
Analysis of Algorithm

Dr Varun Ojha

Department of Computer Science

Fundamental of Computer Science

CS1FC16: Lecture 01

Learning Objectives

On completion of three parts of this lecture, you will be able to

• Understand algorithm and algorithm’s properties

• Understand how to analyses algorithm in terms of complexity.

• Evaluate the “rate of growth” of standard functions

• Apply knowledge of asymptotic notation to solve complexity expression

• Create a program to plot standard functions

Dr Varun Ojha, University of Reading 2

Content of this lecture

• Part I: Introduction

• Definition Algorithm

• Properties of Algorithm

• Complexity

• Space complexity

• Time complexity

• Rate of Growth

• Part – II: Asymptotic Notations

• Types of Algorithm analysis

• Asymptotic notation

• Part –III: Examples and Exercise

• Asymptotic notation examples and proofs

• Exercise

Dr Varun Ojha, University of Reading 3

Algorithm

Dr Varun Ojha

Department of Computer Science

Fundamental of Computer Science

CS1FC16: Lecture 01, Part – I

Algorithm

An algorithm is a finite sequence of instructions, each

of which has a clear meaning (is unambiguous) and

can be performed with a finite amount of effort in a

finite length of time.

Input(s) Output(s)

Dr Varun Ojha, University of Reading 5

Properties of Algorithm

• Input: Zero, One or more inputs.

• Output: At least one output.

• Finiteness: An algorithm should be “finite” (i.e., there MUST NOT be an infinite loop,

algorithm MUST terminate)

• Effectiveness: Instructions are realised (doable), i.e., they can be performed in a finite

amount of time.

• Definiteness: Instructions and sequence of instruction clearly defined, i.e., no ambiguities

in the instructions and every aspect of performing instruction MUST be specified.

Dr Varun Ojha, University of Reading 6

Why study Algorithm

• How to write/create an algorithm.

• How to express an algorithm.

• How to validate an algorithm.

• How to analyse an algorithm.

• How to test a program.

Dr Varun Ojha, University of Reading 7

How to analyse an algorithm?

Algorithms can be analysed by evaluating the rate of growth of

time or space required to solve a problem of size n, which is a

measure of the quantity of input data.

• The time required by an algorithm expressed as a function of the

problem size, n is called the time complexity of the algorithm.

• We also define space complexity as a function of problem size n.

Dr Varun Ojha, University of Reading 8

Complexity

The complexity of an algorithm 𝑨 is the function 𝒇(𝒏) which gives time
and space requirement of the algorithm for input data size 𝒏.

• Space Complexity

• Time Complexity

Random access memory hardware is relatively least expensive and
easily manageable these days. Hence, we are more interested in Time
Complexity these days.

Dr Varun Ojha, University of Reading 9

Space Complexity

Ex.: Algo Sum(A; n)

// A is an array of size n

{

S := 0.0

for i := 1 to n do

S := S + A[i]

return S

}

Total space required for Algo Sum is:

A → n words

S → 1 word

i → 1 word

n → 1 word

Total → (n + 3) words

Total space required is (n+3) words – 3 remain constant and the rate of change is dependent on n.

Therefore, we are interested in space complexity as a function of n.

The amount of memory space an algorithm needs

Dr Varun Ojha, University of Reading 10

Time Complexity

Time spent by an algorithm to produce one or more output

• Theoretical analysis

• We are interested in evaluating algorithm’s time complexity in terms of

“limiting behaviour” of the complexity as the “size of problem” 𝑛 increases is

called the asymptotic time complexity.

• Empirical analysis

• We are interested in evaluating average wall-clock time an algorithm takes to

execute a problem of size 𝑛.

Dr Varun Ojha, University of Reading 11

Asymptotic Time Complexity

Important Considerations:

• Consider that one operation takes 1 unit of time

• Consider that for a statement x ← x + y takes 1 unit of time

x ← x + y for i := 1 to 𝒏

x ← x + y

for i := 1 to 𝒏

for j := 1 to 𝒏

x ← x + y

𝒏𝟐 unit𝒏 unit𝟏 unit
Dr Varun Ojha, University of Reading 12

Rate of Growth

Suppose 𝑨 is an Algorithm, and 𝒏 is the size of the input data.

Then, the complexity 𝒇(𝒏) of 𝑨 increases proportional to the size

of 𝒏.

It is usually the rate of increase of 𝒇(𝒏) that we want to

examine, i.e., we compute 𝒇(𝒏) with some standard function,

such as

(of Standard Functions)

𝐥𝐨𝐠 𝒏, 𝒏, 𝒏 𝐥𝐨𝐠𝒏, 𝒏𝟐, 𝒏𝟑, 𝟐𝒏

Dr Varun Ojha, University of Reading 13

Rate of Growth

Standard functions

𝒏 𝐥𝐨𝐠 𝒏 𝒏 𝒏 𝐥𝐨𝐠 𝒏 𝒏𝟐 𝒏𝟑 𝟐𝒏

4 2 4 8 16 64 16

5 3 5 15 25 125 32

10 4 10 40 100 103 103

100 7 100 700 104 106 1030

1000 10 103 104 106 109 10300

Input

14* values in table are ceiling (nearest upper end integer value)

0

100

200

300

400

500

600

700

800

900

1000

1 2 4 8 16 32 64 128

 log n
n
n log n
n^2
n^3
2^n

Rate of Growth

input size 𝒏

𝐥𝐨𝐠 𝒏

𝒏

𝒏 𝐥𝐨𝐠 𝒏𝒏𝟐𝒏𝟑𝟐𝒏

𝒇(𝒏)

Dr Varun Ojha, University of Reading 15

Exercise: write an algorithm to produce this chart

Rate of Growth →Algorithm’s efficiency

We are interested in the algorithm’s behaviours over a large input

data size. We call it algorithm’s asymptotic efficiency

Dr Varun Ojha, University of Reading 16

Asymptotic Notation

Dr Varun Ojha

Department of Computer Science

Fundamental of Computer Science

CS1FC16: Lecture 01, Part – II

Types of Algorithm Analysis

• Worst case

• Provides a maximum value of 𝒇(𝒏) for any possible input

• Provides an upper bound on running time

• Provides an absolute guarantee that the algorithm would not run longer, no matter what the inputs are

• Best case

• Provides a minimum value of 𝒇(𝒏) for any possible input

• Provides a lower bound on running time

• Answers that for a particular input the algorithm runs the fastest

• Average case

• Provides an expected value of 𝒇(𝒏)

• Provides a prediction about the running time

• Assumes that the input is random

Dr Varun Ojha, University of Reading 18

Asymptotic Notations

Mathematical notions for analysing asymptotic running time complexity
𝒇(𝒏) of an algorithm based on input size 𝒏 and a given set of functions 𝒈(𝒏)
are:

• 𝑶 notation: asymptotic less than

𝒇(𝒏) = 𝑶(𝒈(𝒏)) implies: 𝑓(𝑛) ≤ 𝑔 𝑛 (asymptotic upper bound)

• 𝜴 notation: asymptotic greater than

𝒇(𝒏) = 𝜴(𝒈(𝒏)) implies: 𝑓(𝑛) ≥ 𝑔 𝑛 (asymptotic lower bound)

• 𝜣 notation: asymptotic equality

𝒇(𝒏) = 𝜣(𝒈(𝒏)) implies: 𝑓(𝑛) ≈ 𝑔(𝑛) (asymptotic tight bound)

Dr Varun Ojha, University of Reading 19

𝑶 notation
(Big Oh and Little Oh - asymptotic upper bound)

Let 𝒇(𝒏) and 𝒈(𝒏) be functions that map positive integers to positive real
numbers, then we define:

• Big-Oh, 𝑶(⋅):
We say that 𝑓(𝑛) is 𝑂(𝑔(𝑛)) [or 𝑓 𝑛 ∈ 𝑂(𝑔(𝑛))] if there exists a real constant 𝑐 > 0

and there exists an integer constant 𝑛0 ≥ 1

such that 0 ≤ 𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛) for every integer 𝑛 ≥ 𝑛0.

• Little-Oh, 𝒐(⋅):
We say that 𝑓(𝑛) is 𝑂(𝑔(𝑛)) [or 𝑓 𝑛 ∈ 𝑂(𝑔(𝑛))] if there exists a real constant 𝑐 > 0

and there exists an integer constant 𝑛0 ≥ 1

such that 0 ≤ 𝑓 𝑛 < 𝑐 ⋅ 𝑔(𝑛) for every integer 𝑛 ≥ 𝑛0.

Dr Varun Ojha, University of Reading 20

𝑶 notation
𝑶 𝒈 𝒏 = 𝒇 𝒏 if there exists a real constant 𝒄 and 𝒏𝟎such that

𝟎 ≤ 𝒇 𝒏 ≤ 𝒄 ⋅ 𝒈(𝒏) for every integer 𝒏 ≥ 𝒏𝟎

Dr Varun Ojha, University of Reading 21𝑔 𝑛 is an asymptotic upper bound of 𝑓(𝑛)

𝛀 notation
(Big Omega and Little omega - asymptotic lower bound)

Let 𝒇(𝒏) and 𝒈(𝒏) be functions that map positive integers to positive real
numbers, then we define:

• Big-Omega, 𝛀(⋅):
We say that 𝑓(𝑛) is Ω(𝑔(𝑛)) [or 𝑓 𝑛 ∈ Ω(𝑔(𝑛))] if there exists a real constant 𝑐 > 0

and there exists an integer constant 𝑛0 ≥ 1

such that 0 ≤ 𝑐 ⋅ 𝑔 𝑛 ≤ 𝑓 𝑛 for every integer 𝑛 ≥ 𝑛0.

• Little-Omega, 𝝎(⋅):
We say that 𝑓(𝑛) is 𝜔(𝑔(𝑛)) [or 𝑓 𝑛 ∈ 𝜔(𝑔(𝑛))] if there exists a real constant 𝑐 > 0

and there exists an integer constant 𝑛0 ≥ 1

such that 0 ≤ 𝑐 ⋅ 𝑔 𝑛 < 𝑓 𝑛 for every integer 𝑛 ≥ 𝑛0.

Dr Varun Ojha, University of Reading 22

𝛀 notation
𝛀 𝒈 𝒏 = 𝒇 𝒏 if there exists a real constant 𝒄 and 𝒏𝟎such that

𝟎 ≤ 𝒄 ⋅ 𝒈 𝒏 ≤ 𝒇 𝒏 for every integer 𝒏 ≥ 𝒏𝟎

Dr Varun Ojha, University of Reading 23𝑔 𝑛 is an asymptotic lower bound of 𝑓(𝑛)

𝚯 notation
(Theta - asymptotic tight bound)

Let 𝒇(𝒏) and 𝒈(𝒏) be functions that map positive integers to

positive real numbers.

• 𝚯, 𝚯(⋅):

We say that 𝑓(𝑛) is 𝑂(𝑔(𝑛)) [or 𝑓 𝑛 ∈ 𝛩(𝑔(𝑛))] if there exists a real constant 𝑐 > 0

and there exists an integer constant 𝑛0 ≥ 1

such that 0 ≤ 𝑐1 ⋅ 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2 ⋅ 𝑔(𝑛) for every integer 𝑛 ≥ 𝑛0.

Dr Varun Ojha, University of Reading 24

𝚯 notation
𝚯 𝒈 𝒏 = 𝒇 𝒏 if there exists a real constant 𝒄 and 𝒏𝟎such that

𝟎 ≤ 𝒄𝟏 ⋅ 𝒈 𝒏 ≤ 𝒇 𝒏 ≤ 𝒄𝟐 ⋅ 𝒈(𝒏) for every integer 𝒏 ≥ 𝒏𝟎

Dr Varun Ojha, University of Reading 25𝑔 𝑛 is an asymptotic tight bound of 𝑓(𝑛)

Asymptotic Notation
Examples and Exercises

Dr Varun Ojha

Department of Computer Science

Fundamental of Computer Science

CS1FC16: Lecture 01, Part – III

Example: Big-Oh Notation

Let 𝑓(𝑛) = 7𝑛 + 8 and 𝑔 𝑛 = 𝑛

Is 𝒇 𝒏 ∈ 𝑶(𝒈(𝒏))?

Does 𝑓(𝑛) belong to 𝑂(𝑔(𝑛))

Dr Varun Ojha, University of Reading 27

𝑶 notation (revisit)
𝑶 𝒈 𝒏 = 𝒇 𝒏 if there exists a real constant 𝒄 and 𝒏𝟎such that

𝟎 ≤ 𝒇 𝒏 ≤ 𝒄 ⋅ 𝒈(𝒏) for every integer 𝒏 ≥ 𝒏𝟎

Dr Varun Ojha, University of Reading 28𝑔 𝑛 is an asymptotic upper bound of 𝑓(𝑛)

Dr Varun Ojha, University of Reading

Example: Big-Oh Notation
If 𝒇(𝒏) = 𝟕𝒏 + 𝟖 and 𝒈(𝒏) = 𝒏, is 𝒇 𝒏 ∈ 𝑶(𝒈(𝒏))?

For 7𝑛 + 8 ∈ 𝑂(𝑛), we have to find 𝑐 and 𝑛0 such that 7𝑛 + 8 ≤ 𝑐𝑛, for all 𝑛 ≥ 𝑛0.

By inspection, it is clear that 𝑐 must be larger than 7. Let 𝑐 = 8.

Now we need a suitable 𝑛 ≥ 𝑛0 . Let 𝑛0 = 𝑛 = 8.

In this case, 𝑓 8 = 8 ⋅ 𝑔(8). Because the definition of 𝑂(⋅) requires that 𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛), we can select 𝑛0 = 8, or any

integer above 8, they will all work.

Since we are able to find constants 𝑐 and 𝑛0 such that 7𝑛 + 8 is ≤ 𝑐𝑛 for every 𝑛 ≥ 𝑛0, we can say that 7𝑛 + 8 𝑖𝑠 𝑂(𝑛),

alternatively 𝑓 𝑛 ∈ 𝑂(𝑔(𝑛))?.

Q: But how do we know that this will work for every 𝒏 above 7?

A: We can prove it by induction that 𝟕𝒏 + 𝟖 𝟖𝒏, ∀ 𝒏 ≥ 𝟖.

29

Mathematical Induction
Proof of 7𝑛 + 8 ≤ 8𝑛, ∀ 𝑛 ≥ 8
Basic Step:

for 𝑛0 = 𝑛 = 8,

7 ⋅ 8 + 8 ≤ 64 (1) → TRUE

Let 𝑛 = 𝑘

7𝑘 + 8 ≤ 8𝑘 (2) → TRUE

Inductive Step:

for 𝑛 = 𝑘 + 1

• 7 𝑘 + 1 + 8 ≤ 8(𝑘 + 1)

• 7𝑘 + 7 + 8 ≤ 8𝑘 + 8

• 7𝑘 + 8 + 7 ≤ 8𝑘 + 8

• From 2 , we know 7𝑘 + 8 ≤ 8𝑘

• 𝟖𝒌 + 𝟕 ≤ 𝟖𝒌 + 𝟖 (3) → TRUE

Hence, it is proved that 7𝑛 + 8 ≤ 8𝑛, ∀ 𝑛 ≥ 8

Dr Varun Ojha, University of Reading 30

Example: Big-Omega Notation

Let 𝑓(𝑛) = 𝑛 and 𝑔 𝑛 = log 𝑛

Is 𝒇 𝒏 ∈ 𝛀(𝒈(𝒏))?

Does 𝑓(𝑛) belong to Ω(𝑔(𝑛))

Dr Varun Ojha, University of Reading 31

𝛀 notation (revisit)
𝛀 𝒈 𝒏 = 𝒇 𝒏 if there exists a real constant 𝒄 and 𝒏𝟎such that

𝟎 ≤ 𝒄 ⋅ 𝒈 𝒏 ≤ 𝒇 𝒏 for every integer 𝒏 ≥ 𝒏𝟎

Dr Varun Ojha, University of Reading 32𝑔 𝑛 is an asymptotic lower bound of 𝑓(𝑛)

Proof 𝒏 = 𝜴(𝒍𝒐𝒈𝒏)

For 𝑐 = 1, 𝑛0 = 16, 𝑓 𝑛 = 𝑛, and 𝑔 𝑛 = log2 𝑛

By definition, we have 𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛 , ∀ 𝑛 ≥ 𝑛0,

Replacing values of 𝑐, 𝑛0, 𝑓 𝑛 , and 𝑔(𝑛) in definition, we get:

16 ≥ 1 ⋅ log216 → 4 ≥ 1 ⋅ 4 (1)

This gives us 4 ≥ 4 → TRUE

Now check 𝑛 = 64, i.e., for 𝑛 ≥ 𝑛0

64 ≥ 1 ⋅ log264 → 8 ≥ 1 ⋅ log264 (2)

This gives us 8 ≥ 6 → TRUE

Hence, we get 𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 , i.e., 𝑛 = Ω(log 𝑛) → TRUE

Dr Varun Ojha, University of Reading 33

Exercise

Verify and prove:

• Is 𝟐𝒏+𝟏 ∈ 𝑶(𝟐𝒏)?

• Is 𝟐𝒏+𝟏 ∈ 𝑶(𝟐𝟐𝒏)?

Dr Varun Ojha, University of Reading 34

Exercise
Write a program to plot theoretical and empirical time of standard

functions 𝑶 𝟏 ,𝑶(𝒏), 𝑶(log 𝒏), 𝑶(𝒏), 𝑶(𝒏 log 𝒏), and 𝑶(𝒏𝟐) like the

following:

Dr Varun Ojha, University of Reading 35

theoretical empirical

