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System actively/autonomously learn new
strategy by testing decision boundary,
e.g., autonomous heparin infusion starts
using dangerously large bolus doses to
achieve rapid partial thromboplastin time
(@aPTT) control

Systems degree of monitoring that
becomes prohibitively time
consuming to provide, e.g., medical
data labelling is expansive, can Al
be efficiently without regular Scala.ble

human feedback/supervision oversight

Concrete
Problems

System trained on historical data
reinforces existing practice, and cannot

System use intended goal as a in Al
‘reward’ and a continuously learn aﬁapt to new developments or sudden
an unexpected way to achieve the Safety changes

reward without fulfilling the
Intended goal, e.g., an autonomous
heparin infusion finds a way to
control activated aPTT at the time
of measurement without achieving
long-term control

System performs a narrow task and fails to
take account of wider context creating a
dangerous unintended consequence e.g., an
autonomous ventilator may focus on short
term oxygenation at the expense of long-
term lung damage
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Cardiac Acquisitions for Multi-structure Ultrasound Segmentation Gland Segmentation in Colon Histology Images
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Original
Image

Adversarially
Modified

Ophthalmology Radiology Pathology

Unperceived changes in images make misclassification

Bortsova et al. (2021). Adversarial attack vulnerability of medical image analysis systems: Unexplored factors. Medical Image Analysis,
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Accuracy of detection decreases even on an unperceived modification

Bortsova et al. (2021). Adversarial attack vulnerability of medical image analysis systems: Unexplored factors. Medical Image Analysis,



Spurious Correlation in Medical Training Data

Spurious correlation occur in medical training data where diagnosis results are affected by variables (e.g.,
Hospital tags, Strips, Medical devices) that are not related to the diagnostic information being predicted. This
phenomenon leads to misleading interpretations.
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Artificial Intelligence (Un)Trustworthiness Performance
Salience Map is way to explain the prediction of Al models on Medical Diagnosis

Are saliency maps Are saliency maps Are saliency maps
good localizers? repeatable? reproducible?
1 [ |
| Original Image‘ InceptionV3 | .Original Image ‘ InceptionV3 ’ | InceptionV3 ‘Original Image  InceptionV3 ’ ‘DenseNet121
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PASS :Only in most ideal cases Al works
FAIL : In most cases Al fails to locate, repeat, and reproduce results




Risk of Training Data Error
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Risk of Training Error and Al (Un)Trustworthiness/Uncertainty?

Trained Al Models inference suffers from inference/test images being out of training distribution
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Lambert et al. (2024). Trustworthy clinical Al solutions: a unified review of uncertainty quantification in deep learning models for medical
iImage analysis. Artificial Intelligence in Medicine



Mitigating Risk of Al Uncertainty / Scalable Oversight

Trained Al Models inference suffers from inference/test images being out of training distribution
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Lambert et al. (2024). Trustworthy clinical Al solutions: a unified review of uncertainty quantification in deep learning models for medical image
analysis. Artificial Intelligence in Medicine



Edge Al Hub — NU Al Safety Institute — Faculty of Medical Sciences

NU Al Safety Institute will deliver for FMS via Edge Al Hub and University Wide Research Skills

Al fa ting

Newcastle
University
Al Safety
Institute

NU Al Safety Research,
or Al Engagement & Impact
activities

Edg

Edge Al Hub Al Safety Research, FMS’s Al Safety Research
Skills and Leadership Needs



Newcas_tle Al Safety
<’ University | Institute

Powered by % National Edge Al Hub

Get in touch

Address
Urban Sciences Building, 1 Science Square,
Newcastle upon Tyne NE4 5TG, UK

Email

varun.ojha@newcastle.ac.uk

Web

https://ojhavk.github.io/
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