Deep Learning for Flood Monitoring Challenges

Dr Varun Ojha

School of Computing, Newcastle University

varun.ojha@ncl.ac.uk

and collaborators

Remy Vandaele and Sarah L. Dance, University of Reading

at Department of Computer Science, Durham University 01 Nov 2023

Part 1

river water level monitoring

How we currently monitor river water level

Use of river gauge

Use of satellite images

Our approach: use of river cameras

Δ

We could use CCTV camera

Deep Learning for water level estimation

Pixel-wise water segmentation of RGB images for river water-level or flood monitoring

Vandaele, R., Dance, S. L., & Ojha, V. (2020). Automated water segmentation and river level detection on camera images using transfer learning. GCPR

Water semantic segmentation

Challenges with current state of the art water segmentation networks

Water reflection

Varied weather and varied field of view

Shadows and vegetation

And very few to no labelled dataset

Vandaele, R., Dance, S. L., & Ojha, V. (2020). Automated water segmentation and river level detection on camera images using transfer learning. GCPR

We can use transfer learning

ADE20k samples

COCO-stuff samples

Use transfer learning to harness the predictive power of segmentation networks trained on large databases of natural images

Vandaele, R., Dance, S. L., & Ojha, V. (2020). Automated water segmentation and river level detection on camera images using transfer learning. GCPR

Automated water segmentation

Fine-tuning over the smaller water segmentation datasets.

LAURA (1)

INTCATCH (1)

INTCATCH (2)

LAURA (4)

INTCATCH (4)

Dataset 1: 75 water-
segmented images
dataset from Lopez-
Fuentez et al., 2017
Dataset 2:39 water-

segmented images dataset from Steccanella et al., 2018

90.2	97.5
95.5	98.8
96.5	99.5
96.9	99.5
	90.2 95.5 96.5 96.9

LAURA

data

* ResNet50 with UpperNet decoder on COCO stuff and

DeepLab (V2 om ADE20k data

Fine tuning of only water-annotated images of the large datasets

INTCATCH (3)

INTCATCH

data

Flood monitoring

Flood Prediction using Deep Convolutional Neural Network

Customized dataset: Landmark annotation of waterline

River water level detection

DIGLIS LOCK

STRENSHAM LOCK

EVESHAM

Method	Accuracy on River Camera data
Pre-trained	87.4
Fine-tuning (COCO/ADE20k water data)	91.3

Flood Monitoring

Automated flood monitoring

Time-series sequence of images of river.

Flood monitoring using % pixels flooded

Static observer flooding index (SOFI) index: % of water pixels in a region of the image flooded

Water level index: height of the highest landmark reached by water

Extraction of river level data (of 2 weeks image streams)

Test set. 4 Cameras captured images during a 2-week flood event in 2012:

Camera name	# images	# landmarks	% flooded landmarks
Diglis Lock	141	7	24.11
Evesham Lock	134	13	30.94
Strensham Lock	144	24	37.15
Tewkesbury Marina	138	4	43.66

Extraction of river level data

Blanace Accuracy = $0.5 \frac{TP}{TP + TN} + 0.5 \frac{FP}{FP + FN}$

where

TP pixels flooded predicted as flooded*TN* pixels unflooded predicted as unflooded*FP* pixels unflooded predicted as flooded*FN* pixels flooded predicted as unflooded

	Diglis	Evesham	Strensham	Tewkesbury
	Lock	Lock	Lock	Marina
Blance Accuracy	0.94	0.98	0.94	0.97

14

Extraction of river level data (of 1 year image streams)

Test set. 4 Cameras captured images between 01/06/2019 and 31/05/2020, annotated with gauge data:

Camera name	# images	Distance to gauge station (m)
Diglis Lock	3081	94
Evesham Lock	3012	120
Strensham Lock	3067	820
Tewkesbury Marina	3147	1112

Extraction of river level data (1 Year)

SOFI index/Water level estimation from the window selected by majority voting from 8 trained nets that offers best correlation

DIGLIS LOCK

STRENSHAM LOCK

EVESHAM

TEWKESBURY MARINA

Extraction of river level data

Correaltion

$$=\frac{\sum_{i}^{N}(w_{i}-\bar{w})(g_{i}-\bar{g})}{\sqrt{\sum_{i}^{N}(w_{i}-\bar{w})^{2}(g_{i}-\bar{g})^{2}}}$$

where w_i is the gauge water level, g_i the estimated water level.

	Diglis	Evesham	Strensham	Tewkesbury
	Lock	Lock	Lock	Marina
Correlation	0.94	0.98	0.94	0.97

Image Regression

- Creation of a large dataset of 32,715 images annotated with river levels:
 - Matching of a camera with a river gauge (closest gauge > 50km)
 - Matching of an image with a gauge measurement
 - 95 camera locations across UK and Northern Ireland consist of 32,715 images

Image Regression: Estimation

Training of a deep regression network on this dataset to estimate the calibrated river level

Flood tracking

Vandaele, Dance, and Ojha, (2021) Hydrology and Earth System Sciences

We achieve 94% accuracy in correctly predicting real flood events.

Image regression

Part 2

trash screen monitoring

Trash screen monitoring

Trash screens prevent debris from entering critical parts of river networks but debris buildup can lead to floods Clean trash screen Blocked trash screen

Clean trash screen

Blocked trash screen

54 trash screens with CCTV camera feed: 80,452 images downloaded over 10 months

Trash screen monitoring: Binary classifier

- Advantage Could give high accuracy
- Disadvantage Manual data labelling is required
- ResNet-50 backbone
- Blockage score (softMax)

Trash screen monitoring: Anomaly Detection

- Advantage No manual data labelling is required
- Constraint Trash should be an anomaly
- Images are represented by a vector of features extracted from a pre-trained network
- A multivariate Gaussian fits the training vectors with parameters
- Anomaly score is the Mahalanobis distance between a multivariate gaussian and a new data

Trash screen monitoring: Image similarity

• The similarity score (softMax) can be transformed in a blockage score

Evaluation

46 training cameras, 4 validation cameras, 4 test cameras -> 80K images

agissey Fire Station Fri Jan 28 2022 14:55:23

Crinnis

Mevagissey

Barnstaple

Siston

Blockage detection results

- Binary classifier and image similarity have Balanced Accuracy and ROC AUC scores > 0.9 for 3 of the 4 locations
- Anomaly Detection has the worst results
- The Siamese network (image similarity) obtains the best results with only 5 reference images

References

 <u>Calibrated river-level estimation from river cameras using convolutional neural networks</u> *Environmental Data Science*, Cambridge University Press (2023)
Vandaele, R., Dance, S. L., & Ojha, V.

 Deep learning for automated river-level monitoring through river camera images: an approach based on water segmentation and transfer learning Hydrology and Earth System Sciences 25(8) 4435–4453 (2021) Vandaele R, Dance SL, Ojha V

 <u>Automated water segmentation and river level detection on images using transfer learning</u> 42nd DAGM German Conference on Pattern Recognition, DAGM GCPR, Tubingen, Germany, Proceedings 42 (pp 232–245) Springer, LNCS (2020) Vandaele R, Dance SL, Ojha V

 <u>Comparison of deep learning approaches to monitor trash screen blockage from CCTV cameras</u> EGU23 (2023)
Vandaele, R., Dance, S. L., & Ojha, V.