Sensitivity Analysis of Deep Learning and Optimization Algorithms

Dr Varun Ojha

Department of Computer Science University of Reading, UK <u>v.k.ojha@reading.ac.uk; vkojha@ieee.org</u> Github: <u>https://github.com/vojha-code</u>

at

The 8th International Conference on Machine Learning, Optimization, and Data Science

September 18 – 22, 2022

Siena – Tuscany, Italy

Content

• Part 1: Sensitivity Analysis

- Sensitivity analysis methods
- Algorithm configuration problem
- Configuration selection methods

Part 2: Sensitivity Analysis of Deep Learning Algorithms

- Deep learning algorithms
- Deep learning algorithm configuration space
- Results of the analysis

• Part 3: Sensitivity Analysis of Optimization Algorithms

- Optimization algorithms
- Optimization algorithm configuration space
- Results of the analysis
- Resources

Part 1 Sensitivity Analysis

Sensitivity analysis

The study of how uncertainty in the output of a model can be apportioned to different sources of uncertainty in the model input (Saltelli et al., 2004)

Simple Example: linear model

$$Y = \sum_{i}^{n} W_{i} X_{i}$$

where input factors are $\Omega = (W_1, W_2, \dots, W_n, X_1, X_2, \dots, X_n)$.

If we the **coefficients** $(W_1, W_2, ..., W_n)$ **are fixed** then the model has variables $(X_1, X_2, ..., X_n)$ are the only active factors.

Therefore, model outputs *Y* are sensitive to model inputs *X*.

Which variable $(X_1, X_2, ..., X_n)$ is the most influential?

Which is the most influential factor?

- Scatterplots of Y versus (X₁, X₂, X₃, X₄)
- The scatterplots show that *Y* is more sensitive to X_4 than it is to X_3 , and that the ordering of the input factors by their influence on *Y* is

$$X_4 < X_3 < X_2 < X_1$$

Conditional Variances (First Order measure)

• For a model

$$Y = f(X_1, X_2, \dots, X_n)$$

we wish to determine what would happen to the uncertainty of Y if we could fix a factor X_i at a value x_i^* .

We would imagine that the resulting variance $V_{X \sim i}(Y | X_i = x_i^*)$ will be less than the total or unconditional variance V(Y).

Limitation: the sensitivity measure depend on a value x_i^* .

Conditional Variances

Avoid the the sensitivity measure dependence on a value x_i^* .

We take average over all values of values of X_i and NOT just a fixed value x_i^* : E_X ($V_{X\sim i}(Y | X_i)$). And we have averaging over all-but- X_i as $E_{X\sim i}(Y | X_i)$.

Therefore, the conditional variance $V_{X_i}(E_{X \sim i}(Y | X_i)) \leq V(Y)$, i.e., the conditional variance is less than the variance of model on all total or unconditional variance V(Y).

This gives us the sensitivity measure S_i of variable X_i as

$$S_i = \frac{V_{X_i} \left(E_{X \sim i}(Y \mid X_i) \right)}{V(Y)}$$

How to sample values of variable X

gird sampling / One at a time (OTA) sampling

random sampling

Sensitivity Analysis: Elementary Effect (EE)

$$EE_i = \frac{[Y(X_1, \dots, X_i + \Delta, \dots, X_k) - Y(X_1, \dots, X_k)]}{\Delta}$$

For r sample points, the sensitivity measures are:

Means μ of EE

$$\mu_i = \frac{1}{r} \sum_{j}^{r} E E_i^j$$

Standard deviation σ of EE

$$\sigma = \sqrt{\frac{1}{r-1} \sum_{j=1}^{r} (EE_i^j - \mu_i)^2}$$

four-level grid (p = 4) in the twodimensional input space (k = 2), $\Delta = p/(2(p-1))$

Sensitivity Analysis: Total Effect (EE)

First order Effect

$$S_i = \frac{V(E(Y|X_i))}{V(Y)}$$

Total Effect

$$S_{T_i} = 1 - \frac{V(E(Y | X_{\sim i}))}{V(Y)}$$

four-level grid (p = 4) in the twodimensional input space (k = 2), $\Delta = p/(2(p-1))$

Sensitivity Analysis: Interpretation

- Morris Method (Elementary Effect)
 - Mean µ
 - Low value the variable X has low overall influence on Y
 - High value the variable X has high overall influence on Y
 - Standard deviation σ
 - Low value the variable X has low influence independently on Y
 - High value the variable X has high interactive influence on Y

Sensitivity Analysis: Interpretation

- Sobol Method (Variance Based / Total Effect)
 - First order effect
 - Low value the variable X has low direct influence on Y
 - High value the variable X has high direct influence on Y
 - Total effect
 - Low value the variable X has low total influence on Y
 - High value the variable X has high interactive influence on Y

Sensitivity Analysis: Interpretation

Algorithm Configuration Problem

Selection of configuration c from C

gird sampling / One at a time (OTA) sampling

random sampling

Part 2 Sensitivity Analysis of Deep Neural Networks

Algorithm: Deep Learning

Configuration: Deep Learning

Network Architecture

- Number of layers
- Number of nodes per layer
- Type of layers

Activation functions

• Type of activation function

Learning algorithms

- Type of optimizers
- Learning mode
- Learning epochs
- Hyperparameters of optimizers (e.g., Learning rate)

Algorithm: Deep Neural Network

- Deep Neural Network
- ResNet18
- AlexNet
- GoogleNet

Example: AlexNet Block Diagram

Configuration: Deep Learning

Parameter	Description	Range	Default
Optimiser	List of gradient descent (GD) algorithms.	Category*	Adam
Learning rate (α)	Initial GD step controller.	$[1x10^{-7}, 0.5]$	0.001
Momentum (β)	Acceleration factor for GD.	[0, 0.99	0.6
Learning rate decay (α_{decay})	Reduction rate of (α) .	[0, 1]	0.9
Learning rate decay step (α_{d-step})	Number of epochs between Learning Rate Decay.	[1,100]	10
Batch size	Size of training subset for GD update.	Category*	32
Epochs	Number of training cycles.	[5, 1000]	100

Note: Optimisers variations: Adam, SGD, RMSprop, ADAdelta, ADAgrad and ADAmax; Batch size variations : 1, 32, 64 and 128

Problems: Deep Learning

MNIST

Fashion MNIST

CIFAR-10

Sensitivity analysis summary

- Type of gradient decent optimizer is not a major factor on DNN
- Learning rate is not a major factor on DNN whereas the learning rate decay is.
- Number of epochs is relatively least influential

Sensitivity analysis summary

- Learning rate decay is the most influential for fixed network architecture models
- Batch size is the most influential for flexible network architecture model

DNN Sensitivity analysis summary

		DNN		ŀ	ResNet1	8		AlexNet	t	C	GoogleN	et	
Parameter	Μ	MF	С	Μ	MF	С	Μ	MF	С	Μ	MF	С	Average
Learning Rate Decay	1.16	1.40	1.00	0.98	0.98	0.08	0.94	1.17	0.47	0.00	0.33	0.00	0.71
Batch Size	0.96	0.75	0.00	1.33	1.00	0.92	0.00	0.41	0.76	1.23	1.02	1.07	0.79
Learning Rate Decay Steps	0.95	1.09	1.17	0.98	1.27	1.00	1.10	0.79	1.12	1.18	1.08	1.00	1.06
Momentum	1.04	0.84	1.41	0.52	1.00	1.16	1.15	0.99	1.37	1.14	0.81	1.35	1.07
Optimiser	0.83	1.27	0.56	1.06	1.05	1.20	1.19	0.96	1.13	1.27	1.37	1.28	1.10
Learning Rate	1.00	1.29	1.08	1.00	1.05	0.98	0.89	1.06	1.08	1.38	1.34	1.33	1.12
Epochs	1.29	1.22	0.89	1.03	0.99	1.17	1.16	1.12	1.35	1.38	1.35	1.31	1.19

Note: Dataset names abbreviated in above table as M for MNIST, MF for MNIST Fashion and C for CIFAR-10.

Part 3 Sensitivity Analysis of Optimization Algorithms

Optimization Algorithms

Optimization Algorithms

Source: Kramer, O.: Evolutionary self-adaptation: a survey of operators and strategy parameters. Evolutionary Intelligence 3, 51-65 (2010)

Evolutionary Algorithms (EAs) - STEPS

- 1. t := 0; // Generation 0
- 2. Generate Initial Population P^(t) at random;
- 3. Evaluate the fitness of each individual in P^(t);
- 4. Until (termination condition not met) do
 - 1. Select parents, Pa^(t) from P^(t) based on their fitness in P^(t);
 - 2. Apply crossover (recombination) to create offspring from parents: $Pa^{(t)} \rightarrow O^{(t)}$
 - 3. Apply mutation to the offspring: $O^{(t)} \rightarrow O^{(t)}$
 - 4. Evaluate the fitness of each individual in **O**^(t);
 - 5. Survive population $P^{(t+1)}$ from current offspring $O^{(t)}$ and parents $P^{(t)}$;
 - 6. **t** := **t** + **1**; // Next generation

5. end-do

Versions of Evolutionary Algorithms

• Single objective EAs – solve only one objective

$$f: \mathbb{R}^n o \mathbb{R}$$

 $\mathbf{x} \mapsto f(\mathbf{x})$

 Multi-objective EAs – solve only two or more objectives simultaneously

$$F(\mathbf{x}) \equiv (f_1(\mathbf{x}), \dots, f_k(\mathbf{x})), \text{ i.e., } F : \mathbb{R}^n \to \mathbb{R}^k \text{ for } k \ge 2$$

• X is decision variable of the problem, k is objectives

Metric for Single Objective EA

$$f: \mathbb{R}^n \to \mathbb{R}$$
$$\mathbf{x} \mapsto f(\mathbf{x})$$

Optimal solution is the one that give global minimum value of the problem f, e.g., this could a value of 0.

Most Popular Evolutionary Algorithms

- Single objective EAs solve only one objective
 - Differential Evolution (DE)
 - Covariance Matrix Adaptation Evolution Strategies (CMA-ES)
- Multi-objective EAs solve only two or more objectives simultaneously
 - Non-Dominated Sorting Genetic Algorithm–III (NSGA-III)
 - Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D)

Single Objective EAs - Hyperparameters

Algo	Params	Domain	Description
IA-ES	$egin{array}{c} \lambda \ lpha_\mu \ \sigma_0 \end{array}$	$[10, 1000] \\ [0, 4] \\ [0.1, 2] \\ (D, 1, 2] \\ (D, 1, 2) \\ (D, 1, $	Population size Learning rate Initial step size
CIV	$\sigma_{0-scale} = \mu \lambda_{ratio}$	$\{False, True\}$ [0.1, 1]	Re-scaling of σ_0 : convergence speed controller Percentage of population's elements usage in co-variance matrix estimation and update
DE	$egin{array}{l} \lambda \ X \ P[X] \ eta_{\min} \ eta_{\max} \ \mathbf{b}_{ ext{type}} \end{array}$	[10, 1000] {bin, exp} [0, 1] [0, 1] [0, 2] {"best," "target-to-best," "rand-to-best," "rand"} [0.01, 0.5]	Population size Crossover methods: Binomial and Exponential Crossover probability Minimum Acceleration coefficient Maximum Acceleration coefficient, $\beta_{\max} = \beta_{\min} + \beta_{\max}$ Base vector selection methods (mutation type or DE algo- rithm version) Percentage of base vectors (solution) to be used for differ- ence vectors computation

Covariance Matrix Adaptation Evolution Strategies Sensitivity to its Hyperparameters

Covariance Matrix Adaptation Evolution Strategies Sensitivity to its Hyperparameters

Differential Evolution (DE) Sensitivity to its Hyperparameters

Differential Evolution (DE) Sensitivity to its Hyperparameters

Hyperparameter Influence Summary

Order of Turning: Single Objective EAs

- Covariance Matrix Adaptation Evolution Strategies
 - Population size
 - Size of covariance metrics
 - Initial step size
 - Learning rate
 - Convergence speed controller
- Differential Evolution (DE)
 - Mutation type
 - Population size
 - Probability of crossover
 - Base vector size
 - Acceleration coefficient settings
 - Crossover type

Multi-Objective Evolutionary Algorithms

Metric for Multi-Objective EAs

current Pareto front is A = {a1, a2}

true Pareto front is $Z = \{z1, z2, z2\}$

current Pareto front is $A = \{a1, a2\}$ a reference point r

Generational Distance (IGD) and Inverse Generational Distance (IGD).

Hypervolume Indicator (HV)

Multi-Objective EAs - Hyperparameters

Algo	Params	Domain	Description
Common	$\begin{vmatrix} \lambda \\ P[\mathbf{X}] \\ \mathbf{X}_{DI} \\ P[\mathbf{PM}] \\ \mathbf{PM}_{DI} \end{vmatrix}$	$ \begin{bmatrix} 10, 1000 \end{bmatrix} \\ \begin{bmatrix} 0, 1 \end{bmatrix} \\ \begin{bmatrix} 1, 200 \end{bmatrix} \\ \begin{bmatrix} 0, 1 \end{bmatrix} \\ \begin{bmatrix} 1, 200 \end{bmatrix} $	Population size. Simulated binary crossover (SBX) probability SBX distribution index Polynomial mutation (PM) probability PM distribution index
NSGA-III	K Selection	[2, 10] Tournament	Tournament size Parents selection for offspring generation
OEA/D	Mode	<pre>{"penalty based boundary intersection (PBI)," "Tchebycheff," "Tchebycheff with normalization," "modified Tchebycheff"}</pre>	Method for MOO decomposition into many SOO subproblems
Μ	ϵ_N	[0.05, 0.5]	Neighbors: percentage of the population considered as neighbors for each sub-problem generation

NSGA-III Sensitivity to its Hyperparameters

NSGA-III Sensitivity to its Hyperparameters

First Order Effect

MOEA/D Sensitivity to its Hyperparameters

MOEA/D Sensitivity to its Hyperparameters

Hyperparameter Influence Summary

Order of Turning: Single Objective EAs

- Non-dominated Sorting Genetic Algorithm –III (NSGA-III)
 - Population size
 - Crossover Probability
 - Crossover distribution index
 - Tournament size
 - Mutation Probability
 - Mutation distribution index
- Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D)
 - Population size
 - Mode of decomposition
 - Mutation distribution index
 - Mutation Probability
 - Crossover Probability
 - Neighbourhood size
 - Crossover distribution index

References

 V Ojha, J Timmis, G Nicosia (2022) Assessing ranking and effectiveness of evolutionary algorithm hyperparameters using global sensitivity analysis methodologies Swarm and Evolutionary Computation 74, 101130. URL: <u>https://arxiv.org/abs/2207.04820</u>

Code: <u>https://github.com/vojha-code/saofeas</u>

 R Taylor, V Ojha, I Martino, G Nicosia (2021) Sensitivity analysis for deep learning: ranking hyper-parameter influence. IEEE 33rd 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI) URL:

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9643336

Dr Varun Ojha v.k.ojha@reading.ac.uk; vkojha@ieee.org Github: https://github.com/vojha-code