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Learning Objectives

On completion of three parts of this lecture, you will be able to

• Understand linear and non-linear data structures: array (list), linked list, 

stacks, queues, trees.

• Evaluate a tree data structure to perform search

• Solve expression tree
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Content of this lecture

• Linear data structure 

• Linked list

• Stacks

• Queue

• Circular buffer

• Non-linear data structure

• Tree

• Arithmetic operations

• Exercises
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Array

• An Array is a collection of elements (data), each of which is 

indexed contiguously, e.g.:

• An array is a homogenous data structure, meaning all elements 

in an array are of the same type, e.g.: 

Dr Varun Ojha, University of Reading 5

5 10 9530 5 Cat 9530

0

5 10 9530

1 2 3



Array

• Accessing an element from array takes constant time 𝑂(1)

• Lets A is our array as follows

• A[2] produce an element (data) 30 only in 1 unit operation that 

takes a constant time, 𝑐 sec.

• Similarly, search / replace takes a constant time 𝑂(1)

• Array does not allow deletion operation  
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Node

• A node in a data structure is an object that holds data and 

pointer(s), i.e., reference(s) to other object(s).
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typedef struct list_node list;
struct list_node {

elem data;
list* pointer;

};

data pointer



Node
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data
next 

(reference) Trump

data next

45

data next

• Node of a linked list data structure has:

• The data (stored element) 

• The next is a pointer (reference) to memory of next node 



Single Linked List

• A single-linked list is a sequence of nodes, a collection of objects, each of 

which points to its successor, with the last node having the NULL pointer

• The null pointer does not point anywhere, following it is an error 

• The empty list, with no elements, is sometimes called the null list
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Head and Tail

• The element of the first node of a list is called the head

• The remaining nodes of a list are called the tail

[Trump 45 Biden] -> list;

Head(list) -> Trump

Tail(list) -> [45 Biden]

• It is an error to take the head or tail of an empty list
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Why Linked List

Unlike Array, Linked list allows:

• Elements to be stored at non-contiguous memory locations, 

leading to storage efficiency. However, access to data takes 

𝑂(𝑛) time.

• Insertion and deletion operation

• Storage of homogenous data, as well as, heterogenous data
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Constructing a Linked List

• Constructing a list by adding elements to the head of the list takes O(1) 
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typedef struct list_node list;
struct list_node {

elem data;
list* next;

};

list* head = alloc(list);
head->data = “Trump”;

0xfffe0008

Trump

data next

0xeeee0004

45

data next

NULLBiden

data next

0xffef0000

head->next = alloc(list)
head->next->data = 45

head->next->next = alloc(list)
head->next->next->data = “Biden”

head->next->next->next = NULL



Insertion to a Linked List

• Constructing a list by adding elements to the head of the list takes O(1) 
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list* head = alloc(list);
head->data = “Trump”;
list* b_node = alloc(list)
b_node->data = “Biden”

head->next = b_node
b_node->next = NULL

0xfffe0008

Trump

data next

NULLBiden

data next

0xffef0000

0xeeee0004

45

data next

inter a_node here!

list* a_node = alloc(list)
a_node->data = 45



Insertion to a Linked List

• Constructing a list by adding elements to the head of the list takes O(1) 
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list* head = alloc(list);
head->data = “Trump”;
list* b_node = alloc(list)
b_node->data = “Biden”

head->next = b_node
head->next = a_node
a_node->next = b_node
b_node->next = NULL

0xfffe0008

Trump

data next

NULLBiden

data next

0xffef0000

0xeeee0004

45

data next

list* a_node = alloc(list)
a_node->data = 45



Deletion to a Linked List

• Constructing a list by adding elements to the head of the list takes O(1) 

15

list* head = alloc(list);
head->data = “Trump”;

0xfffe0008

Trump

data next

0xeeee0004

45

data next

NULLBiden

data next

0xffef0000

head->next = a_node
a_node->next = b_node
b_node->next = NULL

list* b_node = alloc(list)
b_node->data = “Biden”

list* a_node = alloc(list)
a_node->data = 45



Deletion to a Linked List

• Constructing a list by adding elements to the head of the list takes O(1) 
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list* head = alloc(list);
head->data = “Trump”;

0xfffe0008

Trump

data next

NULLBiden

data next

0xffef0000

head->next = a_node
head->next = b_node
b_node->next = NULL

list* b_node = alloc(list)
b_node->data = “Biden”

list* a_node = alloc(list)
a_node->data = 45



Special List

•Circular Linked List

• last node refers to its first
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Special List

•Double-Linked Lists

•node has data, previous and next node 

reference
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NULL

typedef struct list_node list;
struct list_node {

elem data;
list* next;
list* previous;

};

NULL 45

data nextprev

50

data nextprev

40

data nextprev



Double-Linked Lists

• An element can be pushed or popped onto either end of a double-
linked list in time 𝑂(1)

• A double-linked list can be pushed or popped onto either end of 
another double-linked list in time 𝑂(1)

• An element can be inserted into or deleted from an indexed location 
in a double-linked list of length in worst-case time 𝑂(𝑛/2)

• The corresponding worst-case time for a single-linked list is time 
𝑂(𝑛)

• But the extra link costs memory
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Stacks

• An empty stack has no elements

• The empty element is denoted by epsilon:

• Data is pushed onto a stack and is popped

off a stack

• A stack is cleared by discarding all elements 

until it is empty

• It is an underflow error to pop an element off 

an empty stack

• It is an overflow error if there is not enough 

memory to push an element onto a stack
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Stacks
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45
50 
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pop
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overflow
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Stacks

• Stacks can be implemented in software using lists 

• The empty list is the empty stack 

• Constructing a list by adding an element as head pushes the 

element onto the stack

• Destroying the list by returning its head and tail pops the head 

off the stack, leaving the tail as the shortened stack

• Stacks implement last-in-first-out, LIFO, behaviour
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• Queues used to preserve the order of elements 
in a generate and test algorithm

• Queues may be used to process real-time 
events in sequence

• Queues may be used to enforce first-in-first-out, 
FIFO behaviour

• Pipes are FIFOs

• Almost all modern computers are pipelined

• A queue can be implemented as a double-linked 
list

• Time complexity to search an element takes 
𝑂(𝑛)
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Queues

FrontRear
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Tree
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Node
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• Node of a tree data structure has:

• The data (stored element) 

• The LeftChild is a pointer (reference) to memory of left subtree

• The RightChild is a pointer (reference) to memory of right subtree

struct node {
int data;   
struct node *leftChild;
struct node *rightChild;

};

data RightLeft



Trees
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/*  [ value [ left ]  [ right ]  ]  */

T -> [1 [2 [4 [] []]  [5 [] []]   [3 [] [6 [] []]]]



Pre-Order Search 

/* pr is a printing subroutine. */ 

vars Value = 1, Left = 2, Right = 3; 

define preorder(list); 

unless list = [] then

pr (list(Value))      /* Value */

preorder(list(Left )) /* Left */

preorder(list(Right)) /* Right */

endunless

enddefine

preorder(T); 

124536
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Pre-Order Search 

• Processes Value then Left then Right
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In-Order Search 

/* pr is a printing subroutine. */ 

vars Value = 1, Left = 2, Right = 3; 

define inorder(list); 

unless list = [] then

inorder(list(Left )) /* Left */ 

pr (list(Value))     /* Value */

inorder(list(Right)) /* Right */

endunless

enddefine

inorder(T); 

124536
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In-Order Search 

• Processes Left then Value then Right
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Post-Order Search 

/* pr is a printing subroutine. */ 

vars Value = 1, Left = 2, Right = 3; 

define postorder(list); 

unless list = [] then

postorder(list(Left )) /* Left */ 

postorder(list(Right)) /* Right */

pr (list(Value))       /* Value */

endunless

enddefine

postorder(T); 

124536
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Post-Order Search 

• Processes Left then Right then Value
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Breadth-First Search
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• Breadth-First search (BFS) expands nodes in order 

of their depth from the root.

• Implemented by first-in first-out (FIFO) queue.

• BFS will find a shortest path to a goal.

• Time/Space Complexity - branching factor 𝒃 and 

the solution depth 𝒅. 

• Generate all the nodes up to level 𝑑.

• Total number of nodes in BFS 

𝟏 + 𝒃 + 𝒃𝟐
+ … +

𝒃𝒅
=
𝑶(𝒃𝒅)

• BFS will exhaust the memory in minutes.



Depth-First Search
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• Depth-First  is iterative-deepening

• First performs a DFS to depth one. Than starts over 

executing DFS to depth two and so on.

• Implemented by LIFO stack

• Space Complexity is linear in the maximum search 

depth.

• DFS generate the same set of nodes as BFS

• Time Complexity is 𝑂(𝑏𝑑)

• The first solution DFS found may not be the 

optimal one.

• On infinite (branch) tree DFS may not terminate.



Expression Tree

• Expresion

x =  a ÷ 3^2  + b × 7 - 4 × c

• Pre-fix Arithmetic

• In-fix Arithmetic

• Post-fix Arithmetic
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Pre-fix Arithmetic
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• Expression
x =  a ÷ 3^2  + b × 7 - 4 × c

• Pre-fix Arithmetic 

= 

• Pre-Order Tree Search

[ - + ÷ a ^3 2 × b 7 × 4 c ]



In-fix Arithmetic
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• Expression
x =  a ÷ 3^2  + b × 7 - 4 × c

• In-fix Arithmetic 

= 

• In-Order Tree Search

[ a ÷ 3^2  + b × 7 - 4 × c ]



Post-fix Arithmetic
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• Expression
x =  a ÷ 3^2  + b × 7 - 4 × c

• Post-fix Arithmetic 

= 

• Post-Order Tree Search

[ a 3 2^ ÷ b 7 × + 4 c × -]



Exercises
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Exercise 

• Implement Single Linked List and show head prints first node 

data

• Write a program to implement stacks and show overflow and 

underflow error for push and pop operation.

• Trace expression tree for Pre-fix arithmetic, in-fix arithmetic, and 

arithmetic. 
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