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Safeguarding Al challenges

® Monitoring of Data/Model Quality

How to monitor cyber-disturbances impact on the quality of data, Al
algorithms learning and the overall application resilience?

® Recovery of Data/Model Quality

How to recover data and Al model quality that are impacted by cyber-
disturbances and ensure suitability for Al model deployment on devices at
Tiers 1, 2 of EC architectures ?

® Assurance of Continuity of Data Quality and Model Quality

How to assure Al algorithms continually adapt to EC environments where
unknown cyber-disturbances that were not present in the original training
dataset?



Part 1
Safeguarding Al:
Model Robustnhess



Adversa rial attaCkS Calculated using Deep Neural Networks

(DNNSs) weights (white-box attack)

X Perturbation

—
magnitude it
+ &£ % —
Input example Adversarial perturbation Adversarial example
Predicted as ‘Horse’ (‘Plane’ class) Predicted as ‘Plane’

The general premise of a robustness analysis is to subject DNNs to the ‘worst case’
conditions and evaluate the ability for a DNN to remain invariant under such settings.
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Adversarial attack types

Evasion Attacks

Stop Sign 0.947

Green Light 0.92

Attacks are designed to
subtly alter inputs to
mislead Al models during
inference, causing them
to misclassify specific
inputs

Poison Attacks

Training Data (No Poisoning)
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Training Data (Poisoned)

Attacks are designed to subtly
alter the labels of training
examples or inject anomalous
data points, thus, attackers
can manipulate the model to
favour certain outcomes or fail
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Classification (Stickers) Misclassified &
30 MPH 0.986 Mislabeled Data
Inversion Attacks

Stage 1: Biometrics Theft
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Hacker

Adversarial
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Model
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Target Model

Stage 2: Follow Up Attack

—

Send Stolen
Image

Target Model

—_— 9

"John Smith" -
Access Granted

Attackers can deduce
characteristics or even
reconstruct portions of the
original training dataset

Inference Attacks

Model Training

® 0 o
0%
...:. ¢

Data

Inference Attack

Was the model trained
on this datapoint?

Target Model

Adversary's attempts to deduce
sensitive information from an Al model
by examining its outputs and
behaviours



White box attack: Gradient based attacks

Attacks known the model (gradient/parameters) and carefully craft an attack on the model

x1: adversarial image

.
Yay
e
"

High
Loss

Low
Loss

x1 and x, are original and
clean images with low loss
values

x'1 and x’, represent their

corresponding adversarial
images with high loss values

Classification boundary



Attacks on fragile neurons

We remove kernel from the first convolutional layer and define fragile nodes to be all
nodes that reduce the model performance on the test set to be below the mean dropout

performance.
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Adversarial targeting algorithm

We measure the average magnitude difference d at the output of the first
convolutional layer, between fragile and non-fragile neurons, on both
clean and adversarial inputs.

cleaninput x

£
perturbation

|

[ FGSM attack & ]

attacked input x,

Convolution 1

5 37(0)
~(0
y

a= 5@ -5,

Fragile kernel

% of examples attacking S

100+ et t—r

801 » F—

60 -

40 A

—#— Epoch 10
—+— Epoch 50
—#— Epoch 100

20 1

B I S Rt TR
log(e)
if avg. distance of fragile kernels S
greater than
avg. distance of non-fragile kernels s
then

x¢ attacks fragile kernels
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Adversarial targeting algorithm

We measure the average magnitude difference d at the output of the first
convolutional layer, between fragile and non-fragile neurons, on both
clean and adversarial inputs.

. E 88 -
cleaninput x , <
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perturbation ™
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t y© £
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t greater than
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S then

attacked input x, x¢ attacks fragile kernels
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Fragile kernels / neurons
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Red crosses (+) represent fragile kernels and red circles around red crosses (@)
represent kernels that have shown to be consistently fragile throughout the training

phase for each model.
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Challenges for DNN robustness

® DNNs are susceptible to adversarial attacks and thus any DNN prediction can
be unreliable and vulnerable to an adversary.

® How each component of a DNN behaves due to an adversarial attack is a
lesser-known area of research.

® Adversarial attacks on DNNs has been well studies on state-of-the-art datasets,
however, adversarial attacks on DNNs and their remedies has rarely been
studied extensively.
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What can we promise for DNN robustness?

® We can use adversarial attacks to identify the strengths and
weaknesses of DNN architectures.

® Upon identifying the strengths and weaknesses of DNN architectures
we can improve the performance of DNNs against both
adversarial attacks and the clean dataset.

® DNNs robustness analysis can develop stronger networks that are
capable of performing under sub-optimal conditions.
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How can we ensure DNN robusthess?

= Establish the relationship between DNN parameters and adversarial
attacks to identify parameters that are targeted by the adversary.

= Formalise the notions of DNN parameter perturbations and adversarial
attacks as internal and external stressors on DNNs.

= Define fragility, robustness, and antifragility in DNN to encapsulate
parameter characterisations and

= Evaluate the effects of only re-training parameters characterised as
robust and antifragile (selective backpropagation).

16



Deep learning and systems

e.g., model poisoning
attack or model parameter
modification

Stress on the System T
(proposed analysis)

Internal stress
» (synaptic filtering)

X y

External stress
(adversarial attack)

l

e.g., data poisoning

Change in Performance i

Robust
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Fragility, robustness and antifragility

Training st oty ()
Unperturbed (synaptic filtering)
DNN A

= synaptic filtering of all

Training
layers and parameters

DNN
Clean data ]_I_> Clean data of a DNN architecture.
Baseline DNN Performance % Parameter
o ' filters Attack = compare clean and
= adversarial
E . erformance of a regular
: DNN paversarialidata DN and perturbed DNN.
% Perturbed
e ' DNN B = characterise parameters
Parameter Filtering Magnitude @ @ as f.ragi l.e’ ro bUSt, and
Clean test accuracy Adv. test accuracy antifragile
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1 otherwise

Synaptic filtering algorithm hlw.m)_{ 0 if O<a;

attack generation parameter filtering filtering score
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Learning landscape
(performance vs epoch vs filtering strength)

The influence of parameters
varies as the network is trained
and learns more dataset
features.

DNN Accuracy
o o
® o

o ¢
N

The three different filters hq, h,,
and h; highlight different
parameters as influential ()
and non influential () to DNN
performance.

ﬁ(l) 0
The combined performance

70 ] °> highlights the parameters that
“ . ** are most influential (M) using

DNN Accuracy
o
SN

Epochs

dofta all the three different filters.

“aalao ao/Aa aa/ao
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Learning landscape
(performance vs epoch vs filtering strength)

We show that the
same layer of a DNN
has similar learning
landscapes for
different datasets.

This shows that there
are invariant
characteristics of
DNN architectures,
even when applied to
different datasets.
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Different layers in the network show to have different characteristics when subjected to the
parameter filters (internal stressor). The results are the combined responses using filters h4,
hz, and h3.
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Parameter scores (layer-wise and epoch wise)
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Periodic
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networks.

We say that
fragile
parameters are
importantto
network
performance.
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Selective backpropagation for DNN robustness
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When we retrain
networks at periodic
intervals using only
the characterised
robust and
antifragile layer
parameters (selective
backpropagation), we
observe an increase
in adversarial
performance, and
clean performance
for some networks
and datasets.
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Adversarial training for DNN robustness

Backpropagation

I Student Clean Output
I Target distribution
I Model
Clean example
I Predicted as ‘Horse’
[ Minimize CE + shared
Perturbation * loss (e.g., KL- - -

magnitude T+ & * divergence, MSE)

Adversarial perturbation
(‘Plane’ class)

Adversarial Output
distribution

Adversarial example
Predicted as ‘Plane’
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Loss functions

Mean Absolute Error (MAE) :
MAE calculates loss by considering all the errors on the same scale. i

Therefore, network will not be able to distinguish between them just

0.5

based on MAE, and so, it’s hard to alter weights during i
backpropagation. 3.0 -
2.5
Mean Squared Error (MSE) : i o
MSE helps converge to the minima efficiently, as the gradient B
reduces gradually. Ate the same time, extremely large loss may 1.5 1
lead to a drastic jump during backpropagation, which is not it
desirable. MSE is also sensitive to outliers.
Root Mean Squared Error (RMSE) : %0

Less extreme losses even for larger values, however, near
minima, the gradient change is abrupt

Loss Functions
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RegMix: Adversarial mutual and generalization regularization

Backpropagation
I ———————————————————— -
|
I
Clean example |
Predicted as ‘Horse’ | Clean Output
| distribution (CLN)
| >
v .
e | Minimize loss =
A e L A Augmented Output
*.:t‘v.—‘ Y
gggiﬁﬂg L ' distribution (AUG) CE (ADV, LABLE)
Random TR . +KLADV [|AUG) - —
Noise | RAaEas + KL (AUG || ADV)
2535..‘55.1‘;:\‘.‘;%5._.: + KL (ADV || CLN)
Augmented example q >
Adversarial Output
distribution (ADV
PGD istribution ( )
. E *
Perturbation
magnitude

Adversarial perturbation

---------------»

Adversarial example
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Loss landscape comparison
RegMix: Adversarial mutual and generalization regularization

(a) FGSM_PGI (b) FGSM-PGK (c) FGSM-AMR (Ours) (d) FGSM-AGR (Ours)
Adversarial Adversarial
Mutual Generalization

Regularization Regularization
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Classification Visualisation
RegMix: Adversarial mutual and generalization regularization

Plot: Predicted adversarial and clean probability distribution

—50 4

—100 A

t-SNE of PGD, Clean & GT - FGSM_PGK under class [8]

~100 0 50
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-100
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-150
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Performance
RegMix: Adversarial mutual and generalization regularization

WideResNet-34-10 on CIFAR-100 dataset

Method Clean PGD-10 PGD-20 PGD-50 C&W AA
Best/Last | Best/Last | Best/Last | Best/Last | Best/Last | Best/Last
PGD-AT [56] 57.52/57.50(29.60/29.54 | 28.99/29.00 | 28.87/28.90 | 28.85/27.60 | 25.48/25.58
FGSM-RS [68] 49.85/60.55| 22.47/0.45 | 22.01/0.25 | 21.82/0.19 | 20.55/0.25 | 18.29/0.00
FGSM-CKPT [35] |60.93/60.93|16.58/16.69 (15.47/15.61|15.19/15.24|16.40/16.60 | 14.17/14.34
FGSM-SDI [33] 60.67/60.82 (31.50/30.87|30.89/30.34 | 30.60/30.08 | 27.15/27.30 | 25.23/25.19
NuAT [63] 59.71/59.62 |27.54/27.07 {23.02/22.7220.18/20.09 | 22.07/21.59 | 11.32/11.55
GAT [62] 57.01/56.0724.55/23.92 {23.80/23.18|23.55/23.00{22.02/21.93 [ 19.60/19.51
FGSM-GA [2] 54.35/55.10(22.93/20.04 {22.36/19.13|22.20/18.84 | 21.20/18.96 | 18.88/16.45
Free-AT (m=38) [59]52.49/52.6324.07/22.86 (23.52/22.3223.36/22.16|21.66/20.68 | 19.47/18.57
FGSM-PGI [30] 58.78/58.81|31.78/31.60(31.26/31.06|31.14/30.88 |28.06/27.72 {25.67/25.42
FGSM-PGK [31] [56.27/58.13(33.15/32.38(32.85/31.90|32.83/31.87|28.39/27.95|26.86/26.35
FGSM-SAR (ours) |56.08/55.71(33.26/33.06 32.93/32.86|32.84/32.68 |28.64/28.89 |27.27/27.22
FGSM-AGR (ours) [53.57/53.57|33.29/33.29 | 33.02/33.02 | 32.95/32.95 | 28.91/28.91 | 27.42/27.42
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Knowledge distillation for DNN robustness

Large
Pre-trained
Teacher
Model

Training Dataset

—

Small
Student
Target
Model
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@* - =>{_Soft label

Knowledge
Distillation

v
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Loss

A

backpropagation



DynAT: Dynamic Label Adversarial Training

Knowledge distillation framework
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DynAT: Dynamic Label Adversarial Training

Adversarial generation
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DynAT: Dynamic Label Adversarial Training

Knowledge distillation framework
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Performance
Comparison with other typical defense methods
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Performance

Comparison with other defense methods

WideResNet-34-10 on CIFAR-10 dataset

Method Clean PGD-10 PGD-20 PGD-50 C&W AA
PGD-AT 60.89 32.19 31.69 3145 30.1 27.86
TRADES 58.61 2920 28.66 28.56 27.05 25.94
Others SAT 62.82 28.1 27.17  26.76 27.32 24.57
AWP 60.38 34.13 3386 33.65 31.12 28.86
LBGAT 60.64 35.13 3475 34.62 30.65 29.33
DYNAT 67.25 28.03 2697 26.81 26.62 24.10
Ours DYNAT-AWP (a =1) 62.29 3545 35.09 3492 31.50 30.20
DYNAT-Inner-AWP (« =1)|58.87 35.61 35.09 35.05 32.10 29.70




D2R: Dual regularization loss with adversarial generation

(a) Adversarial Samples Generation Process (b) Adversarlal Tralnlng Process
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D2R: Dual regularization loss with adversarial generation

Loss Trend Under Adversarial Training
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D2R: Dual regularization loss with adversarial generation

Baseline Loss Landscape D2R Loss Landscape D2R-CAG Loss Landscape

(a) Baseline Method (b) D2R (ours) (c) D2R-CAG(ours)

A noticeably flatter loss profile can be observed in our methods, indicating improved
robustness against adversarial perturbations
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D2R: Dual regularization loss with adversarial generation

WideResNet-34-10 on CIFAR-10 dataset

Method Clean PGD-10 PGD-20 PGD-50 C&W AA
PGD-AT 85.17  56.07 55.08 54.88 5391 51.69
TRADES 85.72  56.75 56.1 55.9 53.87 53.40

MART 84.17 58.98 58.56 58.06 5458 51.10

FAT 87.97  50.31 49.86 48.79  48.65 47.48
GAIRAT 86.30 60.64 59.54 58.74 4557 40.30
AWP 85.57 58.92 58.13 5792  56.03 53.90
LBGAT (baseline) 88.22  56.25 54.66 54.30 5429 52.23
LAS-AT 86.23  57.64 56.49 56.12 5573 53.58
RAT(TRADES) 85.98 - 58.47 . 56.13 54.20
D2R(ours) 86.00 58.17 56.88 56.60 55.69 54.04
D2R-CAG(ours) 85.68  58.50 57.22 56.73  56.66 54.65
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AdaGAT: Adaptive guidance for adversarial training

Clean Logits

N

Lada(R)MSE Lshare

‘,,% Adversarlal Noise T 4‘

CleanImage

!
@ —
I

Adversarial Logits

Target Model

— : Forward operation <— :Gradient flow

Adversarial Image

@ : Addition operation

L AdaGAT-MSE = n;in{ Lcg (f og(x), y )

g

+ Lpare T 4 Logamse (fe,(x +9), feg(x)) }

L AdaGAT-RMSE = n‘éin{ Lcg (f 8, (x), y ) + L e

+ A L q,rMSE (fe,(x +0). fﬂg(x)) }

Guide Model Target Model
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AdaGAT: Comparison of the guiding model’s
performance with and without backpropagation
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Performance
AdaGAT: Adaptive guidance for adversarial training

WideResNet-34-10 on CIFAR-10 dataset

Method PGD-10 PGD-20 PGD-50 C&W AA
TRADES 2920  28.66 2856 27.05 25.94
SAT 28.10  27.17  26.76  27.32 24.57
LBGAT (baseline)  32.05  30.77 3042 28.72 27.16
AdaGAT-MSE (ours) 3250 31,59  31.31 29.24 27.69
AdaGAT-RMSE (ours) 32.63 31.63 31.35 29.37 27.79
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Part 2
Safeguarding Al:
Security and Privacy



Data privacy and Security
Model-centric federated learning

Data is generated locally and | e 3 MCLGQEL[W
remains de-centralised. Each FUTRIITEEE c _ 0
client stores its own data and I local ML weights to

cannot read the data of 9 deonpionana

other clients. Data is not I e e Comam.

independently or identically ﬁommpmm @o

distributed (non-1ID*) e o

G Local private and
secure data

3
K&) Local secure training .
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Horizontal federated

learning

(Sample-based/Homogenous)
federated learning

Multiple hospitals can collaboratively train
a disease analysis model without sharing
customer information. Hospitals A and B
have the same feature but samples of
different patients

"TT) B
1 0000
ii. > 0000
_ s 0000
Hospital A 4 [_][_]m—]
4 T
5 (JCI0)
ii_ s OO0
; 000
Hospital B 8 DD[:]
\

Vertical federated

learning
(Feature-based/Heterogeneous )
federated learning

Two Hospitals/Institutions jointly train a
model, with the one providing users’ medical
image data and other providing medical
records. Hospital A has information about
Patient A related to heart issues’ treatment
history, and Hospital B has data about patient A’s
monthly routine checkup history

4 TT1)
1 JuUu Vs N
ﬂ 2NNNNEE B
i e g
\p' + 0000 0od)
JUU5 Hospital B
\ /

Sachin et al . (2024). Federated learning for digital healthcare: concepts, applications, frameworks, and challenges. Computing, 106(9), 3113-3150.



Hierarchical federated learning (HFL)

Wearable devices may transmit data to a hospital's local server, which trains a preliminary model, and
then shares it with a central research institution for further refinement

° Intermediate aggregation
Local devices aggregate updates before

sending them to a central node.
®* Reduced communication overhead
Fewer direct transmissions to ground

stations, conserving bandwidth.

* Scalable
Handles large number of clients with

minimal latency.

Cloud server

Edge
server N

() Shared data
{ -
Shared data UAVs

Edge
server 1

Edge
server 4

DD By pBy

@3@@% 53&’ _
T

) \_"_7\. E4 .

Image source: Tursunboev et al. Hierarchical Federated Learning for Edge-Aided Unmanned Aerial Vehicle Networks. Appl. Sci. 2022



Adversarial attacks on federated learning

Training time

\ ) \
..’\.,-“/\.

OCIoud server

e Inference time

Reglonal server

T
%t @:

e 9

Model
poisoning

Global
model

Clean
dataset

Data
poisoning

“Client  Client " Client
Aggregation Q . 9 Adversarial Neural
Training Inference Training cleanse
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Targeted attack success rate

Targeted Attack/Defense Success Rate of Backdoor Attacks: attack (dashed line) and after defence (solid line)

fashion-mnist cifarlO
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Targeted Attack Success rate (TASR) Central Machine Learning (CML) Hierarchical Federated Leaning (HFL) 48



Attack/defense on hierarchical federated learning

Regional Attack Distributed Attack

__AWHFL | | 3LHFL__ | | A4LHFL | | 3LHFL
___Global server |
_Regional servers |
| Model il Edge servers |
| Discrepancy | S
___ Clients
DO TIOIES TGRS

________AttackScenariol | e Attack Scenario2

Malicious region Semi-malicious region Semi-benign region Benign region

Targeted Label Flipping (TLF), Untargeted Label Flipping (ULF), Client-Side Sign Flipping (CSF), and Server-Side Sign Flipping
(SSF). For both scenarios, 50% of clients or edge servers were malicious. 49



Defense on hierarchical

federated learning
Model Discrepancy Score (MDS)

I

MDS = /5 i, (Normalized Metric;)”
where N represents the number of metrics

Dissimilarity (Cosine similarity).

Dissimilarity quantifies the angular deviation between
two model weight vectors

Distance (Euclidean distance).

Euclidean Distance measures the magnitude of
deviation between two model updates

Uncorrelation (Pearson correlation).

Uncorrelation assesses the linear dependency
between updates

Divergence (Jensen-Shannon divergence).

Jensen—Shannon Divergence (JSD) captures
probabilistic shifts in weight distributions
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Part 3
Safeguarding Al:
Continuity of Learning



Type of Incremental learning

a
Context1(c=1) Context 2 (c = Context 3 (c = 3) Contest 4{c=4) Context 5 (c=5)

Within-context label: y=0 ¥=1 :r=':l r=1 y=0 ¥=1 ¥ =0 ¥=1

Global label: g=0 g=1 g=2 g=3 g=4 g=3 g=8 g=9

Input (at test time) Expected output Intuitive description

Task-incremental learning Image + context label Within-context label” Choice batwean two digits of same contaxt (e.g. D or 1)
Domain-incremental learning Image Within-context label Is the digit odd or even?
Class-incremental learning Image Global label Choice between all ten digits

van de Ven, G.M., Tuytelaars, T. & Tolias, A.S. Three types of incremental learning. Nat Mach Intell 4, 1185-1197 (2022). https://doi.org/10.1038/s42256-022-00568-3
52



Class incremental federated learning

Samf)Iing Condensation Condensed Exemplars

Class 1

Classn

Condensed feature refers

to a transformed or
derived feature that
represents a subset of
the original features or a
ExReplay eliminates the limitations of exemplar selection in replay-based combination of them

approaches for mitigating catastrophic forgetting in federated continual
learning




Class incremental federated learning

Local Exemplar Condensation
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Ex Replay: Clients continuously learn from new class data sequences using a dual-distillation structure to
mitigate catastrophic forgetting.



Class incremental federated learning

LOCal Exempiar Londensauon Central S

Class Distribution

0 l|||. -
0123456789

...l.

0 3 6 9121518

35‘|

195
130

s Tii=

10131619222528

The I-th local dlient

Ihe 1-st local client

Ex Replay: Clients continuously learn from new
class data sequences using a dual-distillation
structure to mitigate catastrophic forgetting.

The exemplar condensation process involves
three key components:

a gradient matching loss (L.,,,4) for meta-
information distillation,

a feature matching loss (L,..;) for consistency
between condensed samples and real images

a compensation loss (Ly k) to
address meta-information heterogeneity
using disentangled features

A knowledge distillation loss
(Lkp) helps retain prior knowledge.



Class incremental federated learning

Evaluation of multiple metrics (%) on CIFAR100 under a Non-IID setting
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Backward Transfer (BwT):
measures the influence that learning
a new task has on the performance
of previously learned tasks.

Forward Transfer (FwT).assesses
the influence that learning a new
task has on the performance of
future tasks.

Remembering: calculates the
degree of retention for previous
tasks as part of the backward
transfer process.

Forgetting: measures the average
amount of forgetting across all tasks,
helping to quantify how much
information is lost as new tasks are
learned



Domain incremental federated learning

RefFiL: Rehearsal free federated domain-incremental learning framework

unseen domains are continually learned domain-incremental learning
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Key steps: the 15t participant processes new domain data using global prompts from
the 2nd to m-th participants and local prompts, enhancing robustness by aligning the
model’s predictions across diverse domain prompts as inputs.



Domain incremental federated learning

RefFiL: Rehearsal free federated domain-incremental learning framework
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Each participant first encodes local prompts using the tokenized feature map and task ID embedding. These local prompts are
then concatenated with the feature map to compute the loss L. . Simultaneously, the feature map is combined with global
prompts to calculate the loss L;p;, and the loss Lppc; is determined between global and local prompts. Subsequently, all local
prompts, along with the updated local models, are transmitted to the central server.



Domain incremental federated learning

Comparison of RefFil’s performance with five baseline methods on four widely used datasets,
showcasing average accuracy (Avg %) and accuracy for each domain task (%)

Task 1 — 5 on Digit-Five | Task 1 — 4 on OfficeCaltech10
Methods MNIST MNIST-M  USPS SVHN SYN — Avg || Amazon Caltech Webcam DSLR Avg
Finetune 99.68 97.75 63.87 75.84 49 .80 - 77.39 76.56 57.79 24.58 19.29 44 .56
FedLwF 99.68 92.80 69.16 69.39 56.86 - 77.58 76.56 53.24 28.57 28.74 46.78
FedEWC 99.68 97.48 74.63 73.32 45.89 — 78.20 76.56 56.59 29.83 15.55 44 .38
FedL2P 99.66 98.06 80.01 81.89 57.65 - 83.45 76.56 51.80 31.09 26.57 46.51
Fedl2Pt 99.64 97.65 85.18 81.65 60.17 — 84.86 71.35 55.88 29.20 25.20 4541
FedDualPrompt 99.67 97.96 86.88 81.95 59.30 - 85.15 74.48 50.36 31.93 23.82 45.15
FedDualPromthr 99.65 97.90 84.68 81.40 58.34 - 84.39 75.90 53.96 33.82 27.76 47.86
RefFiL 99.68 98.25 90.96 83.70 62.11 — 8694 || 78.65 61.15 40.76 33.66 53.56
Task 1 — 6 on FedDomainNet H Task 1 — 4 on PACS
Methods Clipart Infograph Painting  Quickdraw Real Sketch Avg H Photo Cartoon Sketch Art Painting Avg
Finetune 51.48 15.89 28.05 27.84 29.45 18.07 28.46 61.68 47.45 36.12 30.82 40.18
FedLwF 51.48 18.10 26.71 25.98 27.47 17.96 27.95 61.68 47.07 25.11 26.61 40.12
FedEWC 50.76 15.46 22.66 21.87 27.45 18.37 26.10 63.17 47.70 23.66 27.36 40.27
FedL2P 40.55 13.19 21.09 28.15 30.13 18.42 25.26 64.97 48.32 50.09 35.32 49.68
FedL2Pt 37.63 9.29 16.79 27.09 26.68 15.59 22.18 65.57 54.67 45.25 34.52 50.00
FedDualPrompt 51.17 19.48 28.74 22.68 29.40 18.05 28.25 73.65 56.54 4493 41.07 54.05
FedDualPromp‘ﬂL 51.14 20.20 28.91 23.09 30.07 17.76 28.53 75.75 54.55 4323 37.62 52.79

RefFiL 51.27 20.91 29.23 22.57 3062 1898 2893 || 7395 59.90 43.17 44.27 55.32
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