Complexity Analysis of Algorithms

Dr Varun Ojha
Department of Computer Science

*** University of
Reading

Learning Objectives

On completion of three parts of this lecture, you will be able to

- Understand how to write algorithm / pseudocode
- Evaluate complexity of an algorithm from a pseudocode
- Understand recursive algorithms
- Evaluate time complexity of recursive algorithms
- Create a program to plot standard functions

Content of this lecture

- Part - I: Algorithms, Code Snippets, and Time Order
- Writing an algorithm and pseudocode
- Time order definition
- Example pseudocode and complexity evaluation
- Part - II: Recursive algorithms
- Recursive algorithm's complexity
- Asymptotic order evaluation
- Part -III: Exercise
- Exercises
- Write a recursive algorithm

Algorithm and Code Snippets

Writing an Algorithm/ Pseudocode

Write an algorithm to count distinct elements of an array of size n.

Algorithm: Counting distinct elements of an array
Input: An array A of size n
Output: number of distinct elements
CountDistinctElements(data A)

```
Count = 1; /* Initialise a variable to 1 */
for i = 1 to n do /* Pick all elements one by one */
    j = 0
    for j = 0 to j < i do /* scan array and compare elements*/
        if A[i] == A[j] then
            break loop
        end if
    end for
    if i == j then
        Count = Count + 1
    end if
end for
```

return Count

Writing a Code Snippets/Listing

```
int countDistinctElement(int A[ ])
{
    int n = sizeof(A)
    int count = 1;
    /* Pick all elements one by one */
    for (int i = 1; i < n; i++) {
        int j = 0;
        for (j = 0; j < i; j++)
            if (A[i] == A[j])
                break;
        /* increment counter if all previous elements were distinct */
        if (i == j)
            count ++;
    }
    return count;
}
```


Time Order

-O(1) - Constant

- $O(\log n) \quad$ Logarithmic
-O(n) - Linear
- $O(n \log n)$ - Logarithmic
- $O\left(\boldsymbol{n}^{k}\right) \quad-$ Polynomial
- $O\left(\boldsymbol{k}^{n}\right) \quad$ - Exponential
- $O(\boldsymbol{n}!) \quad$ Factorial

Iterative Algorithm

Dr Varun Ojha
Department of Computer Science

: University of

Constant

Algorithm Complexity

1 unit + 1 unit

Code Snippet: SUM

int sumSeries(int[] A)\{

$$
\begin{aligned}
& \mathrm{n}=\operatorname{size}(\mathrm{A}) ; / / 1 \text { unit } \\
& \text { ans }=\mathrm{n}^{*}(\mathrm{n}+1) / 2 ; / / 1 \text { unit }
\end{aligned}
$$

return ans;
\}

$$
T(n)=1+1=O(1)
$$

```
Since 1 + 1 is constant,
```

we will write O(1)
instead of saying
$0(1+1)$. This is because
the "rate of growth"
will be constant no
matter what the size of
input A is.

Linear

Algorithm Complexity
Trace execution
variables times
i = 0 1
i = 1 1
i = k 1
$T(n)=1+1+\cdots+1+c+c$

$$
T(n)=k+2 c
$$

```
For k = n, the algorithm will
stop. Hence, T(n)=n
We will write
```

$$
T(n)=O(n)
$$

Logarithmic

```
// Code Snippet: Count
int count(int n):
    n = size(A); // c unit
    count = 0; // c unit
    for(i = n; i >= 1; i/2){
        count += 1; // 1 unit
    }
return sum;
}
```

```
Algorithm Complexity
Trace
variables times
\(i=n\)
\(\mathrm{i}=n / 2 \quad 1\)
\(\mathrm{i}=n / 2^{2} \quad 1\)
\(\mathrm{i}=n / 2^{k-1} \quad 1\)
For \(\frac{n}{2^{k}} \leq 1\),
i.e., \(2^{k} \leq n\) or \(k=\log n\)
iterations the algorithm will
stop.
Hence, \(T(n)=\log n\) and, we will
write
```

$$
T(n)=O(\log n)
$$

Polynomial

// Code Snippet COUNT
int count(int[] A)\{
$\mathrm{n}=\operatorname{size}(\mathrm{A})$; // 1 unit
count = 0 ; // 1 unit
for(i = 0; i<n; i++)\{
for $(j=0 ; j<n ; j++)\{$
count $+=1 / / 1$ unit $n^{\wedge} 2$ times \} \}
return count;
\}

Algorithm Complexity

Trace
variables
$i=0, j=0,1,2, \ldots n$
$i=1, j=0,1,2, \ldots n$
execution times
$i=k, j=0,1,2, \ldots n$
$T(n)=n+n+\cdots+n=k n$

For $k=n$, the algorithm will stop. Hence, $T(n)=n^{2}$ We will write:

$$
T(n)=O\left(n^{2}\right)
$$

Recursive Algorithms

Dr Varun Ojha
Department of Computer Science

*** University of
Reading

Recursive Algorithm, Example 1

// Recursive Algorithm

int funCall(int n)\{
// do some other stuff
if (n > 0) \{
// do some other stuff

$$
\text { print(n); \# } 1 \text { unit }
$$

funCall(n -1) \# calls itself
// do some other stuff
\}

Equation
$T(n)= \begin{cases}1 & n=0 \\ T(n-1)+1 & n>0\end{cases}$

Complexity -> $O(n)$

How?
\}

Substitution method

$T(n)=T(n-1)+1->O(n) ?$

We have:

$$
T(n)= \begin{cases}1 & n=0 \\ T(n-1)+1 & n>0\end{cases}
$$

We want to solve:

$$
\begin{equation*}
T(n)=T(n-1)+1 \tag{1}
\end{equation*}
$$

Substitute $\boldsymbol{T}(\boldsymbol{n}-1)$ in Eq. (1)

$$
\begin{align*}
& T(n)=[T(n-2)+1]+1 \\
& T(n)=T(n-2)+2 \tag{2}
\end{align*}
$$

Substitute $\boldsymbol{T}(\boldsymbol{n}-2)$ in Eq. (2)
$T(n)=[T(n-3)+1]+2$
$T(n)=T(n-3)+3$
Substitute $T(n-3)$ in Eq. (3) and so on up to k

$$
\begin{align*}
& \quad: \\
& \text { We will have } \\
& T(n)=[T(n-k)+1]+k-1 \\
& T(n)=T(n-k)+k \tag{k}
\end{align*}
$$

(k)

$$
\begin{aligned}
& T(n)=T(n-n)+n \\
& T(n)=T(0)+n \\
& T(n)=1+n \\
& T(n)=O(n)
\end{aligned}
$$

Assume $k=n$ in Eq. (k), for this recurrence comes to a halt.

Tracing a recurrence tree

$T(n)=T(n-1)+1->O(n) ?$

// Recursive Algorithm

int funCall(int n)\{
// do some other stuff
if (n > 0)\{
// do some other stuff
print(n); \# 1 unit
funCall(n -1) \# calls itself
// do some other stuff
\}
\}
Equation
$T(n)= \begin{cases}1 & n=0 \\ T(n-1)+1 & n>0\end{cases}$

Recursive Algorithm, Example 2

```
// Recursive Algorithm
int funCall(int n):
    // do some other stuff
    if (n > 1){
        // do some other stuff
        for(i = 0; i<n; i++){
        count += 1 // 1 unit n times
        }
        funCall(n/2) // calls itself
        funCall(n/2) // calls itself
        // do some other stuff
    }
}
```


Substitution method

$T(n)=2 T(n / 2)+n \rightarrow O(n \log n) ?$

We have:

$$
T(n)= \begin{cases}1 & n=1 \\ 2 T(n / 2)+n & n>1\end{cases}
$$

We want to solve:

$$
T(n)=2 T(n / 2)+n
$$

Substitute $\boldsymbol{T}(\boldsymbol{n} / 2)$ in Eq. (1)

$$
\begin{aligned}
& T(n)=2\left[2 T\left(\frac{n}{2^{2}}\right)+n / 2\right]+n \\
& T(n)=2^{2} T\left(n / 2^{2}\right)+2 n
\end{aligned}
$$

Substitute $\boldsymbol{T}\left(\boldsymbol{n} / \mathbf{2}^{\mathbf{2}}\right)$ in Eq. (2)

$$
\begin{align*}
& T(n)=2^{2}\left[2 T\left(\frac{n}{2^{3}}\right)+n / 2^{2}\right]+2 n \\
& T(n)=2^{3} T\left(n / 2^{3}\right)+3 n \tag{3}
\end{align*}
$$

Substitute $\boldsymbol{T}\left(n / 2^{3}\right)$ in Eq. (3) and so on upto k :

We will have

$$
\begin{aligned}
& T(n)=2^{k}\left[2 T\left(n / 2^{k}\right)+n / 2^{k}\right]+(k-1) n \\
& T(n)=2^{k} T\left(n / 2^{k}\right)+k n
\end{aligned}
$$

(k) Dr Varun Ojha, University of Reading

Since we have
$T(n)=2 T(n / 2)+n$
Therefore,
$T(n / 2)=2 T(n / 2 / 2)+n / 2$

$$
=2 T\left(n / 2^{2}\right)+n / 2
$$

Find $\boldsymbol{T}\left(\boldsymbol{n} / \mathbf{2}^{2}\right)$ value
$T\left(n / 2^{2}\right)=2 T\left(n / 2^{2} / 2\right)+n / 2^{2}$

$$
=2 T\left(n / 2^{3}\right)+n / 2^{2}
$$

Assume $2^{\boldsymbol{k}}=\boldsymbol{n}$ in Eq. (k), for this recurrence comes to a halt.
$T(n)=T(n / n)+k n$
$T(n)=n T(1)+k n$
$T(n)=n+n k$
If $\mathbf{2}^{\boldsymbol{k}}=\boldsymbol{n}$, then $\boldsymbol{k}=\log \boldsymbol{n}$
$T(n)=\boldsymbol{O}(n \log n) / *$ we ignore n because highest term is $n \log n * /$

Tracing a recurrence tree

$T(n)=2 T(n / 2)+n->O(n l o g n) ?$

// Recursive Algorithm

int funCall(int n):
// do some other stuff
if ($\mathrm{n}>1$) $\{$
// do some other stuff
for(i = 0; i<n; i++)\{
count += 1
\}
funCall(n/2) // calls
funCall(n/2) // calls \}
\}
Equation
$T(n)= \begin{cases}1 & n=1 \\ 2 T(n / 2)+n & n>1\end{cases}$

Tracing a recurrence tree

$T(n)=2 T(n / 2)+n->O(n l o g n) ?$

$\boldsymbol{T}(\mathrm{n})=\boldsymbol{n k}$
Assume $2^{k}=n$ in tree for this recurrence comes to a halt. $T(n)=n k$
If $\mathbf{2}^{\boldsymbol{k}}=\boldsymbol{n}$, then $\boldsymbol{k}=\log \boldsymbol{n}$
$T(n)=O(n \log n)$

Exercises and Practical

Dr Varun Ojha
Department of Computer Science

*** University of
Reading

Exercise

1. Show that $T(n)=T(n-1)+n$ is $O\left(n^{2}\right)$
2. Show that $T(n)=T\left(\frac{n}{2}\right)+1$ is $O(\log n)$

Show answers for 1 and 2 using a tree.

Exercise

- Write a program to produce sum of a series using a recursive algorithm and analysis time order of your algorithm.
- Write a program to compute factorial of a number using a recursive algorithm and analysis time order of your algorithm.
- Watch video for practicals

