(Vision) Transformers

Computer Vision and Artificial Intelligence

> Dr Varun Ojha varun.ojha@ncl.ac.uk

School of Computing Newcastle University

Apple is sweet

Apple is fast

Learning objectives (Vision Transformer)

By the end of this week, you will be able to:

- Learn the concepts of Transformer Models
- Understand the Self-Attention Mechanisms (the basic building block of Transformers)
- Understand an image classification using Vision Transformers

Content of this week (ViT)

- Part 1: Self-Attention Block
 - Basic concept of Transformers
 - Word Embedding
 - Self-Attention Mechanism
- Part 2: Vision Transformer
 - Basic concept of Vision Transformers
 - Architecture of a Vision Transformer
 - Performance of Vision Transformer

Given a word W (e.g. "intelligence") we want W to be a real vector of dimension d. Dimension d is also called word embedding dimension.

W: words $\rightarrow \mathbb{R}^d$

"intelligence"
$$\rightarrow (w_1, w_2, ..., w_d) \rightarrow (0.1, -0.8, ..., 0.9)$$

 $W_1 =$ "I love artificial intelligence" $W_2 =$ "I like computational intelligence"

We create a vocabulary V collecting all unique words.

V = {"I", "love", "like", "artificial", "computational", "intelligence"}

For this example, vocabulary size |V| = 6

Word Embedding: Word → Integer

V = {"I", "love", "artificial", "computational", "intelligence", "like"}

- $I \rightarrow 0$
- love \rightarrow 1
- like $\rightarrow 2$
- artificial \rightarrow 3
- computational $\rightarrow 4$
 - intelligence $\rightarrow 5$

Word Embedding: Integer → Word

- V = {"I", "love", "artificial", "computational", "intelligence", "like"}
- $0 \rightarrow I$
- $1 \rightarrow \text{love}$
- $2 \rightarrow like$
- $3 \rightarrow artificial$
- $4 \rightarrow computational$
- $5 \rightarrow intelligence$

One-Hot Encoding

V = {"I", "love", "like", "artificial", "computational", "intelligence"}

Similarity between words?

Objective is to place similar words close to each other

Similarity between words?

Objective is to place similar words close to each other

t-SNE visualisation of words

Turian *et al.* (2010)

t-SNE visualisation

Example Source:

t-SNE decomposition

Word Embedding: Objective

Given a word W (e.g. "intelligence") we want to W a real vector of dimension d

W: words $\rightarrow \mathbb{R}^d$

"intelligence" $\rightarrow (w_1, w_2, ..., w_d) \rightarrow (0.1, -0.8, ..., 0.9)$

Check online here: https://ronxin.github.io/wevi/

milk

rice

Check online here: https://ronxin.github.io/wevi/

 $(1 \times |V|) \cdot (|V| \times d) \, \Rightarrow (1 \times d)$

"intelligence" =
$$\begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0.5 & 4.6 & \dots & 0.7 \\ 0.1 & -0.8 & \dots & 0.9 \\ 0.6 & 0.8 & \dots & 0.3 \\ 0.3 & -0.6 & \dots & -0.8 \\ -0.5 & 0.5 & \dots & 0.1 \end{bmatrix}$$

$$= [0.1, -0.8, \dots, 0.9]$$

https://projector.tensorflow.org/

Output Probabilities

Outputs (shifted right)

Vocabulary size

Inputs

Lookup Table Embedding Weight Matrix

Positional Encoding

Let's have a sentence "This is Computer Vision Class" of n = 5 sequence length

And each word x_t (e.g., "Computer") is represented by an embedding vector of size for example d = 10 (this could be very large number)

That is mathematically t-th word is represented as

 $x_t \in \mathbb{R}^d$

Then the positional encoding will be presented as:

$$p(pos, 2i) = sin\left(\frac{pos}{10000^{2i/d}}\right)$$
$$p(pos, 2i + 1) = cos\left(\frac{pos}{10000^{2i/d}}\right)$$

For pos = 0, 1, ..., n and $i = 0, 1, ..., \frac{d}{2}$

Positional Encoding of word: $x_t \in \mathbb{R}^d$

It assign a value relevant to the position of the word in the sentence

 $\boldsymbol{P} = \begin{bmatrix} \boldsymbol{p}_0 \\ \boldsymbol{p}_1 \\ \vdots \\ \boldsymbol{p}_n \end{bmatrix} \quad n \times d$

where

 $\omega_t = \frac{pos}{10000^{2i/d}}$

Positional encoding matrix matrix

Positional Encoding of word: $x_t \in \mathbb{R}^d$

It assign a value relevant to the position of the word in the sentence

Positional Encoding of word: $x_t \in \mathbb{R}^d$

It assign a value relevant to the position of the word in the sentence

Kazemnejad et al (2024). The impact of positional encoding on length generalization in transformers. *NIPS*

Output

Vaswani et al. Attention Is All You Need (NIPS 2017)

Attention (**Q**, **K**, **V**) = softmax
$$\left(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_k}}\right)\mathbf{V}$$

Vaswani et al. Attention Is All You Need (NIPS 2017)

Let's have a sentence "This is Computer Vision Class" of n = 5 sequence length

And each word x (e.g., "Computer") is represented by an embedding vector of size for example d = 10 (this could be very large number)

That is mathematically a word is presented as

 $x^j \in \mathbb{R}^d$

And we have weight matrices

 $10 \times 2 \qquad 10 \times 2 \qquad 10 \times 2 \qquad 10 \times 2$ $Query W_Q = d \times d_k, \qquad Key W_K = d \times d_k, \qquad Value W_v = d \times d_v$

Then we perform a liner transformation of the input of x^{j} via Query, Key and Value matrices to obtain Query, Key and Value vectors as:

 $1 \times 2 \qquad 1 \times 2 \qquad q_i^{1 \times d_k} = x_i^{1 \times d_k} = x_i^{1 \times d_k} \times W_K^{d \times d_k}, \text{ and } v_i^{1 \times d_v} = x_i^{1 \times d} \times W_V^{d \times d_v}$ For all words i = 1, ..., n in the sentence.

We can pack the following Query, Key and Value vectors into a matrix forms:

 1×2 $q_i^{1 \times d_k} = x_i^{1 \times d} \times W_Q^{d \times d_k}, \quad \begin{array}{l} 1 \times 2 \\ k_i^{1 \times d_k} = x_i^{1 \times d} \times W_K^{d \times d_k}, \quad \text{and} \quad v_i^{1 \times d_k} = x_i^{1 \times d} \times W_V^{d \times d_k}$ For all words i = 1, ..., n in the sentence.

$$\mathbf{Q} = \begin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix} \quad \mathbf{K} = \begin{bmatrix} k_1 & k_2 & \cdots & k_n \end{bmatrix} \quad \mathbf{V} = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$$
1 2 5 1 2 5 1 2 5

Vaswani et al. Attention Is All You Need (NIPS 2017)

n is the number of tokens in a sentence

K is a matrix of size $n \times d_k$ **V** is a matrix of size $n \times d_v$

Vaswani et al. Attention Is All You Need (NIPS 2017)

K is a matrix of size $n \times d_k$ **V** is a matrix of size $d \times d_v$

Multi Head Self-Attention

Vaswani et al. Attention Is All You Need (NIPS 2017)

MultiHead(Q, K, V) = Concat(Head₁, Head₂, ..., Head_h) W_{Out}

Attention Map

A Mathematical Framework for Transformer Circuitshttps://transformer-circuits.pub/2021/framework/index.html

How Query and Key might work

The query searches for "similar" key vectors, but because keys are shifted, it finds the next token.

_	attention pa	ittern	moves information	logit effect
out about the Potters. N	Ars Potter was	•••	neighbours would say if	the Potters arrived in
key				query
out about the Potters. N	Ars Potter was		neighbours would say if	the Potters arrived in

Mr and Mrs Du	rsley, of number	with such nonse	ense. Mr Dursley was the	
	attention pattern n	noves information	logit effect	
Mr and Mrs D	rsley, of number	with such nonse	ense. Mr Dursley was the	
\square	key		query	
Mr and Mrs Du	rsley, of number	with such nonse	ense. Mr Dursley was the	

A Mathematical Framework for Transformer Circuitshttps://transformer-circuits.pub/2021/framework/index.html

Source: https://community.deeplearning.ai/t/w4-a1-is-there-a-typo-in-multi-head-attention-slides/135478

Transformer Visualisations & Explainers (Online Resources)

https://bbycroft.net/llm

https://poloclub.github.io/transformer-explainer/

https://jalammar.github.io/illustrated-transformer/

.

•

•

40

Convolutional Neural Nets

3×3 convolution layer and the 3×3 local relation layer

Hu et al. (2019). Local relation networks for image recognition. ICCV

Convolutional Nets Vs Transformer

Ramachandran et al. Stand-alone self-attention in vision models. NIPS 2019

query softmax output values keys matrix multiplication learned transform

3 × 3 convolution. The output is the inner product between the local window and the learned weights

Self-attention around image local region The output is local self attention

Standalone Self-attention in Vision Models

Ramachandran et al. Stand-alone self-attention in vision models. NIPS 2019

	ResNet-26			ResNet-38			ResNet-50		
	FLOPS	Params	Acc.	FLOPS	Params	Acc.	FLOPS	Params	Acc.
	(B)	(M)	(%)	(B)	(M)	(%)	(B)	(M)	(%)
Baseline	4.7	13.7	74.5	6.5	19.6	76.2	8.2	25.6	76.9
Conv-stem + Attention	4.5	10.3	75.8	5.7	14.1	77.1	7.0	18.0	77.4
Full Attention	4.7	10.3	74.8	6.0	14.1	76.9	7.2	18.0	77.6

Convolutional Nets Vs Transformers

Check Latest Models Here: https://paperswithcode.com/sota/image-classification-on-cifar-10

How Vision Transformer Models Works

Splitting an Image into Patches

Split the image into patches, each of size (H'xW'xD)

MIST dataset

Linear mapping

Linear projection to D-dimensional vector

Positional Encoding

Inform the model where the patch's position in the image is. In other word use sine and cosine values for respective patch number 0 100 200 300 400

Positional Encoding and Vectors

Inform the model where the patch's position in the image is. In other word use sine and cosine values for respective patch number

Add a Learnable Classification Token

Same as ChatGPT Transformer

Same as ChatGPT Transformer

Embedded Patches Q

V

Κ

Same as ChatGPT Transformer

Attention (**Q**, **K**, **V**) = softmax $\left(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_{\nu}}}\right)$ 56

V

ViT Performance

Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR 2017

Note that this performance is only achieved when ViT is pre-trained on large dataset (in this case JFT-300M is a 300 million image dataset of Google)

Check Latest Models Here: <u>https://paperswithcode.com/sota/image-classification-on-cifar-10</u>

ViT on CIFAR-10 (without Pre-Training)

Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR 2017

Note that the performance depends on hyper parameter tuning models' size etc.

ViT Performance

- Worse than ResNet when trained just on ImageNet
- Performance improved when pre-trained on very large dataset
- Pretrained outperforms much bigger CNNs
- You need large GPUs (Computational Cost is very high)

Coursework Brief (Part III)

More details to be released this week (before Practical Session)

Implement Convolutional Neural Networks (specifically using VGG16) on CIFAR-10 dataset and solve following three problems:

- For the training use early stopping and save the model that produce best validation results. (you will need to use some of training data as validation set) [Marks 10: 5+3+2]
- What would be the performance of VGG16 with or without batch normalization to it. Show using a convergence graph [*Marks 10*: 5+5]
- Visualise the Convolutional Features / Filters. This could be done by using imshow or similar methods. Show how filters features changes over different layers over a test image. [Marks 20: 10+10]