
Data Structure

Dr Varun Ojha

Department of Computer Science

Fundamental of Computer Science

CS1FC16: Lecture 05

Learning Objectives

On completion of three parts of this lecture, you will be able to

• Understand linear and non-linear data structures: array (list), linked list,

stacks, queues, trees.

• Evaluate a tree data structure to perform search

• Solve expression tree

Dr Varun Ojha, University of Reading 2

Content of this lecture

• Linear data structure

• Linked list

• Stacks

• Queue

• Circular buffer

• Non-linear data structure

• Tree

• Arithmetic operations

• Exercises

Dr Varun Ojha, University of Reading 3

Linear Data structure

Dr Varun Ojha

Department of Computer Science

Fundamental of Computer Science

CS1FC16: Lecture 05, Part – I

Array

• An Array is a collection of elements (data), each of which is

indexed contiguously, e.g.:

• An array is a homogenous data structure, meaning all elements

in an array are of the same type, e.g.:

Dr Varun Ojha, University of Reading 5

5 10 9530 5 Cat 9530

0

5 10 9530

1 2 3

Array

• Accessing an element from array takes constant time 𝑂(1)

• Lets A is our array as follows

• A[2] produce an element (data) 30 only in 1 unit operation that

takes a constant time, 𝑐 sec.

• Similarly, search / replace takes a constant time 𝑂(1)

• Array does not allow deletion operation

Dr Varun Ojha, University of Reading 6

0

5 10 9530

1 2 3

Node

• A node in a data structure is an object that holds data and

pointer(s), i.e., reference(s) to other object(s).

Dr Varun Ojha, University of Reading 7

typedef struct list_node list;
struct list_node {

elem data;
list* pointer;

};

data pointer

Node

Dr Varun Ojha, University of Reading 8

data
next

(reference) Trump

data next

45

data next

• Node of a linked list data structure has:

• The data (stored element)

• The next is a pointer (reference) to memory of next node

Single Linked List

• A single-linked list is a sequence of nodes, a collection of objects, each of

which points to its successor, with the last node having the NULL pointer

• The null pointer does not point anywhere, following it is an error

• The empty list, with no elements, is sometimes called the null list

Dr Varun Ojha, University of Reading 9

0xfffe0008 0xeeee0004

Trump

data next

45

data next

NULLBiden

data next

0xffef0000

Head and Tail

• The element of the first node of a list is called the head

• The remaining nodes of a list are called the tail

[Trump 45 Biden] -> list;

Head(list) -> Trump

Tail(list) -> [45 Biden]

• It is an error to take the head or tail of an empty list

Dr Varun Ojha, University of Reading 10

0xfffe0008 0xeeee0004

Trump

data next

45

data next

NULLBiden

data next

0xffef0000

Why Linked List

Unlike Array, Linked list allows:

• Elements to be stored at non-contiguous memory locations,

leading to storage efficiency. However, access to data takes

𝑂(𝑛) time.

• Insertion and deletion operation

• Storage of homogenous data, as well as, heterogenous data

Dr Varun Ojha, University of Reading 11

Constructing a Linked List

• Constructing a list by adding elements to the head of the list takes O(1)

12

typedef struct list_node list;
struct list_node {

elem data;
list* next;

};

list* head = alloc(list);
head->data = “Trump”;

0xfffe0008

Trump

data next

0xeeee0004

45

data next

NULLBiden

data next

0xffef0000

head->next = alloc(list)
head->next->data = 45

head->next->next = alloc(list)
head->next->next->data = “Biden”

head->next->next->next = NULL

Insertion to a Linked List

• Constructing a list by adding elements to the head of the list takes O(1)

13

list* head = alloc(list);
head->data = “Trump”;
list* b_node = alloc(list)
b_node->data = “Biden”

head->next = b_node
b_node->next = NULL

0xfffe0008

Trump

data next

NULLBiden

data next

0xffef0000

0xeeee0004

45

data next

inter a_node here!

list* a_node = alloc(list)
a_node->data = 45

Insertion to a Linked List

• Constructing a list by adding elements to the head of the list takes O(1)

14

list* head = alloc(list);
head->data = “Trump”;
list* b_node = alloc(list)
b_node->data = “Biden”

head->next = b_node
head->next = a_node
a_node->next = b_node
b_node->next = NULL

0xfffe0008

Trump

data next

NULLBiden

data next

0xffef0000

0xeeee0004

45

data next

list* a_node = alloc(list)
a_node->data = 45

Deletion to a Linked List

• Constructing a list by adding elements to the head of the list takes O(1)

15

list* head = alloc(list);
head->data = “Trump”;

0xfffe0008

Trump

data next

0xeeee0004

45

data next

NULLBiden

data next

0xffef0000

head->next = a_node
a_node->next = b_node
b_node->next = NULL

list* b_node = alloc(list)
b_node->data = “Biden”

list* a_node = alloc(list)
a_node->data = 45

Deletion to a Linked List

• Constructing a list by adding elements to the head of the list takes O(1)

16

list* head = alloc(list);
head->data = “Trump”;

0xfffe0008

Trump

data next

NULLBiden

data next

0xffef0000

head->next = a_node
head->next = b_node
b_node->next = NULL

list* b_node = alloc(list)
b_node->data = “Biden”

list* a_node = alloc(list)
a_node->data = 45

Special List

•Circular Linked List

• last node refers to its first

Dr Varun Ojha, University of Reading 17

0xfffe0008 0xeeee0004

Trump

data next

45

data next

NULLBiden

data next

0xffef0000

Special List

•Double-Linked Lists

•node has data, previous and next node

reference

Dr Varun Ojha, University of Reading 18

NULL

typedef struct list_node list;
struct list_node {

elem data;
list* next;
list* previous;

};

NULL 45

data nextprev

50

data nextprev

40

data nextprev

Double-Linked Lists

• An element can be pushed or popped onto either end of a double-
linked list in time 𝑂(1)

• A double-linked list can be pushed or popped onto either end of
another double-linked list in time 𝑂(1)

• An element can be inserted into or deleted from an indexed location
in a double-linked list of length in worst-case time 𝑂(𝑛/2)

• The corresponding worst-case time for a single-linked list is time
𝑂(𝑛)

• But the extra link costs memory

Dr Varun Ojha, University of Reading 19

Stacks

• An empty stack has no elements

• The empty element is denoted by epsilon:

• Data is pushed onto a stack and is popped

off a stack

• A stack is cleared by discarding all elements

until it is empty

• It is an underflow error to pop an element off

an empty stack

• It is an overflow error if there is not enough

memory to push an element onto a stack

Dr Varun Ojha, University of Reading 20

Stacks

Dr Varun Ojha, University of Reading 21

push 50

50

push 45

45
50

push 75

75
45
50

pop pop

50

pop

75
45
50

45
50 75 45 50

push 95

overflow

underflow

pop

Stacks

• Stacks can be implemented in software using lists

• The empty list is the empty stack

• Constructing a list by adding an element as head pushes the

element onto the stack

• Destroying the list by returning its head and tail pops the head

off the stack, leaving the tail as the shortened stack

• Stacks implement last-in-first-out, LIFO, behaviour

Dr Varun Ojha, University of Reading 22

• Queues used to preserve the order of elements
in a generate and test algorithm

• Queues may be used to process real-time
events in sequence

• Queues may be used to enforce first-in-first-out,
FIFO behaviour

• Pipes are FIFOs

• Almost all modern computers are pipelined

• A queue can be implemented as a double-linked
list

• Time complexity to search an element takes
𝑂(𝑛)

Dr Varun Ojha, University of Reading 23

Queues

FrontRear

Non-Linear Data Structure

Dr Varun Ojha

Department of Computer Science

Fundamental of Computer Science

CS1FC16: Lecture 05, Part – II

Tree

Dr Varun Ojha, University of Reading 25

1

3

6 7

2

4

8 9

5

1

root

level 0

level 1

level 2

level 3Child node

Parent node

subtree

siblings

leaf node

right subtreeleft subtree

Node

Dr Varun Ojha, University of Reading 26

• Node of a tree data structure has:

• The data (stored element)

• The LeftChild is a pointer (reference) to memory of left subtree

• The RightChild is a pointer (reference) to memory of right subtree

struct node {
int data;
struct node *leftChild;
struct node *rightChild;

};

data RightLeft

Trees

Dr Varun Ojha, University of Reading 27

1

3

6

2

4 5

/* [value [left] [right]] */

T -> [1 [2 [4 [] []] [5 [] []] [3 [] [6 [] []]]]

Pre-Order Search

/* pr is a printing subroutine. */

vars Value = 1, Left = 2, Right = 3;

define preorder(list);

unless list = [] then

pr (list(Value)) /* Value */

preorder(list(Left)) /* Left */

preorder(list(Right)) /* Right */

endunless

enddefine

preorder(T);

124536

Dr Varun Ojha, University of Reading 28

Pre-Order Search

• Processes Value then Left then Right

Dr Varun Ojha, University of Reading 29

1

3

6

2

4 5

1 <-1

2 <-2

4 <-3 5 <-4

3 <-5

6 <-6

1 2 4 5 3 6

In-Order Search

/* pr is a printing subroutine. */

vars Value = 1, Left = 2, Right = 3;

define inorder(list);

unless list = [] then

inorder(list(Left)) /* Left */

pr (list(Value)) /* Value */

inorder(list(Right)) /* Right */

endunless

enddefine

inorder(T);

124536

Dr Varun Ojha, University of Reading 30

In-Order Search

• Processes Left then Value then Right

Dr Varun Ojha, University of Reading 31

1

3

6

2

4 54 <-1

2 <-2

5 <-3

1 <-4

3 <-5

6 <-6

124 5 3 6

Post-Order Search

/* pr is a printing subroutine. */

vars Value = 1, Left = 2, Right = 3;

define postorder(list);

unless list = [] then

postorder(list(Left)) /* Left */

postorder(list(Right)) /* Right */

pr (list(Value)) /* Value */

endunless

enddefine

postorder(T);

124536

Dr Varun Ojha, University of Reading 32

Post-Order Search

• Processes Left then Right then Value

Dr Varun Ojha, University of Reading 33

1

3

6

2

4 54 <-1

2 <-3

5 <-2

1 <-6

3 <-5

6 <-4

124 5 36

Breadth-First Search

Dr Varun Ojha, University of Reading, UK 341:34 PM

• Breadth-First search (BFS) expands nodes in order

of their depth from the root.

• Implemented by first-in first-out (FIFO) queue.

• BFS will find a shortest path to a goal.

• Time/Space Complexity - branching factor 𝒃 and

the solution depth 𝒅.

• Generate all the nodes up to level 𝑑.

• Total number of nodes in BFS

𝟏 + 𝒃 + 𝒃𝟐
+ … +

𝒃𝒅
=
𝑶(𝒃𝒅)

• BFS will exhaust the memory in minutes.

Depth-First Search

Dr Varun Ojha, University of Reading, UK 351:34 PM

• Depth-First is iterative-deepening

• First performs a DFS to depth one. Than starts over

executing DFS to depth two and so on.

• Implemented by LIFO stack

• Space Complexity is linear in the maximum search

depth.

• DFS generate the same set of nodes as BFS

• Time Complexity is 𝑂(𝑏𝑑)

• The first solution DFS found may not be the

optimal one.

• On infinite (branch) tree DFS may not terminate.

Expression Tree

• Expresion

x = a ÷ 3^2 + b × 7 - 4 × c

• Pre-fix Arithmetic

• In-fix Arithmetic

• Post-fix Arithmetic

Dr Varun Ojha, University of Reading 36

Pre-fix Arithmetic

Dr Varun Ojha, University of Reading 37

• Expression
x = a ÷ 3^2 + b × 7 - 4 × c

• Pre-fix Arithmetic

=

• Pre-Order Tree Search

[- + ÷ a ^3 2 × b 7 × 4 c]

In-fix Arithmetic

Dr Varun Ojha, University of Reading 38

• Expression
x = a ÷ 3^2 + b × 7 - 4 × c

• In-fix Arithmetic

=

• In-Order Tree Search

[a ÷ 3^2 + b × 7 - 4 × c]

Post-fix Arithmetic

Dr Varun Ojha, University of Reading 39

• Expression
x = a ÷ 3^2 + b × 7 - 4 × c

• Post-fix Arithmetic

=

• Post-Order Tree Search

[a 3 2^ ÷ b 7 × + 4 c × -]

Exercises

Dr Varun Ojha

Department of Computer Science

Fundamental of Computer Science

CS1FC16: Lecture 05, Part – III

Exercise

• Implement Single Linked List and show head prints first node

data

• Write a program to implement stacks and show overflow and

underflow error for push and pop operation.

• Trace expression tree for Pre-fix arithmetic, in-fix arithmetic, and

arithmetic.

Dr Varun Ojha, University of Reading 41

