
Complexity Analysis
of Algorithms

Dr Varun Ojha
Department of Computer Science

Fundamental of Computer Science
CS1FC16: Lecture 02

Learning Objectives

On completion of three parts of this lecture, you will be able to
• Understand how to write algorithm / pseudocode
• Evaluate complexity of an algorithm from a pseudocode
• Understand recursive algorithms
• Evaluate time complexity of recursive algorithms
• Create a program to plot standard functions

Dr Varun Ojha, University of Reading 2

Content of this lecture
• Part – I: Algorithms, Code Snippets, and Time Order

• Writing an algorithm and pseudocode
• Time order definition
• Example pseudocode and complexity evaluation

• Part – II: Recursive algorithms
• Recursive algorithm’s complexity
• Asymptotic order evaluation

• Part –III: Exercise
• Exercises
• Write a recursive algorithm

Dr Varun Ojha, University of Reading 3

Algorithm and
Code Snippets

Writing an Algorithm/ Pseudocode
Write an algorithm to count distinct elements of an array of size n.

Dr Varun Ojha, University of Reading 5

Algorithm: Counting distinct elements of an array

Input: An array A of size n

Output: number of distinct elements

CountDistinctElements(data A)

Count = 1; /* Initialise a variable to 1 */
for i = 1 to n do /* Pick all elements one by one */

j = 0
for j = 0 to j < i do /* scan array and compare elements*/

if A[i] == A[j] then
break loop

end if
end for
if i == j then

Count = Count + 1
end if

end for
return Count

Writing a Code Snippets/Listing
int countDistinctElement(int A[])
{
int n = sizeof(A)
int count = 1;
/* Pick all elements one by one */
for (int i = 1; i < n; i++) {
int j = 0;
for (j = 0; j < i; j++)
if (A[i] == A[j])
break;

/* increment counter if all previous elements were distinct */
if (i == j)

count ++;
}
return count;

}
Dr Varun Ojha, University of Reading 6

Time Order

•𝑂(1) – Constant
•𝑂(𝐥𝐨𝐠 𝒏) – Logarithmic
•𝑂(𝒏) – Linear
•𝑂(𝒏 𝐥𝐨𝐠 𝒏) – Logarithmic
•𝑂(𝒏𝒌) – Polynomial
•𝑂(𝒌𝒏) – Exponential
•𝑂(𝒏!) – Factorial

Dr Varun Ojha, University of Reading 7

Iterative Algorithm
Dr Varun Ojha

Department of Computer Science

Fundamental of Computer Science
CS1FC16: Lecture 02, Part – I

// Code Snippet: SUM
int sumSeries(int[] A){

n = size(A); // 1 unit

ans = n*(n+1)/2; // 1 unit

return ans;
}

Algorithm Complexity

1 unit + 1 unit

𝑇(𝑛) = 1 + 1 = 𝑂(1)

Since 1 + 1 is constant,
we will write O(1)
instead of saying
O(1+1). This is because
the “rate of growth”
will be constant no
matter what the size of
input A is.

Constant

// Code Snippet: Sum Series
int sumSeries(int[] A):

n = size(A); // c unit
sum = 0; // c unit
for(i = 0; i<n; i++){

sum += A[i]; // 1 unit n times
}

return sum;
}

Algorithm Complexity
Linear Trace

variables
execution
times

i = 0 1

i = 1 1

: :

i = k 1

𝑇 𝑛 = 1 + 1 +⋯+ 1 + 𝑐 + 𝑐

𝑇(𝑛) = 𝑘 + 2𝑐

For 𝑘 = 𝑛, the algorithm will
stop. Hence, 𝑇 𝑛 = 𝑛
We will write

𝑇(𝑛) = 𝑂(𝑛)

// Code Snippet: Count
int count(int n):

n = size(A); // c unit
count = 0; // c unit
for(i = n; i >= 1; i/2){

count += 1; // 1 unit
}

return sum;
}

Algorithm Complexity
Logarithmic Trace

variables
execution
times

i = 𝑛 1

i = 𝑛/2 1

i = 𝑛/2! 1

: :

i = 𝑛/2"#$ 1

For !
"!

≤ 1,

i.e., 2# ≤ 𝑛 or 𝑘 = log 𝑛
iterations the algorithm will
stop.

Hence, 𝑇 𝑛 = log 𝑛 and, we will
write

𝑇(𝑛) = 𝑂(log 𝑛)

// Code Snippet COUNT
int count(int[] A){

n = size(A); // 1 unit
count = 0; // 1 unit
for(i = 0; i<n; i++){

for(j = 0; j<n; j++){
count += 1 // 1 unit n^2 times

}
}

return count;
}

Algorithm Complexity

𝑇 𝑛 = 𝑛 + 𝑛 +⋯+ 𝑛 = 𝑘𝑛

For 𝑘 = 𝑛, the algorithm
will stop. Hence, 𝑇 𝑛 = 𝑛%

We will write:

𝑇(𝑛) = 𝑂(𝑛%)

Polynomial
Trace
variables

execution
times

i = 0, j = 0,1,2,...n n

i = 1, j = 0,1,2,...n n

: :

i = k, j = 0,1,2,...n n

Recursive Algorithms
Dr Varun Ojha

Department of Computer Science

Fundamental of Computer Science
CS1FC16: Lecture 02, Part – II

// Recursive Algorithm
int funCall(int n){

// do some other stuff
if (n > 0){

// do some other stuff
print(n); # 1 unit

funCall(n -1) # calls itself
// do some other stuff
}

}

Equation

𝑇(𝑛) = &1 𝑛 = 0
𝑇 𝑛 − 1 + 1 𝑛 > 0

Complexity -> O(n)

How?

Recursive Algorithm, Example 1

T(n) = T(n-1) + 1 -> O(n)?
We have:
𝑻 𝒏 =)𝟏 𝒏 = 𝟎

𝑻 𝒏 − 𝟏 + 𝟏 𝒏 > 𝟎

We want to solve:
𝑇 𝑛 = 𝑇 𝑛 − 1 + 1 (1)
Substitute 𝑻 𝒏 − 𝟏 in Eq. (1)
𝑇 𝑛 = [𝑇 𝑛 − 2 + 1] + 1

𝑇 𝑛 = 𝑇 𝑛 − 2 + 2 (2)
Substitute 𝑻 𝒏 − 𝟐 in Eq. (2)
𝑇 𝑛 = [𝑇 𝑛 − 3 + 1] + 2

𝑇 𝑛 = 𝑇 𝑛 − 3 + 3 (3)

Substitute 𝑻 𝒏 − 𝟑 in Eq. (3) and so on up to 𝒌
:

We will have
𝑇 𝑛 = 𝑇 𝑛 − 𝑘 + 1 + 𝑘 − 1

𝑇 𝑛 = 𝑇 𝑛 − 𝑘 + 𝑘 (𝑘)
Dr Varun Ojha, University of Reading 15

Find 𝑻 𝒏 − 𝟏 value
Since we have
𝑇 𝑛 = 𝑇 𝑛 − 1 + 1

Therefore,
𝑇 𝑛 − 1 = 𝑇 𝑛 − 1 − 1 + 1

= 𝑇 𝑛 − 2 + 1

Find 𝑻 𝒏 − 𝟐 value
𝑇 𝑛 − 2 = 𝑇 𝑛 − 2 − 1 + 1

= 𝑇 𝑛 − 3 + 1

Assume 𝒌 = 𝒏 in Eq. (𝒌), for this
recurrence comes to a halt.
𝑇 𝑛 = 𝑇 𝑛 − 𝑛 + 𝑛
𝑇 𝑛 = 𝑇 0 + 𝑛
𝑇 𝑛 = 1 + 𝑛
𝑻 𝒏 = 𝑶(𝒏)

Substitution method

Dr Varun Ojha, University of Reading 16

T(n) = T(n-1) + 1 -> O(n)?
Tracing a recurrence tree

// Recursive Algorithm

int funCall(int n){
// do some other stuff
if (n > 0){

// do some other stuff
print(n); # 1 unit

funCall(n -1) # calls itself
// do some other stuff
}

}

Equation

𝑇(𝑛) = .1 𝑛 = 0
𝑇 𝑛 − 1 + 1 𝑛 > 0

𝑻(𝒏)

𝑻(𝒏 − 𝟏)

𝑻(𝒏 − 𝟐)

print n

print n−1

print n−2

𝑻(𝟎)

Call end

𝑻(𝟐)

𝑻(𝟏)

print 1

print 2
𝑇 𝑛 = 1 + 1 +⋯+ 1 + 1

= 𝑛
= 𝑶(𝒏)

// Recursive Algorithm

int funCall(int n):
// do some other stuff
if (n > 1){

// do some other stuff
for(i = 0; i<n; i++){

count += 1 // 1 unit n times
}
funCall(n/2) // calls itself
funCall(n/2) // calls itself
// do some other stuff

}
}

Equation

𝑇 𝑛 = ,
1 𝑛 = 1
2𝑇

𝑛
2
+ 𝑛 𝑛 > 1

Complexity -> O(n log n)

How?

Recursive Algorithm, Example 2

T(n) = 2T(n/2) + n -> O(nlog n)?
We have:
𝑻 𝒏 =)𝟏 𝒏 = 𝟏

𝟐𝑻 𝒏/𝟐 + 𝒏 𝒏 > 𝟏

We want to solve:
𝑇 𝑛 = 2𝑇 𝑛/2 + 𝑛 (1)
Substitute 𝑻 𝒏/𝟐 in Eq. (1)
𝑇 𝑛 = 2[2𝑇

𝑛
2!

+ 𝑛/2] + 𝑛

𝑇 𝑛 = 2!𝑇 𝑛/2! + 2𝑛 (2)

Substitute 𝑻 𝒏/𝟐𝟐 in Eq. (2)
𝑇 𝑛 = 2![2𝑇

𝑛
2& + 𝑛/2!] + 2𝑛

𝑇 𝑛 = 2&𝑇 𝑛/2& + 3𝑛 (3)

Substitute 𝑻 𝒏/𝟐𝟑 in Eq. (3) and so on upto 𝒌

:
We will have
𝑇 𝑛 = 2" 2𝑇 𝑛/2" + 𝑛/2" + (𝑘 − 1)𝑛

𝑇 𝑛 = 2"𝑇 𝑛/2" + 𝑘𝑛 (𝑘) Dr Varun Ojha, University of Reading 18

Find 𝑻 𝒏/𝟐 value
Since we have
𝑇 𝑛 = 2𝑇 𝑛/2 + 𝑛
Therefore,
𝑇 𝑛/2 = 2𝑇 𝑛/2/2 + 𝑛/2

= 2𝑇 𝑛/2" + 𝑛/2
Find 𝑻 𝒏/𝟐𝟐 value
𝑇(𝑛/2") = 2𝑇(𝑛/2"/2) + 𝑛/2"

= 2𝑇 𝑛/2$ + 𝑛/2"

Assume 𝟐𝒌 = 𝒏 in Eq. (𝒌), for this recurrence
comes to a halt.
𝑇 𝑛 = 𝑇 𝑛/𝑛 + 𝑘𝑛
𝑇 𝑛 = 𝑛𝑇 1 + 𝑘𝑛
𝑇 𝑛 = 𝑛 + 𝑛𝑘
If 𝟐𝒌 = 𝒏 , then 𝒌 = 𝐥𝐨𝐠 𝒏
𝑻 𝒏 = 𝑶(𝒏 𝐥𝐨𝐠 𝒏) /* we ignore n because
highest term is 𝒏 log𝒏 */

Substitution method

Dr Varun Ojha, University of Reading 19

// Recursive Algorithm

int funCall(int n):
// do some other stuff
if (n > 1){

// do some other stuff
for(i = 0; i<n; i++){

count += 1
}
funCall(n/2) // calls
funCall(n/2) // calls

}

}

T(n) = 2T(n/2) + n -> O(nlog n)?
Tracing a recurrence tree

Equation

𝑇 𝑛 = . 1 𝑛 = 1
2𝑇(𝑛/2) + 𝑛 𝑛 > 1

𝑻(𝒏)

𝑻(𝒏/𝟐) 𝑻(𝒏/𝟐)

𝑻(𝒏/𝟐𝟐) 𝑻(𝒏/𝟐𝟐) 𝑻(𝒏/𝟐𝟐) 𝑻(𝒏/𝟐𝟐)

𝑻(𝒏/𝟐𝒌) 𝑻(𝒏/𝟐𝒌) 𝑻(𝒏/𝟐𝒌)𝑻(𝒏/𝟐𝒌)

𝒏

𝒏

𝒏

𝑘

Dr Varun Ojha, University of Reading 20

T(n) = 2T(n/2) + n -> O(nlog n)?
Tracing a recurrence tree

𝑻(𝒏)

𝑻(𝒏/𝟐) 𝑻(𝒏/𝟐)

𝑻(𝒏/𝟐𝟐) 𝑻(𝒏/𝟐𝟐) 𝑻(𝒏/𝟐𝟐) 𝑻(𝒏/𝟐𝟐)

𝑻(𝒏/𝟐𝒌) 𝑻(𝒏/𝟐𝒌) 𝑻(𝒏/𝟐𝒌)𝑻(𝒏/𝟐𝒌)

𝒏

𝒏

𝒏

𝑻 𝒏 = 𝒏𝒌
Assume 2# = 𝑛 in tree for this
recurrence comes to a halt.
𝑇 𝑛 = 𝑛𝑘
If 𝟐𝒌 = 𝒏 , then 𝒌 = 𝐥𝐨𝐠 𝒏
𝑻 𝒏 = 𝑶(𝒏 𝐥𝐨𝐠 𝒏)

1

2

3

𝑘

Dr Varun Ojha
Department of Computer Science

Fundamental of Computer Science
CS1FC16: Lecture 02, Part – III

Exercises and Practical

Exercise
1. Show that 𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛 is 𝑂 𝑛#

2. Show that 𝑇 𝑛 = 𝑇 $
#
+ 1 is 𝑂 log 𝑛

Show answers for 1 and 2 using a tree.

Dr Varun Ojha, University of Reading 22

Exercise

• Write a program to produce sum of a series using a recursive
algorithm and analysis time order of your algorithm.

• Write a program to compute factorial of a number using a
recursive algorithm and analysis time order of your algorithm.

• Watch video for practicals

Dr Varun Ojha, University of Reading 23

