Fundamental of Computer Science CS1FC16: Lecture 02

Complexity Analysis of Algorithms

Dr Varun Ojha Department of Computer Science

Learning Objectives

On completion of three parts of this lecture, you will be able to

- Understand how to write algorithm / pseudocode
- Evaluate complexity of an algorithm from a pseudocode
- Understand recursive algorithms
- Evaluate time complexity of recursive algorithms
- Create a program to plot standard functions

Content of this lecture

- Part I: Algorithms, Code Snippets, and Time Order
 - Writing an algorithm and pseudocode
 - Time order definition
 - Example pseudocode and complexity evaluation
- Part II: Recursive algorithms
 - Recursive algorithm's complexity
 - Asymptotic order evaluation
- Part –III: Exercise
 - Exercises
 - Write a recursive algorithm

Algorithm and Code Snippets

Writing an Algorithm/ Pseudocode

Write an algorithm to count distinct elements of an array of size n.

Algorithm: Counting distinct elements of an array

Input: An array A of size n

Output: number of distinct elements

```
CountDistinctElements(data A)
```

```
Count = 1; /* Initialise a variable to 1 */
for i = 1 to n do /* Pick all elements one by one */
    j = 0
    for j = 0 to j < i do /* scan array and compare elements*/
        if A[i] == A[j] then
            break loop
        end if
    end for
    if i == j then
        Count = Count + 1
    end if
end for
return Count
</pre>
```

Writing a Code Snippets/Listing

```
int countDistinctElement(int A[ ])
  int n = sizeof(A)
  int count = 1;
  /* Pick all elements one by one */
  for (int i = 1; i < n; i++) {</pre>
    int j = 0;
    for (j = 0; j < i; j++)</pre>
      if (A[i] == A[j])
        break;
    /* increment counter if all previous elements were distinct */
    if (i == j)
       count ++;
  }
  return count;
```

Time Order

- •0(1)– Constant
- $O(\log n)$
- $\bullet O(\mathbf{n})$
- $O(n \log n)$
- $O(\mathbf{n}^k)$
- $O(\mathbf{k}^n)$
- 0(n!)

- Logarithmic
- Linear
- Logarithmic
- Polynomial
- Exponential
- Factorial

Fundamental of Computer Science CS1FC16: Lecture 02, Part – I

Iterative Algorithm

Dr Varun Ojha Department of Computer Science

Constant

// Code Snippet: SUM
int sumSeries(int[] A){
 n = size(A); // 1 unit
 ans = n*(n+1)/2; // 1 unit
return ans;

Algorithm Complexity

1 unit + 1 unit

$$T(n) = 1 + 1 = O(1)$$

Since 1 + 1 is constant, we will write O(1) instead of saying O(1+1). This is because the "rate of growth" will be constant no matter what the size of input A is.

Linear

i = 1// Code Snippet: Sum Series • int sumSeries(int[] A): i = kn = size(A); // c unit sum = 0; // c unit $T(n) = 1 + 1 + \dots + 1 + c + c$ for(i = 0; i<n; i++){</pre> T(n) = k + 2csum += A[i]; // 1 unit n times } return sum; We will write }

execution

1

1

•

1

times

For k = n, the algorithm will stop. Hence, T(n) = n

Algorithm Complexity

Trace

i = 0

variables

T(n) = O(n)

Logarithmic

```
// Code Snippet: Count
int count(int n):
   n = size(A); // c unit
   count = 0; // c unit
  for(i = n; i >= 1; i/2){
       count += 1; // 1 unit
   }
return sum;
}
```

Algorithm	Complexity		
Trace	execution		
variables	times		
i = n	1		
i = n/2	1		
$i = n/2^2$	1		
:	:		
$i = n/2^{k-1}$	1		

For $\frac{n}{2^k} \le 1$, i.e., $2^k \le n$ or $k = \log n$ iterations the algorithm will stop. Hence, $T(n) = \log n$ and, we will

write

 $T(n) = O(\log n)$

Polynomial

```
// Code Snippet COUNT
int count(int[] A){
  n = size(A); // 1 unit
  count = 0; // 1 unit
  for(i = 0; i<n; i++){</pre>
    for(j = 0; j<n; j++){</pre>
         count += 1 // 1 unit n^2 times
return count;
```

Algorithm Complexity

Trace				execution			
variables			times				
i	=	0,	j	=	0,1,2,n	n	
i	=	1,	j	=	0,1,2,n	n	
					•	•	
i	=	k,	i	=	0,1,2,n	n	

 $T(n) = n + n + \dots + n = kn$

For k = n, the algorithm will stop. Hence, $T(n) = n^2$ We will write:

 $T(n) = O(n^2)$

Fundamental of Computer Science CS1FC16: Lecture 02, Part – II

Recursive Algorithms

Dr Varun Ojha Department of Computer Science

Recursive Algorithm, Example 1

// Recursive Algorithm int funCall(int n){ // do some other stuff if (n > 0){ // do some other stuff print(n); # 1 unit funCall(n -1) # calls itself // do some other stuff

Equation

$$T(n) = \begin{cases} 1 & n = 0 \\ T(n-1) + 1 & n > 0 \end{cases}$$

Complexity $\rightarrow O(n)$

How?

Substitution method

T(n) = T(n-1) + 1 -> O(n)?

We have: $T(n) = \begin{cases} 1 & n = 0 \\ T(n-1) + 1 & n > 0 \end{cases}$ We want to solve: T(n) = T(n-1) + 1(1)Substitute T(n-1) in Eq. (1) T(n) = [T(n-2) + 1] + 1T(n) = T(n-2) + 2(2) Substitute T(n-2) in Eq. (2) T(n) = [T(n-3) + 1] + 2T(n) = T(n-3) + 3(3) Substitute T(n-3) in Eq. (3) and so on up to k 2 We will have T(n) = [T(n-k) + 1] + k - 1T(n) = T(n-k) + k(k)

Find T(n - 1) value Since we have T(n) = T(n - 1) + 1Therefore, T(n - 1) = T(n - 1 - 1) + 1 = T(n - 2) + 1Find T(n - 2) value T(n - 2) = T(n - 2 - 1) + 1= T(n - 3) + 1

Assume k = n in Eq. (k), for this recurrence comes to a halt.

```
T(n) = T(n - n) + n

T(n) = T(0) + n

T(n) = 1 + n

T(n) = 0(n)
```

Tracing a recurrence tree $T(n) = T(n-1) + 1 \rightarrow O(n)$?

Dr Varun Ojha, University of Reading

Recursive Algorithm, Example 2

```
// Recursive Algorithm
```

}

```
int funCall(int n):
    // do some other stuff
    if (n > 1){
        // do some other stuff
        for(i = 0; i<n; i++){
            count += 1 // 1 unit n times
        }
        funCall(n/2) // calls itself
        funCall(n/2) // calls itself
        // do some other stuff</pre>
```

```
Equation
```

$$T(n) = \begin{cases} 1 & n = 1\\ 2T\left(\frac{n}{2}\right) + n & n > 1 \end{cases}$$

Complexity -> O(n log n)

How?

Substitution method

T(n) = 2T(n/2) + n -> O(nlog n)?

We have: $T(n) = \begin{cases} 1 & n = 1 \\ 2T(n/2) + n & n > 1 \end{cases}$ We want to solve: T(n) = 2T(n/2) + n(1) Substitute T(n/2) in Eq. (1) $T(n) = 2[2T\left(\frac{n}{2^2}\right) + n/2] + n$ $T(n) = 2^2 T(n/2^2) + 2n$ (2) Substitute $T(n/2^2)$ in Eq. (2) $T(n) = 2^{2} \left[2T\left(\frac{n}{2^{3}}\right) + n/2^{2} \right] + 2n$ $T(n) = 2^3 T(n/2^3) + 3n$ (3)Substitute $T(n/2^3)$ in Eq. (3) and so on upto k 2 We will have $T(n) = 2^{k} \left[2T(n/2^{k}) + n/2^{k} \right] + (k-1)n$ $T(n) = 2^k T(n/2^k) + kn$ (k)

Find T(n/2) value Since we have T(n) = 2T(n/2) + nTherefore, T(n/2) = 2T(n/2/2) + n/2 $= 2T(n/2^2) + n/2$ Find $T(n/2^2)$ value $T(n/2^2) = 2\hat{T}(n/2^2/2) + n/2^2$ $= 2T(n/2^3) + n/2^2$ Assume $2^k = n$ in Eq. (k), for this recurrence comes to a halt. T(n) = T(n/n) + knT(n) = nT(1) + knT(n) = n + nkIf $2^k = n$, then $k = \log n$ $T(n) = O(n \log n) /*$ we ignore n because highest term is $n \log n */$

Tracing a recurrence tree $T(n) = 2T(n/2) + n \rightarrow 0(nlog n)$?

Tracing a recurrence tree

T(n) = 2T(n/2) + n -> O(nlog n)?

Fundamental of Computer Science CS1FC16: Lecture 02, Part – III

Exercises and Practical

Dr Varun Ojha Department of Computer Science

Exercise

1. Show that T(n) = T(n - 1) + n is $O(n^2)$

2. Show that
$$T(n) = T\left(\frac{n}{2}\right) + 1$$
 is $O(\log n)$

Show answers for 1 and 2 using a tree.

Exercise

- Write a program to produce sum of a series using a recursive algorithm and analysis time order of your algorithm.
- Write a program to compute factorial of a number using a recursive algorithm and analysis time order of your algorithm.
- Watch video for practicals