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Part 1

Sensitivity Analysis



Sensitivity analysis

The study of how uncertainty in the output of a model can be apportioned 

to different sources of uncertainty in the model input (Saltelli et al., 2004)

Uncertainty in the Input Model Uncertainty in the Output

Sensitivity analysis



Simple Example: linear model

𝒀 =෍

𝒊

𝒏

𝑾𝒊𝑿𝒊

where input factors are Ω = (𝑊1,𝑊2, … ,𝑊𝑛, 𝑋1, 𝑋2, … , 𝑋𝑛). 

If we the coefficients (𝑊1,𝑊2, … ,𝑊𝑛) are fixed then the model has 

variables (𝑋1, 𝑋2, … , 𝑋𝑛) are the only active factors. 

Therefore, model outputs 𝑌 are sensitive to model inputs 𝑋.    

Which variable (𝑋1, 𝑋2, … , 𝑋𝑛) is the most influential?



Which is the most influential factor? 

• Scatterplots of 𝑌
versus (𝑋1, 𝑋2, 𝑋3, 𝑋4)

• The scatterplots show 
that 𝑌 is more 
sensitive to 𝑋4 than it 
is to 𝑋3, and that the 
ordering of the input 
factors by their 
influence on 𝑌 is

𝑋4 < 𝑋3 < 𝑋2 < 𝑋1

𝑋1 𝑋2

𝑋3 𝑋4

𝑌

𝑌



Conditional Variances (First Order measure)

• For a model 

𝒀 = 𝒇(𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏)

we wish to determine what would happen to the uncertainty of Y if 
we could fix a factor 𝑋𝑖 at a value 𝑥𝑖

∗.

We would imagine that the resulting variance 𝑉𝑋∼𝑖 𝑌 𝑋𝑖 = 𝑥𝑖
∗) will 

be less than the total or unconditional variance 𝑉(𝑌).

Limitation: the sensitivity measure depend on a value 𝑥𝑖
∗.  



Conditional Variances

Avoid the the sensitivity measure dependence on a value 𝑥𝑖
∗.  

We take average over all values of values of 𝑋𝑖 and NOT just a fixed value 𝑥𝑖
∗ :   

𝐸𝑋 ( 𝑉𝑋~𝑖 𝑌 𝑋𝑖)). And we have averaging over all-but-𝑋𝑖 as 𝐸𝑋~𝑖 𝑌 𝑋𝑖). 

Therefore, the conditional variance 𝑉𝑋𝑖 (𝐸𝑋~𝑖 𝑌 𝑋𝑖)) ≤ 𝑉(𝑌), i.e., the conditional 

variance is less than the variance of model on all total or unconditional variance 𝑉(𝑌).

This gives us the sensitivity measure 𝑆𝑖 of variable 𝑋𝑖 as

𝑆𝑖 =
𝑉𝑋𝑖 (𝐸𝑋~𝑖 𝑌 𝑋𝑖))

𝑉(𝑌)



How to sample values of variable X

random sampling gird sampling /  One at a time (OTA) sampling



Sensitivity Analysis: Elementary Effect (EE)

𝐸𝐸𝑖 =
𝑌(𝑋1, … , 𝑋𝑖 + Δ,…𝑋𝑘 − 𝑌(𝑋1, …𝑋𝑘)]

Δ

For 𝑟 sample points, the sensitivity measures are:

Means 𝜇 of EE

𝜇𝑖 =
1

𝑟
෍

𝑗

𝑟

𝐸𝐸𝑖
𝑗

Standard deviation 𝜎 of EE

𝜎 =
1

𝑟 − 1
෍

𝑗

𝑟

(𝐸𝐸𝑖
𝑗
− 𝜇𝑖)

2 four-level grid (𝑝 = 4) in the two-

dimensional input space (𝑘 = 2), 

Δ = 𝑝/(2(𝑝 − 1))



Sensitivity Analysis: Total Effect (EE)

First order Effect 

𝑆𝑖 =
𝑉 (𝐸 𝑌 𝑋𝑖))

𝑉(𝑌)

Total Effect 

𝑆𝑇𝑖 = 1 −
𝑉 (𝐸 𝑌 𝑋~𝑖))

𝑉(𝑌)

four-level grid (𝑝 = 4) in the two-

dimensional input space (𝑘 = 2), 

Δ = 𝑝/(2(𝑝 − 1))



Sensitivity Analysis: Interpretation

• Morris Method (Elementary Effect)

• Mean 𝜇

• Low value – the variable X has low overall influence on Y

• High value – the variable X has high overall influence on Y

• Standard deviation 𝜎

• Low value - the variable X has low influence independently on Y

• High value - the variable X has high interactive influence on Y



Sensitivity Analysis: Interpretation

• Sobol Method (Variance Based / Total Effect)

• First order effect

• Low value – the variable X has low direct influence on Y

• High value – the variable X has high direct influence on Y

• Total effect

• Low value - the variable X has low total influence on Y

• High value - the variable X has high interactive influence on Y



Sensitivity Analysis: Interpretation



Algorithm Configuration Problem
A 

parametrized 

target algorithm

The 

decision/optimization 

problem to be solved

The set of 

parameter 

configurations

Assess algorithm A for 

a configuration c in C on 

a problem p of P

Select a 

configuration c 

from set C

Return a 

configuration c*

A C P

return

Configuration



Selection of configuration c from C

random sampling gird sampling /  One at a time (OTA) sampling



Part 2
Sensitivity Analysis of 
Deep Neural Networks



Deep Learning Algorithm

Deep learning 

Algorithm

Deep 

Learning 

Model

Hyperparameters

Training set

Test set

Input 

Labelled 

dataset

Optimal 

configuration

A

C

P



Algorithm: Deep Learning

Hidden 

layer 1

input layer

Hidden 

layer 2

Output 

layer

Hidden 

layer M-1
Hidden 

layer M

Gary scale image of size 

[256 x 256] 𝒙𝟔𝟓𝟓𝟑𝟔

𝒙𝟏

256

256



Configuration: Deep Learning

• Network Architecture 

• Number of layers

• Number of nodes per layer

• Type of layers

• Activation functions

• Type of activation function

• Learning algorithms

• Type of optimizers

• Learning mode

• Learning epochs

• Hyperparameters of optimizers (e.g., Learning rate)



Algorithm: Deep Neural Network

• Deep Neural Network

• ResNet18

• AlexNet

• GoogleNet

Example: AlexNet Block Diagram



Configuration: Deep Learning

Note:     Optimisers variations: Adam, SGD, RMSprop, ADAdelta, ADAgrad and ADAmax; 

Batch size variations : 1, 32, 64 and 128



Problems: Deep Learning

MNIST Fashion MNIST CIFAR-10



Sensitivity analysis 
summary

• Type of gradient decent 
optimizer is not a major 
factor on DNN 

• Learning rate is not a major 
factor on DNN whereas the 
learning rate decay is.

• Number of epochs is 
relatively least influential



Sensitivity analysis 
summary

• Learning rate decay is the 
most influential for fixed 
network architecture 
models

• Batch size is the most 
influential for flexible 
network architecture model



DNN Sensitivity analysis summary

Note: Dataset names abbreviated in above table as M for MNIST, MF for MNIST Fashion and C for CIFAR-10.



Part 3 
Sensitivity Analysis of 

Optimization Algorithms



Performance

Optimization

Algorithm

Hyperparameters

Optimization 

problem

A

C

P

Optimization Algorithms

Optimal 

configuration



Optimization Algorithms

Source: Kramer, O.: Evolutionary self-adaptation: a survey of operators and strategy parameters. Evolutionary Intelligence 3, 51–65 (2010)

Evolutionary Algorithm

Parameter Setting



Evolutionary Algorithms (EAs)  - STEPS   

1. t := 0; // Generation 0

2. Generate Initial Population P(t) at random;

3. Evaluate the fitness of each individual in P(t);

4. Until (termination condition not met) do

1. Select parents, Pa(t) from P(t) based on their fitness in P(t);

2. Apply crossover (recombination) to create offspring from parents: Pa(t) → O(t)

3. Apply mutation to the offspring: O(t) → O(t)

4. Evaluate the fitness of each individual in O(t);

5. Survive population P(t+1) from current offspring O(t) and parents P(t);

6. t := t + 1; // Next generation 

5. end-do

Initialise

Evaluate

Select

Crossover

Mutate

Stop?

Survive



Versions of Evolutionary Algorithms

• Single objective EAs – solve only one objective

• Multi-objective  EAs – solve only two or more objectives 
simultaneously

• X is decision variable of the problem, k is objectives



Metric for Single Objective EA

Optimal solution is the one that give global minimum value of the 
problem 𝑓, e.g., this could a value of 0. 



Most Popular Evolutionary Algorithms

• Single objective EAs – solve only one objective

• Differential Evolution (DE)

• Covariance Matrix Adaptation Evolution Strategies (CMA-ES) 

• Multi-objective  EAs – solve only two or more objectives 

simultaneously

• Non-Dominated Sorting Genetic Algorithm–III (NSGA-III)

• Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D)



Single Objective EAs - Hyperparameters



Covariance Matrix Adaptation Evolution 
Strategies Sensitivity to its Hyperparameters

Mean of EE
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Covariance Matrix Adaptation Evolution 
Strategies Sensitivity to its Hyperparameters

First Order Effect
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Population size

Mutation type

Size of base vectors

Crossover type

Crossover probability

Min Acceleration coefficient

Max Acceleration coefficient

Differential Evolution (DE) Sensitivity to its 
Hyperparameters

Mean of EE
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Population size

Mutation type

Size of base vectors

Crossover type

Crossover probability

Min Acceleration coefficient

Max Acceleration coefficient

Differential Evolution (DE) Sensitivity to its 
Hyperparameters

First Order Effect
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Hyperparameter Influence Summary

Population size

Mutation type

Size of base vectors

Crossover type

Crossover probability

Min Acceleration coefficient

Max Acceleration coefficient

Population size

Vectors for co-variance 

matrix estimation

Initial step size

Learning rate

convergence speed 

controller



Order of Turning: Single Objective EAs

• Covariance Matrix Adaptation Evolution Strategies
• Population size

• Size of covariance metrics

• Initial step size

• Learning rate

• Convergence speed controller

• Differential Evolution (DE)
• Mutation type

• Population size

• Probability of crossover

• Base vector size

• Acceleration coefficient settings

• Crossover type



Multi-Objective Evolutionary Algorithms

Objective   1
Objective   2

O
b
je

c
ti
v
e
  
 3



Metric for Multi-Objective EAs

Generational Distance (IGD) and 

Inverse Generational Distance (IGD).
Hypervolume Indicator (HV)

current Pareto front is A = {a1, a2} 

true Pareto front is Z = {z1, z2, z2}

current Pareto front is A = {a1, a2} 

a reference point r



Multi-Objective EAs - Hyperparameters



NSGA-III Sensitivity to its Hyperparameters

Mean of EE
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NSGA-III Sensitivity to its Hyperparameters

First Order Effect
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MOEA/D Sensitivity to its Hyperparameters
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MOEA/D Sensitivity to its Hyperparameters

First Order Effect
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Hyperparameter Influence Summary

Population size Probability of crossover

Mutation distribution index Tournament Size/Mode

Probability of mutationCrossover distribution index

Neighbourhood size

NSGA-III

MOEA/D



Order of Turning: Single Objective EAs

• Non-dominated Sorting Genetic Algorithm –III (NSGA-III)
• Population size
• Crossover Probability
• Crossover distribution index
• Tournament size
• Mutation Probability
• Mutation distribution index

• Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D)
• Population size
• Mode of decomposition
• Mutation distribution index
• Mutation Probability
• Crossover Probability
• Neighbourhood size
• Crossover distribution index
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