Machine Learning is a Search Problem

Dr Varun Ojha

Department of Computer Science University of Reading

▲□▶▲□▶▲□▶▲□▶ □ のQ@

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

"No learner can ever beat random guessing over all possible functions to be learned"

- No free lunch theorem, D. Wolpert.

Dr Varun Ojha, UoR

Machine Learning is a Search Problem

・ロト ・回 ト・ヨト ・ヨト

Search the unknown target function $f: \mathcal{X} \to \mathcal{Y}$

イロト 不得 トイヨト イヨト

・ロト ・回 ト・ヨト ・ヨト

$$y = f(\mathbf{x})$$
, where $\mathbf{x} = \langle x_1, \dots, x_d \rangle$

number of inputs d = 2each x_i takes 2 options 0 or 1 input-space $\mathcal{X} = 2^d = 2^2 = 4$

number of outputs 1 output *y* takes 2 options in $\{0, 1\}$ **concept-space** $C = 2^{I} = 2^{2^{2}} = 16$

0

0

 x_1

0

3: 1 0

1

2: 0

4: 1

input-space:
$$\mathcal{X} = 4$$

concept-space: C = 16

hypothesis-space : *H* is a set of all possible functions such that $h_t \in H$ produces a function $g : \mathcal{X} \to \mathcal{Y}$ that approximates *f* i.e. $g \approx f$.

data-space (training data): $\mathcal{D} = \{(\mathbf{x}_1, f(\mathbf{x}_1)), \dots, (\mathbf{x}_N, f(\mathbf{x}_N))\}, \text{ where } \mathcal{D} \in C$ are *N* training examples.

・ロト ・四ト ・ヨト ・ヨト

What learning needs?

Learning needs the method(s) to

Represent Evaluate Optimize

a hypothesis h_t :

∃ \0<</p>\0

- 日本 - 御本 - 国本 - 国本

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

How to represent a hypothesis $h_t \in H$

A hypothesis h_t as a perceptron. A simple linear combination of inputs.

$$h_t = g(\mathbf{x}) = \sum_{i=1}^d w_i x_i \ge w_0$$

where w_0 is a threshold.

The hypothesis h_t has the parameters inputs weights w_i and the threshold w_0 .

A hypothesis
$$h_t$$
 as a perceptron.

$$\sum_{i=1}^d w_i x_i \ge w_0$$

$$\sum_{i=1}^d w_i x_i - w_0 = 0$$

For an artificial input $x_0 = 1$

・ロト ・四ト ・ヨト ・ヨト

Dr Varun Ojha, UoR

Machine Learning is a Search Problem

≥ ≣ 16 / 51

・ロト ・回 ト・ヨト ・ヨト

Which hypothesis to pick?

Cost function such as the error rate:

$$E(h_t(\mathcal{D})) = \frac{1}{N} \sum_{j=1}^{N} \left(g(\mathbf{x}_j) \neq f(\mathbf{x}_j) \right)$$

A D K A B K A B K A B

How to search optimum hypothesis?

Function g of the hypothesis has parameter w:

$$g_{\mathbf{w}}(\mathbf{x}) = \sum_{i=0}^{d} w_i x_i = 0$$

Simple algorithm:

Repeat parameter w update for t = 2, 3, ..., M

 $\mathbf{w}_t = \mathbf{w}_{t-1} + y\mathbf{x}$

Until error rate $E(h_t(\mathcal{D}))$ is acceptable.

Let's see an example (house price):

	$x = area(m^2)$	$y = price(in \ \mathfrak{L})$
1:	1000	100K
2:	2000	200K
3:	3000	300K

Now, cost function is a squared error:

$$E(h_t(\mathbf{x}) = \frac{1}{2N} \sum_{j=1}^{N} \left(g(\mathbf{x}_j) - f(\mathbf{x}_j) \right)^2$$

• • • • •

• • • • • • • • • • •

► 4 Ξ

• • • • • • • • • • •

 $E(g_{\mathbf{w}}(\mathbf{x})) = 0.0$

Gradient Descent

Function g of the hypothesis has parameter w:

$$g_{\mathbf{w}}(\mathbf{x}) = \sum_{i=0}^{d} w_i x_i = 0$$

Repeat parameter w update for t = 2, 3, ..., M

 $\mathbf{w}_t = \mathbf{w}_{t-1} + \alpha \frac{\partial}{\partial \mathbf{w}} E(\mathbf{x})$ for a learning-rate α .

Until error rate $E(h_t(\mathcal{D}))$ is acceptable.

Gradient Descent

Function g of the hypothesis has parameter **w**:

$$g_{\mathbf{w}}(\mathbf{x}) = \sum_{i=0}^{d} w_i x_i = 0$$

Repeat parameter w update for t = 2, 3, ..., M

 $\mathbf{w}_t = \mathbf{w}_{t-1} + \alpha \Delta \mathbf{w}$ where $\Delta \mathbf{w}$ is gradient and α learning-rate.

Until error rate $E(h_t(\mathcal{D}))$ is acceptable.

Gradient Descent: Versions

Stochastic Gradient Descent

$$\begin{split} t &= 0\\ \mathbf{w} \text{ initial weights} \\ \textbf{for } t \text{ in epochs } \textbf{do} \\ \mathcal{D} &\leftarrow shuffle(\mathcal{D})\\ \textbf{for } \mathbf{x}_j \text{ in } \mathcal{D} \textbf{do} \\ \Delta \mathbf{w} &= g_{\mathbf{w}}(\mathbf{x}_j)\\ \mathbf{w}_j &= \mathbf{w}_{j-1} + \alpha \Delta \mathbf{w} \end{split}$$

Batch Gradient Descent

t = 0w initial weights for *t* in epochs do for x_j in D do $\Delta w = \Delta w + g_w(x_j)$ $\Delta w = \frac{\Delta w}{|D|}$ $w_t = w_{t-1} + \alpha \Delta w$

Gradient Descent: Versions

26 / 51

Gradient Descent: Versions

Stochastic Gradient Descent

Batch Gradient Descent

(ロ) (同) (三) (三) (三) (○) (○)

What is learning?

Is learning possible?

Dr Varun Ojha, UoR

Machine Learning is a Search Problem

28 / 51

What is learning?

Box \mathcal{X} full of red and white marbles:

000000

Random sample \mathcal{D}

Learning answers, the question:

What is the probability of picking a red marble from box \mathcal{X} by just seeing sample \mathcal{D} .

< ロト < 同ト < ヨト < ヨト

i.e., all possible data points $\mathbf{x} \in \mathbb{R}^2$ space.

Q: Is learning possible?

What is learning?

OOOOOO Random sample \mathcal{D}

Learning answers the question:

What is the probability of picking a red marble from box \mathcal{X} by just seeing sample \mathcal{D} .

i.e. all possible data points $\mathbf{x} \in \mathbb{R}^2$ space.

white marbles:

Q: Is learning possible?

A: If we can tell the probability of picking red marble from the box \mathcal{X} then yes!

Probability of picking a marble

The probability of picking red marble from the box \mathcal{X} is μ .

000000

The probability of picking red marble from the sample \mathcal{D} is ν .

We can confirm the probability μ iff the following holds:

 $P[|\nu - \mu| > \epsilon] \le 2e^{-2\epsilon^2 N}$

This inequality is Hoeffding's Inequality. Or Probability approximate correct learning.

・ロト (周) (王) (王) (王)

Probably approximately correct learning

Union bound:

$$P[|E(h_{\mathcal{D}}) - E(h_{\mathcal{X}})| > \epsilon] \le \sum_{t=1}^{M} P[|E(h_{\mathcal{D}}) - E(h_{\mathcal{X}})| > \epsilon] \le 2Me^{-2\epsilon^2 N}$$

Dr Varun Ojha, UoR

Machine Learning is a Search Problem

How many training example required to learn?

Lets δ be the probability of error rate greater than ϵ , i.e. $P[|E(h_{\mathcal{D}}) - E(h_{\mathcal{X}})| > \epsilon] \le \delta$.

 $\delta \le 2Me^{-2\epsilon^2 N}$

For $M \leq C$, and $C = 2^{2^d}$, and *d* is input-space dimension. We can also summaries it for bound on *N* as:

$$N > rac{1}{\epsilon} \left(\ln M + \ln rac{1}{\delta}
ight)$$

N grows exponentially in # input attributes d. **Conclusion:** Larger N require for higher accuracy and for improving probability of finding correct hypothesis.

How do we choose a hypothesis class?

How do we choose a hypothesis class?

36 / 51

◆□> ◆□> ◆注> ◆注> □注

Backpropagation: Forward pass

Dr Varun Ojha, UoR

Machine Learning is a Search Problem

Backpropagation: Forward pass

Dr Varun Ojha, UoR

Machine Learning is a Search Problem

Backpropagation: Error at the output layer

Backpropagation: Backward pass (output layer δ)

$$x_i \xrightarrow{w_{ij}} (j \xrightarrow{h_j} (k) \xrightarrow{y_k} e = y_k - y_i)$$

E SOR

Backpropagation: Backward pass (hidden layer δ)

$$\begin{array}{c} x_i & \overbrace{w_{ij}}^{h_j} & \overbrace{y_k}^{h_j} & \overbrace{\phi}^{y_k} & e = y_k - y_i \\ & \overbrace{\delta_k}^{\bullet} = (y_k - y_i)y_k(1 - y_k) \\ & \overbrace{\delta_j}^{\bullet} = h_j(1 - h_j)\delta_k w_{jk} \end{array}$$

Dr Varun Ojha, UoR

Machine Learning is a Search Problem

42 / 51

DON E

Backpropagation: Backward pass (input layer δ)

$$\begin{array}{c} x_i & \overbrace{w_{ij}}^{h_j} & \overbrace{0}^{h_j} & \overbrace{0}^{w_{jk}} & \overbrace{0}^{w_{jk}} & e = y_k - y_i \\ & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & e = y_k - y_i \\ & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & e = y_k - y_i \\ & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & e = y_k - y_i \\ & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & e = y_k - y_i \\ & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & e = y_k - y_i \\ & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & e = y_k - y_i \\ & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & e = y_k - y_i \\ & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & e = y_k - y_i \\ & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & e = y_k - y_i \\ & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & e = y_k - y_i \\ & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & e = y_k - y_i \\ & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & e = y_k - y_i \\ & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & \overbrace{0}^{\bullet} & e = y_k - y_i \\ & \overbrace{0}^{\bullet} & e = y_k - y_i \\ & \overbrace{0}^{\bullet} & \overbrace{0}^$$

Dr Varun Ojha, UoR

Machine Learning is a Search Problem

43 / 51

5 SOR

イロト 不得 トイヨト イヨト

Backpropagation: Backward pass (input layer δ)

Is the chosen hypothesis good?

Training data

Underfit

Overfit

(日)

Machine Learning is a Search Problem

Training: Cross Validation

Training set

イロト イポト イヨト イヨト

Dr Varun Ojha, UoR

Machine Learning is a Search Problem

Training

・ロト ・四ト ・ヨト ・ヨト

Training: Take another set

Validation set

Training set Test set

Dr Varun Ojha, UoR

Machine Learning is a Search Problem

```
Training: Early Stopping
```


≣ 50 / 51

Among all generated hypothesis from H, chose the simplest one.

- Occam's Razor, William of Ockham.

∃ nar

化口水 化塑料 化医水化医水