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AI Theme Challenges / Research Aims

•Monitoring of Data/Model Quality
to monitor how cyber-disturbances impact age of data, AI algorithms learning 
quality and the overall application resilience?

•Recovery of Data/Model Quality 
to recover data and AI model quality that are impacted by cyber-disturbances 
and ensure suitability for AI model deployment on devices at Tiers 1, 2 of EC 
architectures ?

•Assurance of Continuity of Data/Model Quality
to assure AI algorithms continually adapt to EC environments where unknown 
cyber-disturbances that were not presented in the original training dataset?



Potential Research Problems
• Monitoring 

• RP1. Investigate, characterise, and develop ontologies of data challenges and AI model challenges for 
edge computing environment. 

• RP2. Data and model quality assurance to data quality challenges such as faults, missing data,  hardware 
failure, sensor degradation; diverse data source; sensor/data heterogeneity. 

• Recovery

• RP3. Investigate and develop data and model quality certification/robustness to various challenges such 
as data distribution shift, impurities, adversarial attacks, hardware resources limitations, etc. 

• RP4. Investigate the model quality certification/robustness to cyber disturbances, cyber-attacks, on 
federated/distributed EC environment.

• Assurance

• RP5. Identify quality issues with AI model implementation on edge and offer mitigation strategies to 
resolve the challenges for ensuring model quality continuity.



Our Smart City Testbench 
Newcastle University’s Urban Observatory Sensors

Source: Phil et al (Newcastle)

>£8 million pounds 
(Capital investment)

Billions of smart building 
observations

10 billion city observations
10,000 a minute

Only open data weather 
radar in the UK

CCTV: 500 views, 500m+ 
images, 24 real-time 
feeds

65 different variables



Our Experience with Data Quality Challenges
• Data quality 

• degradation of sensors over time
• anomalous values, random spikes, or environmental issues
• data out of range, out distribution, uncertainty

• Data stream issues
• data retrieval - source API failure
• source API failure, network failure, network overload
• system throughput - queues building up, hardware issues

• Cyber security
• adversarial attacks
• denial of services, spoofing 

• Failure
• hardware failure at sensor

Source: Phil et al (Newcastle)



Data Certification (Safe ML) – Example Solution
Trusted dataset  for AI model training

Our Solutions:
• D-ACE – a framework for 

certifying training datasets 
using various 
characteristics

• SafeML – a framework for 
safety monitoring of ML 
models at run time 

We will extend these to 
Edge AI
• D-ACE for certifying 

datasets in federated Edge 
AI architecture

• Safety of Federated 
Learning algorithms in 
EdgeAI architecture

Source: Thakker et al (Hull)

Expectation
AI model training data

Reality
data in reality for testing AI model



Model Certification – Example Solution
Models adversarial Attacks Mitigation in Autonomous Vehicle and  Vehicle to 
Everting Transportation Communication Scenario

Source: Ojha et al (Newcastle)
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One of objectives of the AI Model Quality analysis is to subject AI model to the 
‘worst case conditions’ (such as adversarial cyber/attacks) and evaluate the 
ability for a model to remain invariant under such settings.

Input example
Predicted as 
‘Pedestrian’

Adversarial perturbation

Perturbation 
magnitude

Adversarial example
Predicted as 

‘Speed limit change’

Calculated using Deep Neural Networks 
(DNNs) weights (white-box attack)



We achieve 94% accuracy in correctly predicting real flood events The River Avon and River Severn. 

Edge AI for Flood Tracking and Monitoring
Fusion of Environmental Agency Data Edge Data (CCTV Cameras) across UK & Ireland
Our research help automat tracking and monitoring of flood saturation

Source: Ojha et al (Newcastle)
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Efficient 

AI Models
(Ojha et al.)



Regression results

Algorithm Bas Dee Dia Frd Mpg Avg Acc Avg 
Weights

BNeuralT 0.665 0.837 0.492 0.776 0.867 0.727 152 
MLP 0.721 0.829 0.49 0.943 0.874 0.772 1041

Ojha and Nicosia (2022), Neural Networks

Backpropagation neural tree:  Performance on regression

12



• Neural Trees use only 14.6% of MLP parameters

• Accuracy differs only 5.8% lower than the best MLP result

Regression results

Ojha and Nicosia (2022), Neural Networks

Backpropagation neural tree:  Performance on regression

13



Classification results.  

Data BNeuralT MLP
Aus 0.895 0.876
Hrt 0.897 0.833
Ion 0.952 0.882

Pma 0.822 0.774
Wis 0.986 0.984
Irs 0.992 0.972

Win 0.991 0.991
Vhl 0.75 0.826
Gls 0.732 0.635

Avg. Accuracy 0.891 0.863
Avg. Weights 261 1969

Ojha et al (2022), Neural Networks

Backpropagation neural tree:  
Performance on Classification

14



• Neural Trees used only 13.25% parameters of MLP

• Accuracy is 2.65% better than the best MLP result

Classification results

Ojha et al (2022), Neural Networks

Backpropagation neural tree:  Performance on classification

15



Ojha and Nicosia (2022), Neural Networks

Backpropagation neural tree:  Image Classification

16



Model size vs accuracy

Ojha and Nicosia (2022), Neural Networks 17



Single neuron
Biological Inspiration for Backpropagation Neural Trees

Travis et al. (2005) Jones and Kording (2021) Ojha and Nicosia (2022) 

Ojha et al (2022), Neural Networks 18



Backpropagation neural tree

Ojha and Nicosia (2022), Neural Networks 19



Federated leaning
Leaning on user's edge devices rather than on cloud

20

FL network architectures: (a) 2-level FL; (b) 3-level HFL; (c) 4-level HFL
Alqattana et al. ICANN, (2024)



Attack on AI models in distributed systems



Attacks in individual (single)models
We measure the average magnitude difference 𝒅 at the output of the first 
convolutional layer, between fragile and non-fragile neurons, on both 
clean and adversarial inputs.
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Ojha et al. ICANN, (2021)



Fragility of individual neural kernels
Fragile kernels shown in blue below mean performance line in red and null kernels S 0 are shown in black star above mean line in red



Fragility, robustness and antifragility

24

▪ a new method of 
parameter filtering 
(synaptic filtering) 

▪ synaptic filtering of all 
layers and parameters 
of a DNN architecture.

▪ compare clean and 
adversarial 
performance of a regular 
DNN and perturbed DNN.

▪ characterise parameters 
as fragile, robust, and 
antifragile

Ojha et al. Artificial Intelligence, Elsevier. (2024)



Robustness scores (layer-wise)
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Periodic 
parameter 
characterisation 
shown for some 
networks.

We say that 
fragile 
parameters are 
important to 
network 
performance.
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Making model robust against attacks

26

When we retrain 
networks at periodic 
intervals using only 
the characterised 
robust and 
antifragile layer 
parameters 
(selective 
backpropagation), 
we observe an 
increase in 
adversarial 
performance, and 
clean performance 
for some networks 
and datasets.



Securing an AI model against attacks

27

Dynamic Label Adversarial Training

Liu et al. ICONIP (2024)
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