array 

(n-dim)

Linear 

Mapping

h-dim

Transformer Encoder

Classificat

ion

Multi Head Attention

Attention 𝐐, 𝐊, 𝐕 = softmax
𝐐𝑲𝑇

𝑑𝑘

𝐕

Self-attention
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ViT Performance 

Check Latest Models Here: https://paperswithcode.com/sota/image-classification-on-cifar-10 

Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,  ICLR 2017

ResNet (BiT)

Note that this 

performance is only 

achieved when ViT is 

pre-trained on large 

dataset (in this case 

JFT-300M is a 300 

million image dataset of 

Google)

57

https://paperswithcode.com/sota/image-classification-on-cifar-10


ViT on CIFAR-10 (without Pre-Training) 

Source: https://github.com/ShivamRajSharma/Vision-Transformer?tab=readme-ov-file

Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,  ICLR 2017

ResNet (BiT)

Note that the 

performance depends 

on hyper parameter 

tuning models' size etc.
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ViT Performance

• Worse than ResNet when trained just on ImageNet

• Performance improved when pre-trained on very large dataset

• Pretrained outperforms much bigger CNNs

• You need large GPUs (Computational Cost is very high)

59



Coursework Brief (Part III)

Implement Convolutional Neural Networks (specifically using VGG16) on 
CIFAR-10 dataset and solve following three problems:

• For the training use early stopping and save the model that produce best 
validation results. (you will need to use some of training data as validation 
set) [Marks 10: 5+3+2]

• What would be the performance of VGG16 with or without batch 
normalization to it. Show using a convergence graph [Marks 10: 5+5] 

• Visualise the Convolutional Features / Filters. This could be done by using 
imshow or similar methods.  Show how filters features changes over 
different layers over a test image. [Marks 20: 10+10] 

60

More details to be released this week (before Practical Session)
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