Sensitivity Analysis of
Deep Learning and
Optimization Algorithms

Dr Varun Ojha

Department of Computer Science
University of Reading, UK
v.k.ojha@reading.ac.uk; vkojha@ieee.orq
Github: https://qgithub.com/vojha-code

1ICD2022]

The 8th International Conference on Machine Learning, Optimization, and Data Science
September 18 — 22, 2022
Siena — Tuscany, Italy



mailto:v.k.ojha@reading.ac.uk
mailto:vkojha@ieee.org
https://github.com/vojha-code/saofeas

Content

Part 1. Sensitivity Analysis

» Sensitivity analysis methods
» Algorithm configuration problem

» Configuration selection methods

Part 2. Sensitivity Analysis of Deep Learning Algorithms
* Deep learning algorithms
* Deep learning algorithm configuration space

» Results of the analysis

Part 3: Sensitivity Analysis of Optimization Algorithms
» Optimization algorithms
« Optimization algorithm configuration space

* Results of the analysis

Resources



Part 1
Sensitivity Analysis



Sensitivity analysis

The study of how uncertainty in the output of a model can be apportioned

to different sources of uncertainty in the model input (Saltelli et al., 2004)

Uncertainty in the Input ——> Model | |—— uUncertainty in the Output

Sensitivity analysis I




Simple Example: linear model

n
Y =zWiXi
i

where input factors are Q = (W, W,, ..., W,,, X1, X5, ..., X},).

If we the coefficients (W, W5, ..., W,)) are fixed then the model has
variables (X4, X,, ..., X;,) are the only active factors.

Therefore, model outputs Y are sensitive to model inputs X.

Which variable (X4, X5, ..., X;;) Is the most influential?



Which Is the most influential factor?
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Conditional Variances (First Order measure)

 For a model
Y = f(Xl,Xz, ...,Xn)

we wish to determine what would happen to the uncertainty of Y if
we could fix a factor X; at a value x;.

We would imagine that the resulting variance Vy._; (Y |X; = x;) will
be less than the total or unconditional variance V(Y).

Limitation: the sensitivity measure depend on a value x;.



Conditional Variances

Avoid the the sensitivity measure dependence on a value x;.

We take average over all values of values of X; and NOT just a fixed value x; :
Ey (Vx.i(Y |X;)). And we have averaging over all-but-X; as Ex._; (Y |X;).

Therefore, the conditional variance Vy, (Ex~;(Y |X;)) < V(Y), i.e., the conditional
variance is less than the variance of model on all total or unconditional variance V(Y).

This gives us the sensitivity measure §; of variable X; as

_ Vy, (Ex~i(Y |X;))

X V)




How to sample values of variable X

random sampling gird sampling / One at a time (OTA) sampling



Sensitivity Analysis: Elementary Effect (EE)

Y (X, ..., X; + 4, ... X)) = Y(Xq, ... Xi)]
EEi —

;

A 1
For r sample points, the sensitivity measures are: - / 73\'
3
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Sensitivity Analysis: Total Effect (EE)

First order Effect 1/7&

o _VEXIX) LY
‘ V(Y) o
Total Effect 5 'l m
5 =1 _VEXIXD) v X
; V(Y o w2

four-level grid (p = 4) in the two-
dimensional input space (k = 2),
A=p/C2p-1))



Sensitivity Analysis: Interpretation

* Morris Method (Elementary Effect)

* Mean u
* Low value — the variable X has low overall influence on Y
 High value — the variable X has high overall influence on Y
« Standard deviation o

* Low value - the variable X has low influence independently on Y

« High value - the variable X has high interactive influence on Y



Sensitivity Analysis: Interpretation

» Sobol Method (Variance Based / Total Effect)

* First order effect
* Low value — the variable X has low direct influence on Y
» High value — the variable X has high direct influence on Y
* Total effect

 Low value - the variable X has low total influence on Y

« High value - the variable X has high interactive influence on Y



Sensitivity Analysis: Interpretation

Morris Sobol
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Algorithm Configuration Problem

A The The set of
parametrized decision/optimization parameter
target algorithm  problem to be solved configurations

Select a Assess algorithm A for : Return a
configuration c > a configuration c in C on ——— . : .
: configuration c
from set C a problem p of P :

T return _
Configuration :

e Y "TT"TmTMmMmMmm rmrf s f M M M MM MM M TfMMmMM T M T MM MMM T T T T M M M T T M T T T T T T T T T -



Selection of configuration ¢ from C

random sampling gird sampling / One at a time (OTA) sampling



Part 2
Sensitivity Analysis of
Deep Neural Networks



Deep Learning Algorithm
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Algorithm: Deep
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Configuration: Deep Learning

* Network Architecture

* Number of layers
* Number of nodes per layer

» Type of layers

« Activation functions

« Type of activation function

* Learning algorithms
» Type of optimizers
« Learning mode
» Learning epochs

» Hyperparameters of optimizers (e.g., Learning rate)



Algorithm: Deep Neural Network

* Deep Neural Network

e ResNetl8

o AlexNet

* GoogleNet

224
5 dense dense
7 13 13 13 e
”/] I3 54 3 3 3
| ’ g 4 — — —
11\/ s s e P
384 384 256 1000
224 256 Max Max 4096 4096
% Max pooling pooling
i
Stride POoNg
3 of 4

Example: AlexNet Block Diagram



Configuration: Deep Learning

Parameter Description Range Default
Optimiser List of gradient descent (GD) algorithms. Category™ Adam
Learning rate (o) Initial GD step controller. [1x10~7, 0.5] 0.001
Momentum (3) Acceleration factor for GD. [0, 0.99 0.6
Learning rate decay (tgecay) Reduction rate of («). [0, 1] 0.9
Learning rate decay step (cg—step)  Number of epochs between Learning Rate Decay.  [1,100] 10
Batch size Size of training subset for GD update. Category™ 32
Epochs Number of training cycles. [5, 1000] 100

Note: Optimisers variations: Adam, SGD, RMSprop, ADAdelta, ADAgrad and ADAmax;
Batch size variations : 1, 32, 64 and 128



Problems: Deep Learning

MNIST Fashion MNIST CIFAR-10



Sensitivity analysis
summary

 Type of gradient decent
optimizer Is not a major
factor on DNN

 Learning rate Is not a major
factor on DNN whereas the
learning rate decay Is.

* Number of epochs Is
relatively least influential

AlexNet ResNetl8 DNN
Morris Morris u

GoogleNet
Morris u

Sobol ST;

Optimiser
# Learning Rate
Momentum
# Batch Size
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Number of Epochs
Learning Rate Decay
Learning Rate Decay Steps



Sensitivity analysis
summary

 Learning rate decay Is the
most influential for fixed
network architecture
models

 Batch size Is the most
Influential for flexible
network architecture model

AlexNet ResNetl8
Morris Morris u

GoogleNet
Morris u

Sobol ST;

Optimiser
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DNN Sensitivity analysis summary

DNN ResNet18 AlexNet GoogleNet
Parameter M MF C M MF C M MF C M MF C Average
Learning Rate Decay 1.16 140 100 098 098 0.08 094 1.17 047 0.00 033 0.00 0.71
Batch Size 096 075 000 133 100 092 000 041 076 123 1.02 1.07 0.79
Learning Rate Decay Steps 095 1.09 117 098 127 1.00 1.10 079 1.12 1.18 1.08 1.00 1.06
Momentum 1.04 084 141 052 100 1.16 1.15 099 137 1.14 081 1.35 1.07
Optimiser 083 127 056 106 105 120 1.19 096 1.13 127 137 1.28 1.10
Learning Rate 1.00 129 108 100 105 098 089 1.06 1.08 138 134 133 1.12
Epochs 1.29 122 089 103 099 1.17 1.16 1.12 135 138 135 131 1.19

Note: Dataset names abbreviated in above table as M for MNIST, MF for MNIST Fashion and C for CIFAR-10.



Part 3
Sensitivity Analysis of
Optimization Algorithms



Optimization Algorithms

[ Hyperparameters ]47

Optimization
Algorithm

————————r———————]

Optimization
problem

Optimal
configuration



Optimization Algorithms

By Hand

Tuning

Design

before the run

Meta-Evolution

of Experiments

Evolutionary Algorithm
Parameter Setting

during the run

Deterministic

Control

Adaptive

Self-Adaptive

Source: Kramer, O.: Evolutionary self-adaptation: a survey of operators and strategy parameters. Evolutionary Intelligence 3, 51-65 (2010)



Evolutionary Algorithms (EAs) - STEPS

t :=0; // Generation O

Generate Initial Population P® at random;

1
2
3. Evaluate the fitness of each individual in P®:
A

Until (termination condition not met) do

1.

SR CORID

o o

Select parents, Pa® from P® based on their fitness in P®;

Apply crossover (recombination) to create offspring from parents: Pa®) — O®
Apply mutation to the offspring: O® — O®

Evaluate the fitness of each individual in O®;

Survive population P®b from current offspring O® and parents P®;

t .=t + 1; // Next generation

5. end-do

?

Initialise
¥

Evaluate
!

Select
b

Crossover
¥

Mutate

\

Survive

A

| J



Versions of Evolutionary Algorithms

* Single objective EAs — solve only one objective
f: R"—=R
x 5 f(x)

« Multi-objective EAs — solve only two or more objectives
simultaneously

F(x) = (fi(x),..., fu(x)), ie., F:R" = R¥ for k > 2

« X Is decision variable of the problem, k is objectives



Metric for Single Objective EA
f: R*"—= R
x = f(x)

Optimal solution is the one that give global minimum value of the
problem f, e.g., this could a value of O.



Most Popular Evolutionary Algorithms

 Single objective EAs — solve only one objective

« Differential Evolution (DE)

« Covariance Matrix Adaptation Evolution Strategies (CMA-ES)

* Multi-objective EAs — solve only two or more objectives
simultaneously

* Non-Dominated Sorting Genetic Algorithm—IIl (NSGA-III)

« Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D)



Single Objective EAs - Hyperparameters

Algo Params Domain

Description

CMA-ES

DE

A

iy
oy

10, 1000]
0,4]
0.1,2]

Oo—scale {False, True}

Ii}‘rat i0

P(X]
,J'Sm in
.ﬁm ax

bt}rpe

b)\ratin

0.1,1]

10, 1000]

{bin, exp}

0.1

0.1

0.2

{“best,” “target-to-best,”
“rand-to-best,” “rand” }

0.01,0.5]

Population size

Learning rate

Initial step size

Re-scaling of 0g: convergence speed controller

Percentage of population’s elements usage in co-variance
matrix estimation and update

Population size

Crossover methods: Binomial and Exponential

Crossover probability

Minimum Acceleration coefficient

Maximum Acceleration coefficient, Sax = Bmin + Bmax
Base vector selection methods (mutation type or DE algo-
rithm version)

Percentage of base vectors (solution) to be used for differ-
ence vectors computation




Covariance Matrix Adaptation Evolution
Strategies Sensitivity to its Hyperparameters

Standard deviation of EE

High interaction influence —

®

High overall influence —

Mean of EE

Population size

Vectors for co-variance
matrix estimation

Initial step size

Learning rate

e convergence speed

controller



Covariance Matrix Adaptation Evolution
Strategies Sensitivity to its Hyperparameters

Total Effect

High total influence —

DD

High direct influence —

| | |
First Order Effect

Population size

Vectors for co-variance
matrix estimation

Initial step size

Learning rate

e convergence speed

controller



Differential Evolution (DE) Sensitivity to its
Hyperparameters

Standard deviation of EE

High interaction influence —

High overall influence —

|
Mean of EE

A

brype

bA ratio

PIX]

.Bmin

IBmax

Population size

Mutation type
Size of base vectors

Crossover type

Crossover probability

Min Acceleration coefficient

Max Acceleration coefficient



Differential Evolution (DE) Sensitivity to its
Hyperparameters

. ® Population size

Brype  Mutation type
* bAnio Size of base vectors

® X Crossover type

»\’*§ .) px]  Crossover probability
1 KN ?,4//

High total influence —

Total Effect

Bmin  Min Acceleration coefficient

High direct influence —

First Order Effect

Bmax Max Acceleration coefficient




Hyperparameter Influence Summary

A Population size
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Order of Turning: Single Objective EAs

« Covariance Matrix Adaptation Evolution Strategies
« Population size

Size of covariance metrics

Initial step size

Learning rate

Convergence speed controller

* Differential Evolution (DE)
« Mutation type
Population size
Probabillity of crossover
Base vector size
Acceleration coefficient settings
Crossover type



Multi-Objective Evolutionary Algorithms

Objective 3

X (ﬁ—"\ﬂ—'—_\
0.08 009
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Objective 1
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Metric for Multi-Objective EAS

objective 2

current Pareto front is A = {al, a2}
true Pareto front is Z = {z1, z2, z2}

a1
diin m
7 @ d
d12 21 . az
. 2 GD=3d2/6
29 d13 23
o IGD = (dy; + dog)/2
3

>
objective 1

Generational Distance (IGD) and
Inverse Generational Distance (IGD).

current Pareto front is A = {al, a2}
a reference point r

objective 2

HV = Dy + D>

>
objective 1

Hypervolume Indicator (HV)



Multi-Objective EAs - Hyperparameters

Algo Params Domain

Description

Common

MOEA/D  NSGA-III

A 10, 1000]
P[X] 0, 1]
R 1,200]

PPM] [0,1]
PMp;  [1,200]

K 2, 10)
Selection Tournament

Mode { “penalty based boundary
intersection (PBI),” “Tchebycheft,”
“Tchebycheftf with normalization,”
“modified Tchebycheff” }

€N 10.05, 0.5]

Population size.

Simulated binary crossover (SBX) probability
SBX distribution index

Polynomial mutation (PM) probability

PM distribution index

Tournament size
Parents selection for offspring generation

Method for MOO decomposition into many SOO
subproblems

Neighbors: percentage of the population consid-
ered as neighbors for each sub-problem generation




NSGA-III Sensitivity to Its Hyperparameters

Standard deviation of EE

3
®

High interaction influence —

High overall influence —

Mean of EE

A
PLX]

Xp|

Population size

Probability of crossover

Crossover distribution index

o P[PM] Probability of mutation

’ PM DI Mutation distribution index

+

K

Tournament size



NSGA-III Sensitivity to Its Hyperparameters

High direct influence —> A Population size

P [ X ] Probability of crossover

XD| Crossover distribution index

Total Effect

£ P[PM] Probability of mutation

’ PM D| Mutation distribution index

I
High total influence —

SR K Tournament size

| 1 |
First Order Effect



MOEA/D Sensitivity to its Hyperparameters

Standard deviation of EE

High interaction influence —

High overall influence —

1
Mean of EE

A

Population size

P[X] Probability of crossover

XD| Crossover distribution
index

®# P[PM] Probability of mutation

& PMp; Mutation distribution
index

e K Mode

= EN Neighbourhood size



MOEA/D Sensitivity to its Hyperparameters

Total Effect

High total influence —

High direct influence —

< -4

| |
First Order Effect

A

Population size

P[X] Probability of crossover
XD| Crossover distribution

index

®# P[PM] Probability of mutation

& PMp; Mutation distribution

index
e K Mode
= EN Neighbourhood size



HV Score

HVY Score

1.0 1

0.8 3

0.6 -

0.4 4

0.2 4

0.0 4

Hyperparameter Influence Summary

NSGA-III
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Order of Turning: Single Objective EAs

* Non-dominated Sorting Genetic Algorithm —lII (NSGA-III)
« Population size

Crossover Probability

Crossover distribution index

Tournament size

Mutation Probability

Mutation distribution index

« Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D)
Population size

Mode of decomposition

Mutation distribution index

Mutation Probability

Crossover Probability

Neighbourhood size

Crossover distribution index
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