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“No learner can ever beat random guessing
over all possible functions to be learned”

– No free lunch theorem, D. Wolpert.
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input-space concept-space
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Search the unknown target function f : X → Y

input-space concept-space
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x1 x2 y
1: 0 0 0
2: 0 1 0
3: 1 0 0
4: 1 1 1
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x1 x2 y
1: 0 0 0
2: 0 1 0
3: 1 0 0
4: 1 1 1

y = f (x), where x = ⟨x1, . . . , xd⟩

number of inputs d = 2
each xi takes 2 options 0 or 1
input-space X = 2d = 22 = 4

number of outputs 1
output y takes 2 options in {0, 1}
concept-space C = 2I = 222

= 16
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x1 x2 y
1: 0 0 0
2: 0 1 0
3: 1 0 0
4: 1 1 1

input-space: X = 4

concept-space: C = 16

hypothesis-space : H is a set of all possible
functions such that ht ∈ H produces a function
g : X → Y that approximates f i.e. g ≈ f .

data-space (training data):
D = {(x1, f (x1)), . . . , (xN, f (xN))}, where D ∈ C
are N training examples.
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What learning needs?

Learning needs the method(s) to

Represent
Evaluate
Optimize

a hypothesis ht:
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How to represent a hypothesis ht ∈ H

A hypothesis ht as a perceptron. A
simple linear combination of inputs.

ht = g(x) =
d∑

i=1

wixi ≥ w0

where w0 is a threshold.

The hypothesis ht has the parameters
inputs weights wi and the threshold w0.
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A hypothesis ht as a perceptron.
d∑

i=1
wixi ≥ w0

d∑
i=1

wixi − w0 = 0

For an artificial input x0 = 1

d∑
i=0

wixi = 0
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Which hypothesis to pick?

x1 x2 y
1: 0 0 0
2: 0 1 0
3: 1 0 0
4: 1 1 1

Cost function such as the error rate:

E(ht(D)) = 1
N

N∑
j=1

(
g(xj) ̸= f (xj)

) x1
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How to search optimum hypothesis?

Function g of the hypothesis has
parameter w:

gw(x) =
d∑

i=0
wixi = 0

Simple algorithm:

Repeat parameter w update for
t = 2, 3, . . . ,M

wt = wt−1 + yx

Until error rate E(ht(D)) is acceptable.
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Does error E(ht(D)) minimization work?

Let’s see an example (house price):

x = area(m2) y = price(in £)
1: 1000 100K
2: 2000 200K
3: 3000 300K

Now, cost function is a squared error:

E(ht(x) = 1
2N

N∑
j=1

(
g(xj)− f (xj)

)2
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Does error E(ht(D)) minimization work?
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Hypothesis ht for w0 = 0 and w1 = 0.0:

g(x) = w0 + w1x
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Error E(w1) for w0 = 0 and w1 = 0:

E(gw(x)) = 2.33
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Does error E(ht(D)) minimization work?
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Hypothesis ht for w0 = 0 and w1 = 0.5:

g(x) = w0 + w1x
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Error E(w1) for w0 = 0 and w1 = 0.5:

E(gw(x)) = 0.625
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Does error E(ht(D)) minimization work?
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Hypothesis ht for w0 = 0 and w1 = 1:

g(x) = w0 + w1x
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Error E(w1) for w0 = 0 and w1 = 1:

E(gw(x)) = 0.0
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Gradient Descent

Function g of the hypothesis has
parameter w:

gw(x) =
d∑

i=0
wixi = 0

Repeat parameter w update for
t = 2, 3, . . . ,M

wt = wt−1 + α ∂
∂w E(x)

for a learning-rate α.

Until error rate E(ht(D)) is acceptable.

w

E(w)

initial weight w

global
min
E(w)

learning
steps
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Gradient Descent
Function g of the hypothesis has
parameter w:

gw(x) =
d∑

i=0
wixi = 0

Repeat parameter w update for
t = 2, 3, . . . ,M

wt = wt−1 + α∆w
where ∆w is gradient and α
learning-rate.

Until error rate E(ht(D)) is acceptable.

w

E(w)

initial weight w

global
min
E(w)

learning
steps
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Gradient Descent: Versions

Stochastic Gradient Descent

t = 0
w initial weights
for t in epochs do
D ← shuffle(D)
for xj in D do

∆w = gw(xj)
wj = wj−1 + α∆w

Batch Gradient Descent

t = 0
w initial weights
for t in epochs do

for xj in D do
∆w = ∆w + gw(xj)

∆w = ∆w
|D|

wt = wt−1 + α∆w
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Gradient Descent: Versions

Stochastic Gradient Descent

epochs

ap
p
ro
xi
m
at
io
n

Batch Gradient Descent

epochs

ap
p
ro
xi
m
at
io
n

Dr Varun Ojha, UoR Machine Learning is a Search Problem 26 / 51



Gradient Descent: Versions

Stochastic Gradient Descent Batch Gradient Descent
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What is learning?

Is learning possible?
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What is learning?
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Box X full of red and
white marbles:

i.e., all possible data
points x ∈ R2 space.

Random sample D

Learning answers, the
question:

What is the probability of
picking a red marble
from box X by just
seeing sample D .

Q: Is learning possible?
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What is learning?
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Box X full of red and
white marbles:

i.e. all possible data
points x ∈ R2 space.

Random sample D

Learning answers the
question:

What is the probability of
picking a red marble
from box X by just
seeing sample D .

Q: Is learning possible?
A: If we can tell the probability of picking red marble from the box X then yes!
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Probability of picking a marble
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The probability of
picking red marble from
the box X is µ.

The probability of
picking red marble from
the sample D is ν.

We can confirm the
probability µ iff the
following holds:

P[|ν − µ| > ϵ] ≤ 2e−2ϵ2N

This inequality is
Hoeffding’s Inequality.
Or Probability
approximate correct
learning.
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Probably approximately correct learning
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Union bound:

P[|E(hD)− E(hX )| > ϵ] ≤
M∑

t=1

P[|E(hD)− E(hX )| > ϵ] ≤ 2Me−2ϵ2N
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How many training example required to learn?

Lets δ be the probability of error rate greater than ϵ, i.e. P[|E(hD)− E(hX )| > ϵ] ≤ δ.

δ ≤ 2Me−2ϵ2N

For M ≤ C, and C = 22d
, and d is input-space dimension.

We can also summaries it for bound on N as:

N >
1
ϵ

(
lnM + ln

1
δ

)

# N grows exponentially in # input attributes d.
Conclusion: Larger N require for higher accuracy and for improving probability of
finding correct hypothesis.
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How do we choose a hypothesis class?
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How do we choose a hypothesis class?

x1

x2

0 1

0

1

x1

x2

0 1

0

1

Dr Varun Ojha, UoR Machine Learning is a Search Problem 35 / 51



x1 x2 y
1: 0 0 0
2: 0 1 1
3: 1 0 1
4: 1 1 0
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Backpropagation: Forward pass

xi kj
wjkwij

ykhj

Dr Varun Ojha, UoR Machine Learning is a Search Problem 38 / 51



Backpropagation: Forward pass

xi kj
wjkwij

ykhj
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Backpropagation: Error at the output layer

xi e = yk − yikj
wjkwij

ykhj
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Backpropagation: Backward pass (output layer δ)

xi e = yk − yikj

δk = (yk − yi)yk(1− yk)
wjkwij

ykhj
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Backpropagation: Backward pass (hidden layer δ)

xi e = yk − yikj

δj = hj(1− hj)δkwjk

δk = (yk − yi)yk(1− yk)
wjkwij

ykhj
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Backpropagation: Backward pass (input layer δ)

xi e = yk − yikj

δj = hj(1− hj)δkwjk

δk = (yk − yi)yk(1− yk)
wjkwij

ykhj
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Backpropagation: Backward pass (input layer δ)

xi e = yk − yikj

∆wjk = δkhj

δk
wjkwij

ykhj

∆wij = δjxi
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Is the chosen hypothesis good?

Training data Underfit Overfit
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low
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high
variance

high
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same
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low
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different
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small
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large
mistakes
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Training: Cross Validation

Training set Test set
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Training: Take another set

Training set Test set

Validation set
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Training: Early Stopping
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Among all generated hypothesis from H, chose
the simplest one.

– Occam’s Razor, William of Ockham.
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