Data Analytics

Lecture CS1AC16

Dr Varun Ojha University of Reading

23/02/2022

About the Module

- Lectures:
 - Week 7, Week 8, Week 9
- Practical session:
 - Week 10 and Week 11

Assessments

- 1. One Blackboard Class-Test in the last week of term
- 2. Exam question in CS1AC16 paper (two in Data Analytics section)

Module Outline

Why data analytics?

 The world produces tremendous volume of data

- We need to interpret this large volume of data to extract knowledge
 - Data mining help us do that

VOLUME of DATA

What is Data Analytics?

- Data analysis is a process of inspecting, cleansing, transforming, and modelling data into useful information.
- Data mining is a process used by companies to turn raw data into useful information.
- Data science is an inter-disciplinary field that uses scientific methods, processes, algorithms to extract knowledge from data.

Hugh Conway (2010)

Applications of Data Analytics

Scientific Computing

- Healthcare Medical Imaging (A single MRI scan is 21 MB)
- Biological Experiments The human genome project (2.2 GB)
- Cosmology Imaging a Black hole (5 petabytes)
- Physics Experiments The Large Hadron Collider (330 petabytes of data)

Commercial Applications

- Banking Credit card use, fraud detection, product recommendation
- Retail Product recommendation, logistics
- Social Networks Ad targeting, product recommendation

Module Outline

What is Data?

• Noun, a plural of datum (as appear in dictionary)

- (used with a plural verb) individual facts, statistics, or items of information:
 - These data represent the results of our analyses.
 - Data are entered by terminal for immediate processing by the computer

- (used with a singular verb) a body of facts; information:
 - Additional data is available from the president of the firm.

How to Store Data?

- Tabular form. D
 - Tabular data is made up of a table with <u>rows</u> and <u>columns</u>
- Each row consists of **entities**, **objects** or **instances**
 - Each student in RISIS database
- Each column describes attributes or features
 - Age, course, grade
- Each feature will have a value
 - 19, computer science, 70

Instances (or objects)

 In tabular data, one row will correspond to a single object or instance, or sample.

Features (or Attributes)

 A column corresponds to an attribute, also called a feature or a variable, or an attribute.

Features (or Attributes)

- Attributes are therefore properties of objects that we would like to record.
- For this RISIS example the features are id, name, course and grade of each student

Example of a Real World Data

• The Vancouver street trees dataset

(Inform			alyze Export	API					
	TREE_ID	CIVIC_NUMBER	STD_STREET	GENUS_NAME	SPECIES_NAME \$	CULTIVAR_NAME 🗘	COMMON_NAME	ASSIGNED	ROOT_B
1	40060	1906	W 43RD AV	BETULA	PENDULA		EUROPEAN WHITE BIRCH	Ν	N
2	40062	1906	W 43RD AV	BETULA	PENDULA		EUROPEAN WHITE BIRCH	Ν	N
3	40073	1928	W 43RD AV	PRUNUS	CERASIFERA	ATROPURPUREUM	PISSARD PLUM	Ν	Ν
4	40082	1956	W 43RD AV	PRUNUS	CERASIFERA	ATROPURPUREUM	PISSARD PLUM	Ν	N
5	40088	1968	W 43RD AV	PRUNUS	CERASIFERA	ATROPURPUREUM	PISSARD PLUM	Ν	N
6	40099	2005	W 43RD AV	AESCULUS	HIPPOCASTANUM		COMMON HORSECHESTN	Ν	N
7	40106	2028	W 43RD AV	AESCULUS	HIPPOCASTANUM		COMMON HORSECHESTN	Ν	N
8	40108	2038	W 43RD AV	AESCULUS	HIPPOCASTANUM		COMMON HORSECHESTN	Ν	N
9	40112	2057	W 43RD AV	AESCULUS	HIPPOCASTANUM		COMMON HORSECHESTN	Ν	Ν
10	40113	2060	W 43RD AV	AESCULUS	HIPPOCASTANUM		COMMON HORSECHESTN	Ν	N

https://opendata.vancouver.ca/explore/dataset/street-trees

Types of Values

- Values of features can be either discrete or continuous
- Discrete data can only take certain values
 - Counts, set of words, postcodes
 - Example: the number of students in a class
- **Continuous** data can take any value (within a range)
 - Can be termed as an infinite set of floating point values
 - Examples: Heights, weights, temperatures

Types of Values

• In addition to being discrete or continuous, the characteristic of a variable can be described as:

Nominal Data

- A nominal scale describes a variable with categories that do not have a natural order or ranking.
- Can either be equal or not equal:
 - Polly Vacher building = Polly Vacher building
 - Mauritius != Faroe Islands
- Can be transformed/renamed so long as uniqueness is preserved.

Ordinal Data

- An ordinal scale is one where the order matters but not the difference between values.
- Can tell if one attribute is smaller or larger than another
 - E.g. small < medium
- To transform between mappings, order must be preserved

Interval Data

- increases in set steps
- depth 61.5 the difference between two values is meaningful. 59.8 the difference between 90°C and 100°C 56.9 62.4 interval data can be added or subtracted 63.3 62.8

Ratio Data

+

• has all the properties of an interval variable,

- has a clear definition of 0.0.
- Examples: scores of randomly selected students 30, 50, 70, and 90.
 - Order in this data?
 - Meaningful difference?
 - Can calculate ratio?

Source of Data

Structured Data

Often numbers or labels, stored in a structured framework of columns and rows relating to pre-set parameters.

ID ID CODES IN DATABASES

NUMERICAL DATA GOOGLE SHEETS

TAR RATINGS

Loosely organized into categories using meta tags

EMAILS BY INBOX, SENT, DRAFT

- TWEETS ORGANIZED BY HASHTAGS
- FOLDERS ORGANIZED BY TOPIC

Unstructured Data

Text-heavy information that's not organized in a clearly defined framework or model.

MEDIA POSTS, EMAILS, ONLINE REVIEWS

VIDEOS, IMAGES

SPEECH, SOUNDS

Structured Data

- Structured data is data that adheres to a pre-defined data model
- **Structured data** conforms to a tabular format with relationship between the different rows and columns.

• Examples include:

• Excel files, Relational Databases, Graph data

Properties of structured data are

• Data has Dimensionality, Sparsity and Resolution

Structured Data Examples: Record data

 Data that consists of a collection of records, each of which consists of a fixed set of attributes

Tid	Refund	Marital Status	Taxable Income	Self Assesment
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Structured Data Examples: Data Matrix

- If every record has same attribute type the data can be represented as a data matrix
- m by n matrix
 - m rows; one per object
 - n columns; one per attribute
- Matrix operations can then be performed
 - multiplication, inverse, eigenvalues, etc

Projection of x Load	Projection of y load	Distance	Load	Thickness	
10.23	5.27	15.22	2.7	1.2	
12.65	6.25	16.22	2.2	1.1	

Structured Data Examples: Transaction Data

- A special type of record data where
 - Each record is observed as a transaction involving a set of items.
- Example; transactions at a supermarket

TID	Items
1	Energy drink, Bleach, Milk
2	Milk, Dog food, Matches
3	Coke, Tissues, Washing up liquid
4	Pasta, Milk, Cheese, Bananas
5	Chips

Structured Data Examples: Graph Data

- A graph database uses graph structures for semantic queries
- The graph relates the data items in the store to a collection of nodes and edges
 - The edges then represent the relationships between the nodes
 - Explicitly lays out any dependencies between nodes of data
- Examples: Generic graph and HTML Links

 Data Mining Graph Partitioning Parallel Solution of Sparse Linear System of Equations N-Body Computation and Dense Linear System Solvers

Uses of Graph Data

- In a graph database:
 - Nodes can have attributes
 - Edges can also have attribute
- These characteristics allow statistics to be calculated in the context to the rest of the network, this is known as network analysis

Biological networks

Social networks

Unstructured Data

- unstructured data does not adhere to a pre-defined data model
- more difficult to understand using traditional data mining algorithms.
- Examples of "unstructured data"
 - books, journals, documents, metadata, health records, audio, video, images,
- Properties of unstructured data
 - Data has Dimensionality, Sparsity and Resolution

Unstructured Data Examples: Document Data

- Text data is often unstructured e.g. emails, academic papers.
- Natural Language processing (NLP) methods are used to convert text into ordered data structures
 - Often the text is converted to numeric data
 - Each document becomes a 'term' vector,
 - Each term is a component (attribute) of the vector,

	team	coach	рlа У	ball	score	game	n Wi	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Data Properties: Data Dimensionality

- Data Dimensionality -> how many attributes
 a dataset has
 - For Example: Every point in a cube has an x, y, z value
- High dimensionality data is usually bad.
- The more dimensions -> more difficulty.
 - Known as the 'Curse of Dimensionality'
 - Where each added attribute results in an exponential *decrease* in predictive power.

	Reddish	Bluish
•	1	0
•	1	0
	1	0
	1	0
	0	1
	0	1
	0	1
	0	1

Red	Maroon	Pink	Flamingo	Blue	Turquoise	Seaweed	Ocean
1	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	0	0	1	0	0	0
0	0	0	0	0	1	0	0
0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	1

Data Properties: Data Sparsity

- Data sparsity -> not observing enough data in a dataset.
- Data sparsity is usually bad
 - it means that we are missing information that might be important.
- Essentially, how much of the data is non-zero?
- If the data is sparse, how do we deal with missing data?

Data Properties: Data Resolution

- Data resolution can have 2 meanings:
 - It is the ratio between the maximum signal value to the minimum
 - It is the degree to which a change can be theoretically detected
- Therefore, for any application a resolution has to be chosen
 - Too large and you may lose important features
 - Too small and there will be too much data to process

Data Quality

- What kinds of data-quality problems?
- How can we detect problems with the data?
- What can we do about these problems?
- Examples of data quality problems:
 - Noise
 - Outliers
 - Missing values
 - Duplicate values

Data Quality: Noise

- Noise is a general term for unwanted signals when capturing data.

Sine Wave + Noise

• Noise reduction; the recovery of the original signal from the noise.

Sine Wave

Data Quality: Outliers

- Data objects with unusual or extreme characteristics outside of the normal distribution
 - Why do they occur?
 - Are they significant or should they be removed?

Data Quality: Missing Values

• Reasons for missing values:

- Information is not collected (e.g., people decline to give their age and weight)
- Attributes may not be relevant in every case (e.g. a student who has no grade)
- Data may have been discarded as an outlier

• Handling missing values:

- Remove all objects that have missing data
- Estimate Missing Values
- Ignore the Missing Value During Analysis.

Summary

- Various data value types: Discrete and continuous, nominal, ordinal, interval, ratio
- Structured (records, relational, graph) and Unstructured data (text and images)
- Properties of data: Dimensionality, sparsity and resolution
- Data Quality Issues: Noise, Outliers, Missing values, Duplicate values
- Exercises KNIME