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Learning Objectives

On completion of three parts of this lecture, you will be able to

• Understand algorithm and algorithm’s properties 

• Understand how to analyses algorithm in terms of complexity.

• Evaluate the “rate of growth” of standard functions

• Apply knowledge of asymptotic notation to solve complexity expression

• Create a program to plot standard functions
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Content of this lecture

• Part I: Introduction

• Definition Algorithm

• Properties of Algorithm

• Complexity

• Space complexity

• Time complexity

• Rate of Growth

• Part – II: Asymptotic Notations

• Types of Algorithm analysis

• Asymptotic notation

• Part –III: Examples and Exercise

• Asymptotic notation examples and proofs

• Exercise
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Algorithm

An algorithm is a finite sequence of instructions, each 

of which has a clear meaning (is unambiguous) and 

can be performed with a finite amount of effort in a 

finite length of time.

Input(s) Output(s)
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Properties of Algorithm

• Input: Zero, One or more inputs.   

• Output: At least one output.

• Finiteness: An algorithm should be “finite” (i.e., there MUST NOT be an infinite loop, 

algorithm MUST terminate)

• Effectiveness: Instructions are realised (doable), i.e., they can be performed in a finite 

amount of time.

• Definiteness: Instructions and sequence of instruction clearly defined, i.e., no ambiguities 

in the instructions and every aspect of performing instruction MUST be specified.
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Why study Algorithm

• How to write/create an algorithm.

• How to express an algorithm.

• How to validate an algorithm.

• How to analyse an algorithm.

• How to test a program.
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How to analyse an algorithm?

Algorithms can be analysed by evaluating the rate of growth of    

time or space required to solve a problem of size n, which is a 

measure of the quantity of input data.

• The time required by an algorithm expressed as a function of the 

problem size, n is called the time complexity of the algorithm. 

• We also define space complexity as a function of problem size n.
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Complexity

The complexity of an algorithm 𝑨 is the function 𝒇(𝒏) which gives time 
and space requirement of the algorithm for input data size 𝒏.

• Space Complexity

• Time Complexity

Random access memory hardware is relatively least expensive and 
easily manageable these days. Hence, we are more interested in Time 
Complexity these days.
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Space Complexity

Ex.: Algo Sum(A; n)

// A is an array of size n

{

S := 0.0

for i := 1 to n do

S := S + A[i]

return S

}

Total space required for Algo Sum is:

A  → n words

S  → 1 word

i  → 1 word

n  → 1 word

Total → (n + 3) words

Total space required is (n+3) words – 3 remain constant and the rate of change is dependent on n. 

Therefore, we are interested in space complexity as a function of n.

The amount of memory space an algorithm needs
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Time Complexity

Time spent by an algorithm to produce one or more output

• Theoretical analysis

• We are interested in evaluating algorithm’s time complexity in terms of 

“limiting behaviour” of the complexity as the “size of problem” 𝑛 increases is 

called the asymptotic time complexity.

• Empirical analysis

• We are interested in evaluating average wall-clock time an algorithm takes to 

execute a problem of size 𝑛.
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Asymptotic Time Complexity

Important Considerations:

• Consider that one operation takes 1 unit of time

• Consider that for a statement x ← x + y takes 1 unit of time

x ← x + y for i := 1 to 𝒏

x ← x + y

for i := 1 to 𝒏

for j := 1 to 𝒏

x ← x + y

𝒏𝟐 unit𝒏 unit𝟏 unit
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Rate of Growth

Suppose 𝑨 is an Algorithm, and 𝒏 is the size of the input data. 

Then, the complexity 𝒇(𝒏) of 𝑨 increases proportional to the size 

of 𝒏.

It is usually the rate of increase of 𝒇(𝒏) that we want to 

examine, i.e., we compute 𝒇(𝒏) with some standard function, 

such as

(of Standard Functions)

𝐥𝐨𝐠 𝒏, 𝒏, 𝒏 𝐥𝐨𝐠𝒏, 𝒏𝟐, 𝒏𝟑, 𝟐𝒏
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Rate of Growth

Standard functions

𝒏 𝐥𝐨𝐠 𝒏 𝒏 𝒏 𝐥𝐨𝐠 𝒏 𝒏𝟐 𝒏𝟑 𝟐𝒏

4 2 4 8 16 64 16

5 3 5 15 25 125 32

10 4 10 40 100 103 103

100 7 100 700 104 106 1030

1000 10 103 104 106 109 10300

Input

14* values in table are ceiling (nearest upper end integer value) 
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Rate of Growth →Algorithm’s efficiency

We are interested in the algorithm’s behaviours over a large input 

data size. We call it algorithm’s asymptotic efficiency 
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Types of Algorithm Analysis

• Worst case

• Provides a maximum value of 𝒇(𝒏) for any possible input

• Provides an upper bound on running time

• Provides an absolute guarantee that the algorithm would not run longer, no matter what the inputs are

• Best case

• Provides a minimum value of 𝒇(𝒏) for any possible input

• Provides a lower bound on running time

• Answers that for a particular input the algorithm runs the fastest

• Average case

• Provides an expected value of 𝒇(𝒏)

• Provides a prediction about the running time

• Assumes that the input is random
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Asymptotic Notations

Mathematical notions for analysing asymptotic running time complexity 
𝒇(𝒏) of an algorithm based on input size 𝒏 and a given set of functions 𝒈(𝒏)
are: 

• 𝑶 notation: asymptotic less than

𝒇(𝒏) = 𝑶(𝒈(𝒏)) implies: 𝑓(𝑛) ≤ 𝑔 𝑛 (asymptotic upper bound)

• 𝜴 notation: asymptotic greater than

𝒇(𝒏) = 𝜴(𝒈(𝒏)) implies: 𝑓(𝑛) ≥ 𝑔 𝑛 (asymptotic lower bound)

• 𝜣 notation: asymptotic equality

𝒇(𝒏) = 𝜣(𝒈(𝒏)) implies: 𝑓(𝑛) ≈ 𝑔(𝑛) (asymptotic tight bound)
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𝑶 notation 
(Big Oh and Little Oh - asymptotic upper bound)

Let 𝒇(𝒏) and 𝒈(𝒏) be functions that map positive integers to positive real 
numbers, then we define:

• Big-Oh, 𝑶(⋅):
We say that 𝑓(𝑛) is 𝑂(𝑔(𝑛)) [or 𝑓 𝑛 ∈ 𝑂(𝑔(𝑛))] if there exists a real constant 𝑐 > 0

and there exists an integer constant 𝑛0 ≥ 1

such that 0 ≤ 𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛) for every integer 𝑛 ≥ 𝑛0.

• Little-Oh, 𝒐(⋅):
We say that 𝑓(𝑛) is 𝑂(𝑔(𝑛)) [or 𝑓 𝑛 ∈ 𝑂(𝑔(𝑛))] if there exists a real constant 𝑐 > 0

and there exists an integer constant 𝑛0 ≥ 1

such that 0 ≤ 𝑓 𝑛 < 𝑐 ⋅ 𝑔(𝑛) for every integer 𝑛 ≥ 𝑛0.
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𝑶 notation 
𝑶 𝒈 𝒏 = 𝒇 𝒏 if there exists a real constant 𝒄 and 𝒏𝟎such that

𝟎 ≤ 𝒇 𝒏 ≤ 𝒄 ⋅ 𝒈(𝒏) for every integer 𝒏 ≥ 𝒏𝟎
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𝛀 notation 
(Big Omega and Little omega - asymptotic lower bound)

Let 𝒇(𝒏) and 𝒈(𝒏) be functions that map positive integers to positive real 
numbers, then we define:

• Big-Omega, 𝛀(⋅):
We say that 𝑓(𝑛) is Ω(𝑔(𝑛)) [or 𝑓 𝑛 ∈ Ω(𝑔(𝑛))] if there exists a real constant 𝑐 > 0

and there exists an integer constant 𝑛0 ≥ 1

such that 0 ≤ 𝑐 ⋅ 𝑔 𝑛 ≤ 𝑓 𝑛 for every integer 𝑛 ≥ 𝑛0.

• Little-Omega, 𝝎(⋅):
We say that 𝑓(𝑛) is 𝜔(𝑔(𝑛)) [or 𝑓 𝑛 ∈ 𝜔(𝑔(𝑛))] if there exists a real constant 𝑐 > 0

and there exists an integer constant 𝑛0 ≥ 1

such that 0 ≤ 𝑐 ⋅ 𝑔 𝑛 < 𝑓 𝑛 for every integer 𝑛 ≥ 𝑛0.
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𝛀 notation 
𝛀 𝒈 𝒏 = 𝒇 𝒏 if there exists a real constant 𝒄 and 𝒏𝟎such that

𝟎 ≤ 𝒄 ⋅ 𝒈 𝒏 ≤ 𝒇 𝒏 for every integer 𝒏 ≥ 𝒏𝟎
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𝚯 notation 
(Theta - asymptotic tight bound)

Let 𝒇(𝒏) and 𝒈(𝒏) be functions that map positive integers to 

positive real numbers.

• 𝚯, 𝚯(⋅):

We say that 𝑓(𝑛) is 𝑂(𝑔(𝑛)) [or 𝑓 𝑛 ∈ 𝛩(𝑔(𝑛))] if there exists a real constant 𝑐 > 0

and there exists an integer constant 𝑛0 ≥ 1

such that 0 ≤ 𝑐1 ⋅ 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2 ⋅ 𝑔(𝑛) for every integer 𝑛 ≥ 𝑛0.
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𝚯 notation 
𝚯 𝒈 𝒏 = 𝒇 𝒏 if there exists a real constant 𝒄 and 𝒏𝟎such that

𝟎 ≤ 𝒄𝟏 ⋅ 𝒈 𝒏 ≤ 𝒇 𝒏 ≤ 𝒄𝟐 ⋅ 𝒈(𝒏) for every integer 𝒏 ≥ 𝒏𝟎
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Asymptotic Notation 
Examples and Exercises
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Example: Big-Oh Notation

Let 𝑓(𝑛) = 7𝑛 + 8 and 𝑔 𝑛 = 𝑛

Is 𝒇 𝒏 ∈ 𝑶(𝒈(𝒏))?

Does 𝑓(𝑛) belong to 𝑂(𝑔(𝑛))
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𝑶 notation (revisit) 
𝑶 𝒈 𝒏 = 𝒇 𝒏 if there exists a real constant 𝒄 and 𝒏𝟎such that

𝟎 ≤ 𝒇 𝒏 ≤ 𝒄 ⋅ 𝒈(𝒏) for every integer 𝒏 ≥ 𝒏𝟎
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Example: Big-Oh Notation
If 𝒇(𝒏) = 𝟕𝒏 + 𝟖 and 𝒈(𝒏) = 𝒏, is 𝒇 𝒏 ∈ 𝑶(𝒈(𝒏))?

For 7𝑛 + 8 ∈ 𝑂(𝑛), we have to find 𝑐 and 𝑛0 such that 7𝑛 + 8 ≤ 𝑐𝑛, for all 𝑛 ≥ 𝑛0.

By inspection, it is clear that 𝑐 must be larger than 7. Let 𝑐 = 8.

Now we need a suitable 𝑛 ≥ 𝑛0 . Let 𝑛0 = 𝑛 = 8.

In this case, 𝑓 8 = 8 ⋅ 𝑔(8). Because the definition of 𝑂(⋅) requires that 𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛), we can select 𝑛0 = 8, or any 

integer above 8, they will all work. 

Since we are able to find constants 𝑐 and 𝑛0 such that 7𝑛 + 8 is  ≤ 𝑐𝑛 for every 𝑛 ≥ 𝑛0, we can say that 7𝑛 + 8 𝑖𝑠 𝑂(𝑛), 

alternatively 𝑓 𝑛 ∈ 𝑂(𝑔(𝑛))?.

Q: But how do we know that this will work for every 𝒏 above 7? 

A: We can prove it by induction that 𝟕𝒏 + 𝟖 𝟖𝒏, ∀ 𝒏 ≥ 𝟖.
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Mathematical Induction 
Proof of 7𝑛 + 8 ≤ 8𝑛, ∀ 𝑛 ≥ 8
Basic Step:

for 𝑛0 = 𝑛 = 8,

7 ⋅ 8 + 8 ≤ 64 (1) → TRUE

Let 𝑛 = 𝑘

7𝑘 + 8 ≤ 8𝑘 (2) → TRUE

Inductive Step:

for 𝑛 = 𝑘 + 1

• 7 𝑘 + 1 + 8 ≤ 8(𝑘 + 1)

• 7𝑘 + 7 + 8 ≤ 8𝑘 + 8

• 7𝑘 + 8 + 7 ≤ 8𝑘 + 8

• From 2 , we know 7𝑘 + 8 ≤ 8𝑘

• 𝟖𝒌 + 𝟕 ≤ 𝟖𝒌 + 𝟖 (3) → TRUE

Hence, it is proved that 7𝑛 + 8 ≤ 8𝑛, ∀ 𝑛 ≥ 8
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Example: Big-Omega Notation

Let 𝑓(𝑛) = 𝑛 and 𝑔 𝑛 = log 𝑛

Is 𝒇 𝒏 ∈ 𝛀(𝒈(𝒏))?

Does 𝑓(𝑛) belong to Ω(𝑔(𝑛))
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𝛀 notation (revisit)
𝛀 𝒈 𝒏 = 𝒇 𝒏 if there exists a real constant 𝒄 and 𝒏𝟎such that

𝟎 ≤ 𝒄 ⋅ 𝒈 𝒏 ≤ 𝒇 𝒏 for every integer 𝒏 ≥ 𝒏𝟎
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Proof 𝒏 = 𝜴(𝒍𝒐𝒈𝒏)

For 𝑐 = 1, 𝑛0 = 16, 𝑓 𝑛 = 𝑛, and 𝑔 𝑛 = log2 𝑛

By definition, we have 𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛 , ∀ 𝑛 ≥ 𝑛0,

Replacing values of 𝑐, 𝑛0, 𝑓 𝑛 , and 𝑔(𝑛) in definition, we get:

16 ≥ 1 ⋅ log216 → 4 ≥ 1 ⋅ 4 (1)

This gives us 4 ≥ 4 → TRUE

Now check 𝑛 = 64, i.e., for 𝑛 ≥ 𝑛0

64 ≥ 1 ⋅ log264 → 8 ≥ 1 ⋅ log264 (2)

This gives us  8 ≥ 6 → TRUE

Hence, we get 𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 , i.e., 𝑛 = Ω(log 𝑛) → TRUE
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Exercise 

Verify and prove:

• Is 𝟐𝒏+𝟏 ∈ 𝑶(𝟐𝒏)?

• Is 𝟐𝒏+𝟏 ∈ 𝑶(𝟐𝟐𝒏)?
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Exercise 
Write a program to plot theoretical and empirical time of standard 

functions 𝑶 𝟏 ,𝑶( 𝒏), 𝑶(log 𝒏), 𝑶(𝒏), 𝑶(𝒏 log 𝒏), and 𝑶(𝒏𝟐) like the 

following:  
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