
Sorting

Dr Varun Ojha

Department of Computer Science

Fundamental of Computer Science

CS1FC16: Lecture 04

Learning Objectives

On completion of this lecture, you will be able to

• Understand sorting algorithms and the importance of a faster sorting

• Evaluate time order of sorting algorithms

• Apply knowledge to solve numeric examples

• Create programs to sort given data structure.

Dr Varun Ojha, University of Reading 2

Content of this lecture

• Part – I: Simple techniques

• Insertion sort

• Bubble sort

• Part – II: Divide and conquer techniques

• Merge Sort

• Quick Sort

• Part – III: Non-comparison techniques

• Radix / Bucket sort

• Part – IV:

• Exercises

Dr Varun Ojha, University of Reading 3

Sorting

sort(datastructure) -> (datastructure)

• A sorting algorithm takes a datastructure and sorts its
elements into ascending or else descending order

• In general, the elements are records which are sorted in terms
of one or more of their fields – the key(s)

• Repetitions of an element are usually allowed so that the sorted
list may be in partial order not total order

• A stable sort keeps repeated elements in the order the
repetitions were given. An unstable sort may move them

Dr Varun Ojha, University of Reading 4

Simple Algorithms 𝑶(𝒏𝟐)

Dr Varun Ojha

Department of Computer Science

Fundamental of Computer Science

CS1FC16: Lecture 04, Part – I

Insertion Sort

• Insert each element into its final position in the sorted list

• Start with an empty output list

• Put the first element into the list

• Put the second element before or after the element that is already in
the list

• In general, given a list of 𝑛 elements, produce a list of 𝑛 + 1 sorted
elements by placing the 𝑛 + 1th element in its final position in the
sorted list

Dr Varun Ojha, University of Reading 6

Insertion Sort

input: data /* unsorted array */

output: data /* sorted array */

insertionSort(data)

for i from 2 to length(data) do

m := data(i) /* pick an element for insertion */

j := i - 1

while j >= 1 and data(j) > m do

data(j + 1) := data(j) /* move element to next position */

i = i – 1 /* take a key */

data(j+1) = m /* insert at j+1th position */

Dr Varun Ojha, University of Reading 7

Insertion Sort
i =1: _ [50 30 20 10 40] Unsorted

_ [30 50 20 10 40]

i =2: _ [30 50 20 10 40]

_ [20 30 50 10 40]

i =3: _ [20 30 50 10 40]

_ [10 20 30 50 40]

i =4: _ [10 20 30 50 40]

_ [10 20 30 40 50] SortedDr Varun Ojha, University of Reading 8

input: data /* unsorted */

output: data /* sorted */

insertionSort(data)

for i from 2 to length(data) do

m := data(i) /* pick */

j := i - 1

while j >= 1 and data(j) > m do

data(j + 1) := data(j)

j := j – 1

data(j+1) := m /* insert */

j [50 50 20 10 40]

[30 50 50 10 40]

[30 30 50 10 40]

[20 30 50 50 40]

[20 30 30 50 40]

[20 20 30 50 40]

j m

j m

j

j m

j m

j

Insertion Sort
Complexity

Dr Varun Ojha, University of Reading 9

input: data /* unsorted */

output: data /* sorted */

insertionSort(data)

for i from 2 to length(data) do

m := data(i) /* pick */

j := i - 1

while j >= 1 and data(j) > m do

data(j + 1) := data(j)

j := j – 1

data(j+1) := m /* insert */

• Compute the worst-case time,
𝑇(𝑛), to sort 𝑛 elements

• The for-loop is executed at most
max(0, 𝑛 − 1) times. In general,
this is 𝑛 − 1 times

• The while-loop is executed at most
𝑖 times on the 𝑖th iteration.

• The for-loop, together with the
while-loop, is not executed more
than 𝑖 times on the 𝑖th iteration.

• Therefore, we have

𝑇(𝑛) = ෍

𝑖=1

𝑛−1

𝑖 =
𝑛 𝑛 − 1

2
⟹ 𝑂(𝑛2)

Bubble Sort

input: data /* unsorted array */

output: data /* sorted array */

bubbleSort(data)

for i from 1 to length(data)-1 do

/* by virtue of swapping, the last element is already sorted*/

for j from 1 to length(data)-1 do

if data(j) > data(j+1) do /*if next element is small swap */

temp := data(j) /* preserve data(j) temporarily */

data(j) := data(j+1)/* place element data(j+1) to data(j) */

data(j+1) := temp /* place preserve element to data(j+1) */

Dr Varun Ojha, University of Reading 10

Bubble Sort

input: data /* unsorted array */

output: data /* sorted array */

bubbleSort(data)

for i from 1 to length(data)-1 do

for j from 1 to length(data)-1 do

if data(j) > data(j+1) do

temp := data(j)

data(j) := data(j+1)

data(j+1) := temp

Dr Varun Ojha, University of Reading
11

First Pass: i = 1; run for j from 1 to 4
j = 1 [5 3 1 2 4] Here, bubble sort compares the first
two elements, and swaps 5 and 3 since 5 > 3.
j = 2 [3 5 1 2 4] Swap since 5 > 1
j = 3 [3 1 5 2 4] Swap since 5 > 2
j = 4 [3 1 2 5 4] Swap since 5 > 4.

Second Pass: i = 2; run for j from 1 to 4
j = 1 [3 1 2 4 5] Swap since 3 > 1
j = 2 [1 2 3 4 5] Swap since 3 > 2
j = 3 [1 2 3 4 5] Do not swap
j = 3 [1 2 3 4 5] Do not swap

Algorithm will still run since it does not know if
elements have been sorted. The bubble sort needs one
whole pass without any swap to know it is sorted.

Third Pass: i = 3 run for j from 1 to 4
j = 1 [1 2 3 4 5]
j = 2 [1 2 3 4 5]
j = 3 [1 2 3 4 5]
j = 4 [1 2 3 4 5]

Exercise: How can you make this algorithm
little more efficient?

Divide and conquer
techniques 𝑶(𝒏 𝐥𝐨𝐠𝒏)

Dr Varun Ojha

Department of Computer Science

Fundamental of Computer Science

CS1FC16: Lecture 04, Part – II

Merge Sort

• Sort a list of elements

• If the list has zero or one element, then stop

• If the list has more than one element, then divide the list into

two equal or nearly equal parts until all lists have at most one

element

• Recursively sorts the sub lists

• Recursively merge the results

• Why is this much faster than an insertion sort?

Dr Varun Ojha, University of Reading 13

Merge Sort
input: list /* unsorted array */

output: list /* sorted array */

mergesort(list)-> (list)

if length(list) > 1 then

split(list) -> (left, right)

merge(mergesort(left), mergesort(right))

end

merge(L1, L2) -> (L3)

L3 := EmptyList

while L1, L2 are both non-empty

remove the smaller of the first element of L1, L2 from the list it
is in and add it on the right of L3

if removal of this element makes one list empty then remove all of
the elements from the other list and append them to L3

end

split(L1) -> (L2, L3)

transcribe the first floor(length(L1)/2) elements of L1 into L2

transcribe the remaining elements of L1 into L3

end
Dr Varun Ojha, University of Reading 14

unsorted

sorted

left right

L3 L3

L1 L2 L1 L2

Marge Sort

Dr Varun Ojha, University of Reading 15

[50 30 20 10 60 40]

unsorted

[50 30 20] [10 60 40]

[50] [60 40] [30 20] [10]

[30] [20] [60] [40]

[20 30] [40 60]

[20 30 50] [10 40 60]

[10 20 30 40 50 60]

sorted

32

1

4 5

6

7

8

9 10

11 12

13

14

15

input: list /* unsorted */

output: list /* sorted */

mergesort(list)-> (list)

if length(list) > 1 then

split(list)->(

left, right)

merge(

mergesort(left),
mergesort(right)

)

end

Merge Sort: Complexity

input: list /* unsorted array */

output: list /* sorted array */

mergesort(list)-> (list)

if length(list) > 1 then

split(list) -> (left,
right)

merge(

mergesort(left),

mergesort(right)

)

end

Dr Varun Ojha, University of Reading 16

𝑻(𝒏)

𝑻(𝟏)

𝑻(𝒏/𝟐)

𝑻(𝒏/𝟐)
𝒂𝒏𝒅

𝑻(𝒏)

• Divide (split) takes constant

time 𝑻(𝟏)

• Concur (mergesort) operates

on two sub lists of length 𝒏/𝟐,

hence it takes 𝟐𝑻(𝒏/𝟐).

• Combine (merge) operation

need to compare 𝒏 elements

𝑻(𝒏).

Merge Sort
Complexity

Dr Varun Ojha, University of Reading 17

input: list /* unsorted array */

output: list /* sorted array */

mergesort(list)-> (list)

if length(list) > 1 then

split(list) -> (left, right)

merge(mergesort(left),

mergesort(right)

)

end

• Compute the worst-case time-
order, 𝑻(𝒏), of merge sort 𝒏
elements

• To make the analysis easy,
assume 𝒏 = 𝟐𝒌

• Now 𝒌 = 𝐥𝐨𝐠𝟐 𝒏

• We have recurrence relation
(expression) for merge sort as:

𝑇(𝑛) = 2𝑇(𝑛 ⁄ 2) + 𝑛

T(n) = 2T(n/2) + n -> O(nlog n)?

We have:

𝑻 𝒏 = ቊ
𝟏 𝒏 = 𝟏
𝟐𝑻 𝒏/𝟐 + 𝒏 𝒏 > 𝟏

We want to solve:

𝑇 𝑛 = 2𝑇 𝑛/2 + 𝑛 (1)

Substitute 𝑻 𝒏/𝟐 in Eq. (1)
𝑇 𝑛 = 2[2𝑇 𝑛/22 + 𝑛] + 𝑛

𝑇 𝑛 = 22𝑇 𝑛/22 + 2𝑛 (2)

Substitute 𝑻 𝒏/𝟐𝟐 in Eq. (2)
𝑇 𝑛 = 22[2𝑇 𝑛/23 + 𝑛] + 2𝑛

𝑇 𝑛 = 23𝑇 𝑛/23 + 3𝑛 (3)

Substitute 𝑻 𝒏/𝟐𝟑 in Eq. (3) and so on up to 𝒌 − 𝟏

:

We will have
𝑇 𝑛 = 2𝑘−1 2𝑇 𝑛/2𝑘 + 𝑛 + 𝑘 − 1 𝑛

𝑇 𝑛 = 2𝑘𝑇 𝑛/2𝑘 + 𝑘𝑛 (𝑘)
Dr Varun Ojha, University of Reading 18

Find 𝑻 𝒏/𝟐 value

Since we have

𝑇 𝑛 = 2𝑇 𝑛/2 + 𝑛

Therefore,
𝑇 𝑛/2 = 2𝑇 𝑛/2/2 + 𝑛

= 2𝑇 𝑛/22 + 𝑛

Find 𝑻 𝒏/𝟐𝟐 value
𝑇(𝑛/22) = 2𝑇(𝑛/22/2) + 𝑛

= 2𝑇 𝑛/23 + 𝑛

Assume 𝟐𝒌 = 𝒏 in Eq. (𝒌), for this recurrence
comes to a halt.

𝑇 𝑛 = 𝑛𝑇 𝑛/𝑛 + 𝑘𝑛
= 𝑛𝑇 1 + 𝑘𝑛

= 𝑛 + 𝑛𝑘

= 𝑛 + 𝑛 log𝑛

/* we ignore n because n log n is much higher term */

If 𝟐𝒌 = 𝒏 , then 𝒌 = 𝐥𝐨𝐠 𝒏
𝑻 𝒏 = 𝑶(𝒏 𝐥𝐨𝐠 𝒏)

Revisit Lecture 02: substitution method

Quick Sort
input: list /* unsorted array */

output: list /* sorted array */

quicksort(list, low, high)-> (list)

if low > high then

partition(list, low, high) -> (pivotIndex) /* list[pivot] is now at right place */

quicksort(list, low, pivotIndex - 1) /* all elements left to pivot is < list[pivot] */

quicksort(list, pivotIndex + 1, high) /* all elements right to pivot is >= list[pivot] */

end

partition(list, low, high) -> (pivotIndex)

pivotElement = list[high] /* pivot is partitioning index, which is to be placed at right place */

i = low – 1 /* index of smaller element */

for j from low to high -1 do

if list[j] <= pivotElement

i = i + 1 /* check next smaller index */

Swap list[i] with list[j]

Swap list[i+1] and a[high]

return i+1 /* pivot is partitioning index */

end

Dr Varun Ojha, University of Reading 19

Quick Sort
Partitioning Algorithm Illustration

partition(list, L, H) -> (pivotIndex)

pivotElement = list[high]

i = low – 1 /* index of smaller element */

for j from low to high -1 do

if list[j] <= pivotElement

i = i + 1 /* next smaller index */

Swap list[i] with list[j]

Swap list[i+1] and a[high]

return i+1 /* pivot index */

end

20

i L,j H

[2 8 7 1 3 5 6 4] initial list

L,i j H

[2 8 7 1 3 5 6 4] 2 is swapped with itself

L,i j H

[2 8 7 1 3 5 6 4] 8 added to right partition

L,i j H

[2 8 7 1 3 5 6 4] 7 added to right partition

L i j H

[2 1 7 8 3 5 6 4] 8 and 1 swapped

L i j H

[2 1 3 8 7 5 6 4] 3 and 7 swapped

L i j H

[2 1 3 8 7 5 6 4] 5 added to right partition

L i H

[2 1 3 8 7 5 6 4] 6 added to right partition

L i H

[2 1 3 4 7 5 6 8] 4 and 8 swapped

Example from Cormen T. (Ch 7. 2009)

Pivot Element, list[hight]

Left partition

Right partition

L Low index
H High index
i Pivot index

Quick Sort
Partitioning Algorithm Illustration

21

Example from Cormen T. (Ch 7. 2009)

[7 5 6 8][2 1 3]

[7 5 6]

[5]

{ }

[2 8 7 1 3 5 6 4]

[2 1 3 4 7 5 6 8]

[7 5 6 8]

[7]

[5 6 7]

[2 1 3]

{ }[2 1]

[1 2]

{ } [2]

1

2
5

3 4

7

6

8 9

10

Quick Sort:
Complexity

input: list /* unsorted array */

output: list /* sorted array */

quicksort(list, low, high)-> (list)

if low > high then

partition(list, low, high) ->
(pivotIndex) /* list[pivot] is now
at right place */

quicksort(list, low, pivotIndex - 1)

/* all elements left to pivot is <
list[pivot] */

quicksort(list, pivotIndex + 1,
high)

/* all elements right to pivot is >=
list[pivot] */

end

22

• Divide (partition) takes constant

time 𝑻(𝒏)

• Concur (sort) operates on two

sublists of length
𝒏

𝟐
. Hence, it takes

𝟐𝑻(𝒏/𝟐).

• Combine (sub-arrays already

sorted) No operations to done here

𝑻(𝟎).

• Thus, the average time order is:

𝑻 𝒏 = 𝟐𝑻
𝒏

𝟐
+ 𝒏

= 𝑶(𝒏 𝐥𝐨𝐠𝒏)

𝑻(𝒏/𝟐)

𝑻(𝒏/𝟐) − 𝟏

𝑻(𝒏)

Exercise: What is worst-case time complexity?

Non-comparison
techniques 𝑶(𝒏)

Dr Varun Ojha

Department of Computer Science

Fundamental of Computer Science

CS1FC16: Lecture 04, Part – III

Radix/Bucket Sort

• The time complexity of sorting depends on the number of

comparisons

• Radix sort uses the key to sort elements in one shot, without

comparing pairs of elements

• This has time 𝑂(𝑛) which is utterly stupendous!

• Radix sort uses buckets (arrays or lists of data) so it is often

called bucket sort

Dr Varun Ojha, University of Reading 24

Radix Sort: Example

• Input:
(310,213,023,130,013,301,222,032,201,111,323,002,330,102,231,120)

• Pass 1: units

• Output:
(310,130,330,120,301,201,111,231,222,032,002,102,213,023,013,323)

Dr Varun Ojha, University of Reading 25

Bucket Content

0 310, 130, 330, 120

1 301, 201, 111, 231

2 222, 032, 002, 102

3 213, 023, 013, 323

Radix Sort: Example

• Input (comes from pass 1):
(310,130,330,120,301,201,111,231,222,032,002,102,213,023,013,323)

• Pass 2: tens

• Output:
(301,201,002,102,310,111,213,013,120,222,023,323,130,330,231,032)

Dr Varun Ojha, University of Reading 26

Bucket Content

0 301, 201, 002, 102

1 310, 111, 213, 013

2 120, 222, 023, 323

3 130, 330, 231, 032

Radix Sort: Example

• Input (comes from pass 2):
(301,201,002,102,310,111,213,013,120,222,023,323,130,330,231,032)

• Pass 3: hundreds

• Output:
(002,013,023,032,102,111,120,130,201,213,222,231,301,310,323,330)

Dr Varun Ojha, University of Reading 27

Bucket Content

0 002, 013, 023, 032

1 102, 111, 120, 130

2 201, 213, 222, 231

3 301, 310, 323, 330

Time Order of Radix Sort

• Let 𝑛 be the number of elements in the list

• Let 𝑘 be the number of digits in the key

• Each digit of the key is examined once per list, so

radix/bucket sort is 𝑂(𝑘𝑛)

• However, 𝑘 ≪ 𝑛 in practical cases and, in any case, 𝑘 is

a constant, so time is 𝑂(𝑛)

Dr Varun Ojha, University of Reading 28

Summary (1/3)

• If there is a small number of elements, then insertion sort or bubble

sort may be the quickest algorithms, because they are so simple

• Insertion sort and bubble sort are particularly quick if the elements

are almost sorted

• Merge sort and Quick sort are effective algorithms to use in a divide

and conquer algorithms

• If there is a moderate or large number of elements, then a divide and

conquer algorithm, such as merge sort or quicksort may be highly

effective, but quicksort is very slow on sorted data!

Dr Varun Ojha, University of Reading 29

Summary (2/3)

• Bucket sort is exceptionally fast, but it requires a lot of memory

and is suitable only if data are encoded with short keys

• There is no best algorithm – everything depends on

circumstances

• Commercial sorting packages compute statistics on the

elements before selecting a sorting algorithm

Dr Varun Ojha, University of Reading 30

Summary (3/3)

• Simple sorting algorithms have time 𝑂(𝑛2). They are usually

only useful for small numbers of data or data that are highly

sorted

• Divide and conquer algorithms have time 𝑂(𝑛 log 𝑛). They are

usually only useful for moderate to large numbers of data

• Bucket algorithms have time 𝑂(𝑛). They are usually only useful

for very large numbers of data indexed by short keys, but they

do consume a lot of memory

Dr Varun Ojha, University of Reading 31

Exercises

Dr Varun Ojha

Department of Computer Science

Fundamental of Computer Science

CS1FC16: Lecture 04, Part – IV

Exercise

• Write a C++ program of insertion sort and selection sort and

Compare how insertion sort is different from selection sort?

• How can you make babble sort of this lecture algorithm little

more efficient?

• Complexity of bubble sort is 𝑂(𝑛2). Show that this statement is

true.

Dr Varun Ojha, University of Reading 33

