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Safeguarding AI challenges

•Monitoring of Data/Model Quality
How to monitor cyber-disturbances impact on the quality of data, AI 
algorithms learning and the overall application resilience?

• Recovery of Data/Model Quality 
How to recover data and AI model quality that are impacted by cyber-
disturbances and ensure suitability for AI model deployment on devices at 
Tiers 1, 2 of EC architectures ?

• Assurance of Continuity of Data Quality and Model Quality
How to assure AI algorithms continually adapt to EC environments where 
unknown cyber-disturbances that were not present in the original training 
dataset?



Part 1
Safeguarding AI:

Model Robustness
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The general premise of a robustness analysis is to subject DNNs to the ‘worst case‘ 
conditions and evaluate the ability for a DNN to remain invariant under such settings.

Input example
Predicted as ‘Horse’

Adversarial perturbation
(‘Plane’ class)

Perturbation 
magnitude

Adversarial example
Predicted as ‘Plane’

Calculated using Deep Neural Networks 
(DNNs) weights (white-box attack)

Adversarial attacks
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Adversarial attack types

Attackers can deduce 
characteristics or even 
reconstruct portions of the 
original training dataset

Attacks are designed to 
subtly alter inputs to 
mislead AI models during 
inference, causing them 
to misclassify specific 
inputs

Attacks are designed to subtly 
alter the labels of training 
examples or inject anomalous 
data points, thus,  attackers 
can manipulate the model to 
favour certain outcomes or fail 
under specific conditions

Adversary's attempts to deduce 
sensitive information from an AI model 
by examining its outputs and 
behaviours

Inversion Attacks

Evasion Attacks Poison Attacks

Inference Attacks

Image source: https://mindgard.ai/blog/ai-under-attack-six-key-adversarial-attacks-and-their-consequences
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White box attack: Gradient based attacks

𝑥1 and 𝑥2 are original and 
clean images with low loss 
values

𝑥’1 and 𝑥’2 represent their 
corresponding adversarial 
images with high loss values

Classification boundary

𝒙𝟏

𝒙𝟐

𝒙𝟐

Attacks known the model (gradient/parameters) and carefully craft an attack on the model

Image source: Xu et al 2021, Medical Image Analysis 9



Attacks on fragile neurons

Fragile kernels (nodes) shown in blue (•) below mean/baseline 

DNN performance line in red and null kernels are shown in black 
star (★) above mean line in red

We remove kernel from the first convolutional layer and define fragile nodes to be all 
nodes that reduce the model performance on the test set to be below the mean dropout 
performance.
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𝑘60

Input

Random 
dropout 
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Nodal Dropouts
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if avg. distance of fragile kernels 𝑆
𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛

avg. distance of non-fragile kernels ҧ𝑠 
then

𝑥𝜀 attacks fragile kernels

Adversarial targeting algorithm
We measure the average magnitude difference 𝒅 at the output of the first 
convolutional layer, between fragile and non-fragile neurons, on both 
clean and adversarial inputs.

FGSM attack 𝛿

𝜀 
perturbation

Convolution 1

ො𝑦(0)

ො𝑦𝜀
(0)

𝑡0

𝑡1

⋮

𝑆

𝑆
𝑆

ҧ𝑠

ҧ𝑠

ҧ𝑠

clean input 𝑥

attacked input 𝑥𝜀

𝒅 = ො𝑦(0) − ො𝑦𝜀
(0)

2
 

Fragile kernel
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Fragile kernels / neurons

Red crosses (+) represent fragile kernels and red circles around red crosses ( + ) 

represent kernels that have shown to be consistently fragile throughout the training 

phase for each model.
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Challenges for DNN robustness

• DNNs are susceptible to adversarial attacks and thus any DNN prediction can 
be unreliable and vulnerable to an adversary.

• How each component of a DNN behaves due to an adversarial attack is a 
lesser-known area of research.

• Adversarial attacks on DNNs has been well studies on state-of-the-art datasets, 
however, adversarial attacks on DNNs and their remedies has rarely been 
studied extensively.

14



What can we promise for DNN robustness?

•We can use adversarial attacks to identify the strengths and 
weaknesses of DNN architectures. 

•Upon identifying the strengths and weaknesses of DNN architectures 
we can improve the performance of DNNs against both 
adversarial attacks and the clean dataset. 

•DNNs robustness analysis can develop stronger networks that are 
capable of performing under sub-optimal conditions.

15



How can we ensure DNN robustness?  

▪ Establish the relationship between DNN parameters and adversarial 
attacks to identify parameters that are targeted by the adversary. 

▪ Formalise the notions of DNN parameter perturbations and adversarial 
attacks as internal and external stressors on DNNs. 

▪ Define fragility, robustness, and antifragility in DNN to encapsulate 
parameter characterisations and 

▪ Evaluate the effects of only re-training parameters characterised as 
robust and antifragile (selective backpropagation).

16



Deep learning and systems

e.g., model poisoning 
attack or model parameter 

modification

e.g., data poisoning
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Fragility, robustness and antifragility

▪ a new method of 
parameter filtering 
(synaptic filtering) 

▪ synaptic filtering of all 
layers and parameters 
of a DNN architecture.

▪ compare clean and 
adversarial 
performance of a regular 
DNN and perturbed DNN.

▪ characterise parameters 
as fragile, robust, and 
antifragile

18



Synaptic filtering algorithm

ℎ1

ℎ2

ℎ3

attack generation parameter filtering filtering score

Low pass

high pass

pulse pass
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The influence of parameters 
varies as the network is trained 
and learns more dataset 
features.

The three different filters ℎ1, ℎ2, 
and ℎ3 highlight different 
parameters as influential (■) 
and non influential (■) to DNN 
performance.

The combined performance 
highlights the parameters that 
are most influential (■) using 
all the three different filters.

Learning landscape 
(performance vs epoch vs filtering strength)

20



Different layers in the network show to have different characteristics when subjected to the 
parameter filters (internal stressor). The results are the combined responses using filters ℎ1, 
ℎ2, and ℎ3.

We show that the 
same layer of a DNN 
has similar learning 
landscapes for 
different datasets. 

This shows that there 
are invariant 
characteristics of 
DNN architectures, 
even when applied to 
different datasets.

Learning landscape 
(performance vs epoch vs filtering strength)

21



Parameter scores (layer-wise and epoch wise)

Periodic 
parameter 
characterisation 
shown for some 
networks.

We say that 
fragile 
parameters are 
important to 
network 
performance.
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Selective backpropagation for DNN robustness

When we retrain 
networks at periodic 
intervals using only 
the characterised 
robust and 
antifragile layer 
parameters (selective 
backpropagation), we 
observe an increase 
in adversarial 
performance, and 
clean performance 
for some networks 
and datasets.

Regular training Selective backpropagation 23



Adversarial training for DNN robustness
𝑥

𝑥𝜀

Clean example
Predicted as ‘Horse’

Adversarial perturbation
(‘Plane’ class)

+ 𝜀 ∗
Perturbation 
magnitude

Adversarial example
Predicted as ‘Plane’

Minimize CE + shared 
loss (e.g., KL-

divergence, MSE)

Clean Output 
distribution

Adversarial Output 
distribution

Backpropagation

Student
Target  
Model
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Loss functions

Root Mean Squared Error (RMSE) :
Less extreme losses even for larger values, however, near 
minima, the gradient change is abrupt

Mean Squared Error (MSE) :

MSE helps converge to the minima efficiently, as the gradient 

reduces gradually. Ate the same time, extremely large loss may 
lead to a drastic jump during backpropagation, which is not 
desirable. MSE is also sensitive to outliers.

Mean Absolute Error (MAE) :
MAE calculates loss by considering all the errors on the same scale. 

Therefore, network will not be able to distinguish between them just 

based on MAE, and so, it’s hard to alter weights during 

backpropagation.

25



RegMix: Adversarial mutual and generalization regularization

𝑥

Clean example
Predicted as ‘Horse’

Adversarial perturbation

+ 𝜀 ∗
PGD 

Perturbation 
magnitude

Random 
Noise

Adversarial example

Minimize loss =  
 CE (ADV, LABLE) 
 + KL(ADV  || AUG) 
 + KL (AUG || ADV)
 + KL (ADV || CLN)

Clean Output 
distribution (CLN)

Adversarial Output 
distribution (ADV)

Backpropagation

+ 

Augmented example

Augmented Output 
distribution (AUG)
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Loss landscape comparison 
RegMix: Adversarial mutual and generalization regularization

Adversarial 
Mutual 
Regularization 

Adversarial 
Generalization 
Regularization 
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Classification Visualisation
RegMix: Adversarial mutual and generalization regularization

Ground truth

Ground truth
Ground truth

Ground truth
Adv inputAdv input

28

Plot: Predicted adversarial and clean probability distribution



Performance
RegMix: Adversarial mutual and generalization regularization
WideResNet-34-10 on CIFAR-100 dataset
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Knowledge distillation for DNN robustness

Soft label

Hard label True label

Large 
Pre-trained 

Teacher 
Model

Small 
Student

Target  
Model

Knowledge 
Distillation

Distillation
Loss

Training Dataset
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DynAT:  Dynamic Label Adversarial Training

Knowledge distillation framework



DynAT:  Dynamic Label Adversarial Training
Adversarial generation



DynAT:  Dynamic Label Adversarial Training

Knowledge distillation framework



Performance 
Comparison with other typical defense methods



Performance 
Comparison with other defense methods

WideResNet-34-10 on CIFAR-10 dataset



Guide Model (Clean output)

Target Model (Adversarial output)

Target Model (Clean output)

D2R: Dual regularization loss with adversarial generation
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D2R: Dual regularization loss with adversarial generation

37



D2R: Dual regularization loss with adversarial generation

A noticeably flatter loss profile can be observed in our methods, indicating improved 
robustness against adversarial perturbations

38



(baseline)

WideResNet-34-10 on CIFAR-10 dataset

D2R: Dual regularization loss with adversarial generation
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AdaGAT: Adaptive guidance for adversarial training

Guide Model Target Model

40



AdaGAT: Comparison of the guiding model’s 
performance with and without backpropagation

41



WideResNet-34-10 on CIFAR-10 dataset

Performance 
AdaGAT: Adaptive guidance for adversarial training
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Part 2
Safeguarding AI:

Security and Privacy 



Data privacy and Security
Model-centric federated learning 

Data is generated locally and 
remains de-centralised. Each 
client stores its own data and 
cannot read the data of 
other clients. Data is not 
independently or identically 
distributed (non-IID*)

*Non-IID (non-independent and identically distributed) data refers to datasets where samples are not drawn from 
the same underlying distribution or are not independent of each other. This means that the data exhibits skewness 
or heterogeneity across different clients or data points 44



Horizontal federated 
learning
(Sample-based/Homogenous) 
federated learning

Vertical federated 
learning
(Feature-based/Heterogeneous ) 
federated learning

Multiple hospitals can collaboratively train 
a disease analysis model without sharing 
customer information. Hospitals A and B 
have the same feature but samples of 
different patients

Two Hospitals/Institutions jointly train a 
model, with the one providing users’ medical 
image data and other providing medical 
records. Hospital A has information about 
Patient A related to heart issues’ treatment 
history, and Hospital B has data about patient A’s 
monthly routine checkup history

Sachin et al . (2024). Federated learning for digital healthcare: concepts, applications, frameworks, and challenges. Computing, 106(9), 3113-3150.



Hierarchical federated learning (HFL)

• Intermediate aggregation

      Local devices aggregate updates before    

      sending them to a  central node.

• Reduced communication overhead:

     Fewer direct transmissions to ground 

     stations, conserving  bandwidth.

•  Scalable

Handles large number of clients with 

minimal latency.

Image source: Tursunboev et al. Hierarchical Federated Learning for Edge-Aided Unmanned Aerial Vehicle Networks. Appl. Sci. 2022

Wearable devices may transmit data to a hospital's local server, which trains a preliminary model, and 
then shares it with a central research institution for further refinement



Adversarial attacks on federated learning
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Targeted Attack Success rate (TASR)  Central Machine Learning (CML) Hierarchical Federated Leaning (HFL)

Targeted attack success rate
Targeted Attack/Defense Success Rate of Backdoor Attacks: attack (dashed line) and after defence (solid line)

48



Attack/defense on hierarchical federated learning

Targeted Label Flipping (TLF), Untargeted Label Flipping (ULF), Client-Side Sign Flipping (CSF), and Server-Side Sign Flipping 
(SSF). For both scenarios, 50% of clients or edge servers were malicious.

Regional Attack                                    Distributed Attack

49



Defense on hierarchical 
federated learning

50

Model Discrepancy Score (MDS)

where N represents the number of metrics

Dissimilarity (Cosine similarity).

Dissimilarity quantifies the angular deviation between 

two model weight vectors

Distance (Euclidean distance).

Euclidean Distance measures the magnitude of 

deviation between two model updates

Uncorrelation (Pearson correlation).

Uncorrelation assesses the linear dependency 

between updates

Divergence (Jensen–Shannon divergence).

Jensen–Shannon Divergence (JSD) captures 

probabilistic shifts in weight distributions



Part 3
Safeguarding AI:

Continuity of Learning



Type of Incremental learning

52

van de Ven, G.M., Tuytelaars, T. & Tolias, A.S. Three types of incremental learning. Nat Mach Intell 4, 1185–1197 (2022). https://doi.org/10.1038/s42256-022-00568-3



Class incremental  federated learning

Disentangled features refer to a 
representation where 
individual components 
(features) capture 
independent, interpretable 
aspects of the data, rather 
than being intertwined or 
correlated.

Condensed feature refers 
to a transformed or 
derived feature that 
represents a subset of 
the original features or a 
combination of themExReplay eliminates the limitations of exemplar selection in replay-based 

approaches for mitigating catastrophic forgetting in federated continual 

learning



Ex Replay: Clients continuously learn from new class data sequences using a dual-distillation structure to 

mitigate catastrophic forgetting.

Class incremental  federated learning



Ex Replay: Clients continuously learn from new 

class data sequences using a dual-distillation 

structure to mitigate catastrophic forgetting.

The exemplar condensation process involves 
three key components: 

a gradient matching loss (𝑳𝒄𝒐𝒏𝒅) for meta-
information distillation, 

a feature matching loss (𝑳𝒓𝒆𝒍) for consistency 
between condensed samples and real images

a compensation loss (𝑳𝑴𝑲𝑪𝑳) to
address meta-information heterogeneity 
using disentangled features

 A knowledge distillation loss
(𝑳𝑲𝑫) helps retain prior knowledge.

Class incremental  federated learning



Evaluation of multiple metrics (%) on CIFAR100 under a Non-IID setting

Remembering: calculates the 

degree of retention for previous 

tasks as part of the backward 

transfer process.

Forward Transfer (FwT):assesses 

the influence that learning a new 

task has on the performance of 

future tasks.

Backward Transfer (BwT): 

measures the influence that learning 

a new task has on the performance 

of previously learned tasks.

Forgetting: measures the average 

amount of forgetting across all tasks, 

helping to quantify how much 

information is lost as new tasks are 

learnedExReplay(ours)

Class incremental  federated learning



RefFiL: Rehearsal free federated domain-incremental learning framework

Key steps: the 1st participant processes new domain data using global prompts from 

the 2nd to m-th participants and local prompts, enhancing robustness by aligning the 

model’s predictions across diverse domain prompts as inputs.

unseen domains are continually learned domain-incremental learning

Domain incremental federated learning 



Domain incremental federated learning 
RefFiL: Rehearsal free federated domain-incremental learning framework

Each participant first encodes local prompts using the tokenized feature map and task ID embedding. These local prompts are 

then concatenated with the feature map to compute the loss 𝐿𝐶𝐸 . Simultaneously, the feature map is combined with global 

prompts to calculate the loss 𝐿𝐺𝑃𝐿, and the loss 𝐿𝐷𝑃𝐶𝐿 is determined between global and local prompts. Subsequently, all local 

prompts, along with the updated local models, are transmitted to the central server.



Comparison of RefFiL’s performance with five baseline methods on four widely used datasets,

showcasing average accuracy (Avg %) and accuracy for each domain task (%)

Domain incremental federated learning 
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