
Searching

Dr Varun Ojha

Department of Computer Science

Fundamental of Computer Science

CS1FC16: Lecture 03

Learning Objectives

On completion of three parts of this lecture, you will be able to

• Understand how to write a search algorithm

• Evaluate complexity of search algorithms

• Write recursive binary algorithm for faster search

Dr Varun Ojha, University of Reading 2

Content of this lecture

• Part – I: Linear search

• Search algorithms basics

• Linear search

• Part – II: Binary search

• Binary search

• Recursive binary search

• Part –III

• Exercises

Dr Varun Ojha, University of Reading 3

Linear Search

Dr Varun Ojha

Department of Computer Science

Fundamental of Computer Science

CS1FC16: Lecture 03, Part – I

Search

search(datum, datastructure) -> (index, found)

• A search algorithm takes a datum (key element) and a
datastructure (input data) as arguments

• If the datum is in the datastructure then it returns an index at
which the datum can be found in the datastructure

• If the datum is not in the datastructure then it returns a special
value to indicate this fact

Dr Varun Ojha, University of Reading 5

Selection

• A selection algorithm searches for a datum with a desired

property

• Find the median of a list of items

• Find the element equal to or just greater than the average of a

list of numbers

• Find an existing customer who is likely to spend £1000 in the

coming year

Dr Varun Ojha, University of Reading 6

Matching

• A matching algorithm searches for a pattern in a datastructure

• Find the position of “sub” in “this is a substring”

• Find consecutive [1,0,1] in a list [1,2,0,1,0,1,1,1,0,2,1,0,1].

• Patterns might you like to search for

Dr Varun Ojha, University of Reading 7

Exhaustive Search

• Search every element of a datastructure to see if it is the target

element

• For example, search a sequence of elements

• How would you arrange a parallel search algorithm?

• The most general algorithm in Computer Science is generate

and test. It generates a space of candidate solutions, tests each

element in the space to see if it is a solution and then reports its

findings

Dr Varun Ojha, University of Reading 8

Indexes

• If data are sorted in some way, then it may be possible to

develop more efficient search algorithms

• Search an alphabetical index

• What is the collation sequence for digits, upper case letters,

lower case letters, punctuation?

• Databases typically spend a great deal of time constructing

many indexes of search keys so that searches will be efficient

Dr Varun Ojha, University of Reading 9

Linear Search

Input: datum, datastructure

Output: (index, found)

LinearSearch(datum, datastructure)

index := undef

found := false

for i from 1 to length(datastructure) do

d = datastructure(i)

if d = datum then

index := i

found := true

return

Dr Varun Ojha, University of Reading 10

Linear Search

Input: datum, datastructure

Output: (index, found)

LinearSearch(datum, datastructure)

index := undef

found := false

for i from 1 to
length(datastructure) do

d = datastructure(i)

if d = datum then

index := i

found := true

return Dr Varun Ojha, University of Reading 11

Questions:

• What is the worst-case time

of this algorithm?

• What is the average time of

this algorithm?

• What is the best-case time

of this algorithm?

Linear Search: Average Time

Input: datum, datastructure

Output: (index, found)

LinearSearch(datum, datastructure)

index := undef

found := false

for i from 1 to
length(datastructure) do

d = datastructure(i)

if d = datum then
index := i
found := true
return

Dr Varun Ojha, University of Reading 12

• Suppose that a sequence is indexed
from 𝑖 = 1

• Suppose that processing the
element in position takes 2𝑖
operations

• Let 𝑇 𝑛 be a function that returns
the average time, 𝑡, that it takes to
process 𝑛 index positions such that
the integer 𝑛 is positive. Then:

𝑇 𝑛 =
1

𝑛

𝑖=1

𝑛

2𝑖, for all 𝑛 > 0, 𝑛 ∈ ℤ

Linear Search: Average Time

Input: datum, datastructure

Output: (index, found)

LinearSearch(datum, datastructure)

index := undef

found := false

for i from 1 to
length(datastructure) do

d = datastructure(i)

if d = datum then
index := i
found := true
return

Dr Varun Ojha, University of Reading 13

𝑇 𝑛 =
1

𝑛

𝑖=1

𝑛

2𝑖

=
1

𝑛
2 ×

𝑛 𝑛 + 1

2

=
1

𝑛
𝑛 𝑛 + 1

= 𝑛 + 1
𝑇 𝑛 = 𝑂(𝑛)

Binary Search

Dr Varun Ojha

Department of Computer Science

Fundamental of Computer Science

CS1FC16: Lecture 03, Part – II

Binary Search

• Input an ordered sequence of real numbers – an array

• Cut the sequence in half

• Decide which half the target datum lies in

• Recurse until the target has been identified or excluded

Dr Varun Ojha, University of Reading 15

Binary Search
Input: target, array

Output: (index, found)

BinarySearch(target, array)

first := 0

last := length(array) - 1

while first <= last do

middle = (first + last)/2

if array(middle) = target then

return(middle, true)

elseif array(middle) > target then /* Search left. */

last := middle - 1

else /* Search right. */

first := middle + 1

endif

endwhile

return(index, false) /* target not found */

Dr Varun Ojha, University of Reading 16

Binary Search: Numeric Example

Input: target, array

Output: (index, found)

BinarySearch(target, array)

first := 0 /* F */

last := length(array) - 1 /* L */

while first <= last do

middle = (first + last)/2 /* M */

if array(middle) = target then

return(middle, true)

elseif array(middle) > target then

last := middle - 1

else

first := middle + 1

endif

endwhile

return(index, false)

Dr Varun Ojha, University of Reading 17

Find in, target = 1 in

array [0 1 1 2 3 5 8 13 21]

[0 1 1 2 3 5 8 13 21]

[0 1 1 2 3 5 8 13 21]

index of ‘1’= 2, found true

F M L

F M L

Binary Search: Complexity

Input: target, array

Output: (index, found)

BinarySearch(target, array)

first := 0 /* F */

last := length(array) - 1 /* L */

while first <= last do

middle = (first + last)/2 /* M */

if array(middle) = target then

return(middle, true)

elseif array(middle) > target then

last := middle - 1

else

first := middle + 1

endif

endwhile

return(index, false)

Dr Varun Ojha, University of Reading 18

Worst case time complexity.

• Let 𝑛 = 2𝑘 be the number of elements
with integral 𝑘 > 0

• Initially there are 𝑛 = 2𝑘 elements to be
searched

• After step 1 there are
𝑛

2
= 2𝑘−1 elements

• After step 2 there are
𝑛

22
= 2𝑘−2 elements

• After step 𝑘 there is
𝑛

2𝑘
= 2𝑘−𝑘 = 20 = 1

element. Hence, algorithm terminates

Binary Search: Complexity

Input: target, array

Output: (index, found)

BinarySearch(target, array)

first := 0 /* F */

last := length(array) - 1 /* L */

while first <= last do

middle = (first + last)/2 /* M */

if array(middle) = target then

return(middle, true)

elseif array(middle) > target then

last := middle - 1

else

first := middle + 1

endif

endwhile

return(index, false)

Dr Varun Ojha, University of Reading 19

Worst case time complexity.

• Algorithm terminates after 𝑘 step (partitions)

• So, the time order (complexity), measured in
the number of steps, 𝑘, varies with the
number of elements, 𝑛, as:

• 2𝑘 = 𝑛

• log 2𝑘 = log 𝑛

• 𝑘 = log 𝑛

• Thus, binary search has time order 𝑂(log 𝑛)

Recursive Binary Search

Input: target, array

Output: (index, found)

BinarySearchRecursive(T, A(F,…,L)) /* T indicate target, A(F,…, L) is a sorted array of numbers */

if F <= L then /* F indicate first, L indicate last */

M = (F + L)/2 /* M indicate middle */

if A(M)= T then

return(M, true)

if A(M) > T then

BinarySearchRecursive(T, A(F,…,M-1)) /* A(F - M-1) -> search left */

if A(M) < T then

BinarySearchRecursive(T, A(M+1,…,L)) /* A(M+1 - L) -> search right */

else

return(index, false)

endif

Dr Varun Ojha, University of Reading 20

Recursive Binary Search: Complexity

Input: target, array

Output: (index, found)

BinarySearchR(T, A(F,…,L))

if F <= L then

M = (F + L)/2

if A(M)= T then

return(M, true)

if A(M) > T then

BinarySearchR(T, A(F,…,M-1))

if A(M) < T then

BinarySearchR(T, A(M+1,…,L))

else

return(index, false)

endif

Dr Varun Ojha, University of Reading 21

𝑻(𝒏)

𝑻(𝟏)

𝑻(𝒏/𝟐)

𝑻(𝒏/𝟐)

𝑶𝒓

𝑻(𝟎)

• 𝑻(𝒏) denotes the time
complexity of binary search for
an input of size an input of size
𝑛

• 𝑻 𝒏 = 𝟎, i.e., target does not
present

• 𝑻 𝒏 = 𝟏, i.e., smallest
sequence user can supply

• 𝑻 𝒏 = 𝟏 + 𝑻(𝒏/𝟐)

• Let 𝒏 = 𝟐𝒌,

• Solve the following recurrence
relation:

𝑻 𝒏 = 𝑻(𝟐𝒌)

Recursive Binary Search: Complexity

Dr Varun Ojha, University of Reading 22

• 𝑇 𝑛 = 𝑇 2𝑘

• = 1 + 𝑇 2𝑘−1 /* after step 1 */

• = 1 + 1 + 𝑇 2𝑘−1 −1

• = 2 + 𝑇 2𝑘−2 /* after step 2 */

• = 2 + 1 + 𝑇 2𝑘−2 −1

• = 3 + 𝑇 2𝑘−3 /* after step 3 */

• ⋯

• = 𝑘 + 𝑇 2𝑘−𝑘 /* after step 𝑘 */

• = 𝑘 + 𝑇 20

• = 𝑘 + 1

• 𝑇 𝑛 = 𝑘 + 1

• We know

• 2𝑘 = 𝑛

• Therefore, 𝑘 = log2 𝑛

• 𝑻 𝒏 = 𝐥𝐨𝐠𝟐 𝒏 + 𝟏

• Thus, 𝑻 𝒏 = 𝑶(𝐥𝐨𝐠𝟐 𝒏)

Exercises

Dr Varun Ojha

Department of Computer Science

Fundamental of Computer Science

CS1FC16: Lecture 03, Part – III

Exercises
Write a program in C++ for Linear search and Binary search (both iterative

and recursive versions).

• Change target to be searched 𝑛 times and compute the average

empirical time of your algorithm.

• Change length of input data (array size) between 10 - 100 and compute

the average empirical wall-clock time your algorithm takes to find a target
from the arrays. Hint: Use “random number generator” to

generate array of variable length.

Dr Varun Ojha, University of Reading 24

