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Learning Objectives

On completion of this lecture, you will be able to

• Understand sorting algorithms and the importance of a faster sorting

• Evaluate time order of sorting algorithms

• Apply knowledge to solve numeric examples

• Create programs to sort given data structure.
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Content of this lecture

• Part – I: Simple techniques 

• Insertion sort

• Bubble sort

• Part – II: Divide and conquer techniques

• Merge Sort

• Quick Sort

• Part – III: Non-comparison techniques 

• Radix / Bucket sort

• Part – IV:

• Exercises
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Sorting

sort(datastructure) -> (datastructure)

• A sorting algorithm takes a datastructure and sorts its 
elements into ascending or else descending order

• In general, the elements are records which are sorted in terms 
of one or more of their fields – the key(s)

• Repetitions of an element are usually allowed so that the sorted 
list may be in partial order not total order

• A stable sort keeps repeated elements in the order the 
repetitions were given. An unstable sort may move them
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Simple Algorithms 𝑶(𝒏𝟐)
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Insertion Sort

• Insert each element into its final position in the sorted list

• Start with an empty output list 

• Put the first element into the list

• Put the second element before or after the element that is already in 
the list

• In general, given a list of 𝑛 elements, produce a list of 𝑛 + 1 sorted 
elements by placing the 𝑛 + 1th element in its final position in the 
sorted list
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Insertion Sort

input: data /* unsorted array */

output: data /* sorted array */

insertionSort(data)

for i from 2 to length(data) do

m := data(i) /* pick an element for insertion */

j := i - 1

while j >= 1 and data(j) > m do

data(j + 1) := data(j) /* move element to next position */

i = i – 1 /* take a key */

data(j+1) = m /* insert at j+1th position */ 
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Insertion Sort
i =1: _ [50 30 20 10 40] Unsorted

_ [30 50 20 10 40]

i =2: _ [30 50 20 10 40] 

_ [20 30 50 10 40] 

i =3: _ [20 30 50 10 40]

_ [10 20 30 50 40] 

i =4: _ [10 20 30 50 40] 
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input: data /* unsorted */

output: data /* sorted */

insertionSort(data)

for i from 2 to length(data) do

m := data(i) /* pick */

j := i - 1

while j >= 1 and data(j) > m do

data(j + 1) := data(j)

j := j – 1 

data(j+1) := m /* insert */ 

j [50 50 20 10 40] 

[30 50 50 10 40] 

[30 30 50 10 40]

[20 30 50 50 40] 

[20 30 30 50 40] 

[20 20 30 50 40] 

j m

j m

j

j m

j m

j



Insertion Sort 
Complexity
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input: data /* unsorted */

output: data /* sorted */

insertionSort(data)

for i from 2 to length(data) do

m := data(i) /* pick */

j := i - 1

while j >= 1 and data(j) > m do

data(j + 1) := data(j)

j := j – 1 

data(j+1) := m /* insert */ 

• Compute the worst-case time, 
𝑇(𝑛), to sort 𝑛 elements

• The for-loop is executed at most 
max(0, 𝑛 − 1) times. In general, 
this is 𝑛 − 1 times

• The while-loop is executed at most 
𝑖 times on the 𝑖th iteration.

• The for-loop, together with the 
while-loop, is not executed more 
than 𝑖 times on the 𝑖th iteration.

• Therefore, we have 

𝑇(𝑛) = ෍

𝑖=1

𝑛−1

𝑖 =
𝑛 𝑛 − 1

2
⟹ 𝑂(𝑛2)



Bubble Sort

input: data /* unsorted array */

output: data /* sorted array */

bubbleSort(data)

for i from 1 to length(data)-1 do

/* by virtue of swapping, the last element is already sorted*/

for j from 1 to length(data)-1 do

if data(j) > data(j+1) do /*if next element is small swap */

temp := data(j) /* preserve data(j) temporarily */

data(j) := data(j+1)/* place element data(j+1) to data(j) */

data(j+1) := temp /* place preserve element to data(j+1) */
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Bubble Sort

input: data /* unsorted array */

output: data /* sorted array */

bubbleSort(data)

for i from 1 to length(data)-1 do

for j from 1 to length(data)-1 do

if data(j) > data(j+1) do

temp := data(j)

data(j) := data(j+1)

data(j+1) := temp
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First Pass: i = 1; run for j from 1 to 4
j = 1 [ 5 3 1 2 4 ] Here, bubble sort compares the first 
two elements, and swaps 5 and 3 since 5 > 3.
j = 2 [ 3 5 1 2 4 ] Swap since 5 > 1
j = 3 [ 3 1 5 2 4 ] Swap since 5 > 2
j = 4 [ 3 1 2 5 4 ] Swap since 5 > 4.

Second Pass: i = 2; run for j from 1 to 4
j = 1 [ 3 1 2 4 5 ] Swap since 3 > 1
j = 2 [ 1 2 3 4 5 ] Swap since 3 > 2
j = 3 [ 1 2 3 4 5 ] Do not swap
j = 3 [ 1 2 3 4 5 ] Do not swap

Algorithm will still run since it does not know if 
elements have been sorted. The bubble sort needs one 
whole pass without any swap to know it is sorted.

Third Pass: i = 3 run for j from 1 to 4
j = 1 [ 1 2 3 4 5 ]
j = 2 [ 1 2 3 4 5 ]
j = 3 [ 1 2 3 4 5 ]
j = 4 [ 1 2 3 4 5 ]

Exercise: How can you make this algorithm 
little more efficient?



Divide and conquer 
techniques 𝑶(𝒏 𝐥𝐨𝐠𝒏)
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Merge Sort

• Sort a list of elements

• If the list has zero or one element, then stop

• If the list has more than one element, then divide the list into 

two equal or nearly equal parts until all lists have at most one 

element

• Recursively sorts the sub lists

• Recursively merge the results

• Why is this much faster than an insertion sort?
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Merge Sort
input: list /* unsorted array */

output: list /* sorted array */

mergesort(list)-> (list)

if length(list) > 1 then

split(list) -> (left, right)

merge(mergesort(left), mergesort(right))

end

merge(L1, L2) -> (L3)

L3 := EmptyList

while L1, L2 are both non-empty

remove the smaller of the first element of L1, L2 from the list it 
is in and add it on the right of L3

if removal of this element makes one list empty then remove all of 
the elements from the other list and append them to L3

end

split(L1) -> (L2, L3)

transcribe the first floor(length(L1)/2) elements of L1 into L2

transcribe the remaining elements of L1 into L3

end
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unsorted

sorted

left right

L3 L3

L1 L2 L1 L2



Marge Sort

Dr Varun Ojha, University of Reading 15

[50 30 20 10 60 40] 

unsorted

[50 30 20] [10 60 40] 

[50] [60 40] [30 20] [10] 

[30] [20] [60] [40] 

[20 30] [40 60] 

[20 30 50] [10 40 60] 

[10 20 30 40 50 60] 

sorted

32

1

4 5

6

7

8

9 10

11 12

13

14

15

input: list /* unsorted */

output: list /* sorted */

mergesort(list)-> (list)

if length(list) > 1 then

split(list)->(

left, right)

merge(

mergesort(left), 
mergesort(right)

)

end



Merge Sort: Complexity

input: list /* unsorted array */

output: list /* sorted array */

mergesort(list)-> (list)

if length(list) > 1 then

split(list) -> (left, 
right)

merge(

mergesort(left), 

mergesort(right)

)

end
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𝑻(𝒏)

𝑻(𝟏)

𝑻(𝒏/𝟐)

𝑻(𝒏/𝟐)
𝒂𝒏𝒅

𝑻(𝒏)

• Divide (split) takes constant 

time 𝑻(𝟏)

• Concur (mergesort) operates 

on two sub lists of length 𝒏/𝟐, 

hence it takes 𝟐𝑻(𝒏/𝟐).

• Combine (merge) operation 

need to compare 𝒏 elements 

𝑻(𝒏). 



Merge Sort
Complexity
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input: list /* unsorted array */

output: list /* sorted array */

mergesort(list)-> (list)

if length(list) > 1 then

split(list) -> (left, right)

merge( mergesort(left), 

mergesort(right)

)

end

• Compute the worst-case time-
order, 𝑻(𝒏), of merge sort 𝒏
elements

• To make the analysis easy, 
assume 𝒏 = 𝟐𝒌

• Now 𝒌 = 𝐥𝐨𝐠𝟐 𝒏

• We have recurrence relation 
(expression) for merge sort as:

𝑇(𝑛) = 2𝑇(𝑛 ⁄ 2) + 𝑛



T(n) = 2T(n/2) + n -> O(nlog n)?

We have:

𝑻 𝒏 = ቊ
𝟏 𝒏 = 𝟏
𝟐𝑻 𝒏/𝟐 + 𝒏 𝒏 > 𝟏

We want to solve:

𝑇 𝑛 = 2𝑇 𝑛/2 + 𝑛 (1)

Substitute 𝑻 𝒏/𝟐 in Eq. (1)
𝑇 𝑛 = 2[2𝑇 𝑛/22 + 𝑛] + 𝑛

𝑇 𝑛 = 22𝑇 𝑛/22 + 2𝑛 (2)

Substitute 𝑻 𝒏/𝟐𝟐 in Eq. (2)
𝑇 𝑛 = 22[2𝑇 𝑛/23 + 𝑛] + 2𝑛

𝑇 𝑛 = 23𝑇 𝑛/23 + 3𝑛 (3)

Substitute 𝑻 𝒏/𝟐𝟑 in Eq. (3) and so on up to 𝒌 − 𝟏

:

We will have
𝑇 𝑛 = 2𝑘−1 2𝑇 𝑛/2𝑘 + 𝑛 + 𝑘 − 1 𝑛

𝑇 𝑛 = 2𝑘𝑇 𝑛/2𝑘 + 𝑘𝑛 (𝑘)
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Find 𝑻 𝒏/𝟐 value

Since we have

𝑇 𝑛 = 2𝑇 𝑛/2 + 𝑛

Therefore, 
𝑇 𝑛/2 = 2𝑇 𝑛/2/2 + 𝑛

= 2𝑇 𝑛/22 + 𝑛

Find 𝑻 𝒏/𝟐𝟐 value
𝑇(𝑛/22) = 2𝑇(𝑛/22/2) + 𝑛

= 2𝑇 𝑛/23 + 𝑛

Assume  𝟐𝒌 = 𝒏 in Eq. (𝒌), for this recurrence 
comes to a halt.

𝑇 𝑛 = 𝑛𝑇 𝑛/𝑛 + 𝑘𝑛
= 𝑛𝑇 1 + 𝑘𝑛

= 𝑛 + 𝑛𝑘

= 𝑛 + 𝑛 log𝑛

/* we ignore n because n log n is much higher term */

If  𝟐𝒌 = 𝒏 , then 𝒌 = 𝐥𝐨𝐠 𝒏
𝑻 𝒏 = 𝑶(𝒏 𝐥𝐨𝐠 𝒏)

Revisit Lecture 02: substitution method



Quick Sort
input: list /* unsorted array */

output: list /* sorted array */

quicksort(list, low, high)-> (list)

if low > high then

partition(list, low, high) -> (pivotIndex) /* list[pivot] is now at right place */

quicksort(list, low, pivotIndex - 1) /* all elements left to pivot is < list[pivot] */

quicksort(list, pivotIndex + 1, high) /* all elements right to pivot is >= list[pivot] */

end

partition(list, low, high) -> (pivotIndex)

pivotElement = list[high] /* pivot is partitioning index, which is to be placed at right place */

i = low – 1 /* index of smaller element */

for j from  low to high -1 do

if list[j] <= pivotElement

i = i + 1 /* check next smaller index */

Swap list[i] with list[j]

Swap list[i+1] and a[high]

return i+1 /* pivot is partitioning index */

end
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Quick Sort
Partitioning Algorithm Illustration

partition(list, L, H) -> (pivotIndex)

pivotElement = list[high] 

i = low – 1 /* index of smaller element */

for j from  low to high -1 do

if list[j] <= pivotElement

i = i + 1 /* next smaller index */

Swap list[i] with list[j]

Swap list[i+1] and a[high]

return i+1 /* pivot index */

end
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i L,j H

[ 2  8  7  1  3  5  6  4 ] initial list

L,i j                      H

[ 2  8  7  1  3  5  6  4 ] 2 is swapped with itself

L,i j                   H

[ 2  8  7  1  3  5  6  4 ] 8 added to right partition

L,i j               H

[ 2  8  7  1  3  5  6  4 ] 7 added to right partition

L   i j           H

[ 2  1  7  8  3  5  6  4 ] 8 and 1 swapped

L       i j       H

[ 2  1  3  8  7  5  6  4 ] 3 and 7 swapped

L       i j   H

[ 2  1  3  8  7  5  6  4 ] 5 added to right partition

L       i H

[ 2  1  3  8  7  5  6  4 ] 6 added to right partition

L           i H

[ 2  1  3  4  7  5  6  8 ] 4 and 8 swapped

Example from Cormen T. (Ch 7. 2009)

Pivot Element, list[hight] 

Left partition

Right partition

L   Low index
H   High index
i Pivot index



Quick Sort
Partitioning Algorithm Illustration
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Example from Cormen T. (Ch 7. 2009)

[ 7  5  6  8 ][ 2  1  3 ]

[ 7  5  6 ]

[ 5 ]

{ }

[ 2  8  7  1  3  5  6  4 ]

[ 2  1  3  4  7  5  6  8 ]

[ 7  5  6  8 ]

[ 7 ]

[ 5  6  7 ]

[ 2  1  3 ]

{ }[ 2  1 ]

[ 1  2 ]

{ } [ 2 ]

1

2
5

3 4

7

6

8 9

10



Quick Sort: 
Complexity

input: list /* unsorted array */

output: list /* sorted array */

quicksort(list, low, high)-> (list)

if low > high then

partition(list, low, high) -> 
(pivotIndex) /* list[pivot] is now 
at right place */

quicksort(list, low, pivotIndex - 1)

/* all elements left to pivot is < 
list[pivot] */

quicksort(list, pivotIndex + 1, 
high) 

/* all elements right to pivot is >= 
list[pivot] */

end
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• Divide (partition) takes constant 

time 𝑻(𝒏)

• Concur (sort) operates on two 

sublists of length 
𝒏

𝟐
. Hence, it takes 

𝟐𝑻(𝒏/𝟐). 

• Combine (sub-arrays already 

sorted) No operations to done here 

𝑻(𝟎). 

• Thus, the average time order is:

𝑻 𝒏 = 𝟐𝑻
𝒏

𝟐
+ 𝒏

= 𝑶(𝒏 𝐥𝐨𝐠𝒏 )

𝑻(𝒏/𝟐)

𝑻(𝒏/𝟐) − 𝟏

𝑻(𝒏)

Exercise: What is worst-case time complexity?



Non-comparison 
techniques 𝑶(𝒏)
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Radix/Bucket Sort

• The time complexity of sorting depends on the number of 

comparisons

• Radix sort uses the key to sort elements in one shot, without 

comparing pairs of elements

• This has time 𝑂(𝑛) which is utterly stupendous!

• Radix sort uses buckets (arrays or lists of data) so it is often 

called bucket sort
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Radix Sort: Example

• Input:
(310,213,023,130,013,301,222,032,201,111,323,002,330,102,231,120)

• Pass 1: units

• Output:
(310,130,330,120,301,201,111,231,222,032,002,102,213,023,013,323)
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Bucket Content

0 310, 130, 330, 120 

1 301, 201, 111, 231

2 222, 032, 002, 102

3 213, 023, 013, 323



Radix Sort: Example

• Input (comes from pass 1):
(310,130,330,120,301,201,111,231,222,032,002,102,213,023,013,323)

• Pass 2: tens

• Output:
(301,201,002,102,310,111,213,013,120,222,023,323,130,330,231,032)
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Bucket Content

0 301, 201, 002, 102

1 310, 111, 213, 013

2 120, 222, 023, 323

3 130, 330, 231, 032



Radix Sort: Example

• Input (comes from pass 2):
(301,201,002,102,310,111,213,013,120,222,023,323,130,330,231,032)

• Pass 3: hundreds

• Output:
(002,013,023,032,102,111,120,130,201,213,222,231,301,310,323,330)
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Bucket Content

0 002, 013, 023, 032

1 102, 111, 120, 130

2 201, 213, 222, 231

3 301, 310, 323, 330



Time Order of Radix Sort

• Let 𝑛 be the number of elements in the list

• Let 𝑘 be the number of digits in the key

• Each digit of the key is examined once per list, so 

radix/bucket sort is 𝑂(𝑘𝑛)

• However, 𝑘 ≪ 𝑛 in practical cases and, in any case, 𝑘 is 

a constant, so time is 𝑂(𝑛)
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Summary (1/3)

• If there is a small number of elements, then insertion sort or bubble 

sort may be the quickest algorithms, because they are so simple

• Insertion sort and bubble sort are particularly quick if the elements 

are almost sorted 

• Merge sort and Quick sort are effective algorithms to use in a divide 

and conquer algorithms

• If there is a moderate or large number of elements, then a divide and 

conquer algorithm, such as merge sort or quicksort may be highly 

effective, but quicksort is very slow on sorted data!
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Summary (2/3)

• Bucket sort is exceptionally fast, but it requires a lot of memory 

and is suitable only if data are encoded with short keys

• There is no best algorithm – everything depends on 

circumstances

• Commercial sorting packages compute statistics on the 

elements before selecting a sorting algorithm
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Summary (3/3)

• Simple sorting algorithms have time 𝑂(𝑛2). They are usually 

only useful for small numbers of data or data that are highly 

sorted

• Divide and conquer algorithms have time 𝑂(𝑛 log 𝑛). They are 

usually only useful for moderate to large numbers of data

• Bucket algorithms have time 𝑂(𝑛). They are usually only useful 

for very large numbers of data indexed by short keys, but they 

do consume a lot of memory
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Exercise 

• Write a C++ program of insertion sort and selection sort and 

Compare how insertion sort is different from selection sort?

• How can you make babble sort of this lecture algorithm little 

more efficient?

• Complexity of bubble sort is 𝑂(𝑛2). Show that this statement is 

true. 
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