

Artificial Intelligence Theme of Edge Al Hub **Energy and Resource Efficient Artificial Intelligence**

Dr Varun Ojha

Edge AI Hub, Newcastle University

APRIL Hub, The University of Edinburgh

22 November 2024

AI Theme Challenges / Research Aims

Monitoring of Data/Model Quality

to monitor how cyber-disturbances impact age of data, AI algorithms learning quality and the overall application resilience?

Recovery of Data/Model Quality

to recover data and AI model quality that are impacted by cyber-disturbances and ensure suitability for AI model deployment on devices at Tiers 1, 2 of EC architectures?

Assurance of Continuity of Data/Model Quality

to assure AI algorithms continually adapt to EC environments where unknown cyber-disturbances that were not presented in the original training dataset?

Potential Research Problems

Monitoring

- **RP1.** Investigate, characterise, and develop ontologies of data challenges and AI model challenges for edge computing environment.
- **RP2.** Data and model quality assurance to data quality challenges such as faults, missing data, hardware failure, sensor degradation; diverse data source; sensor/data heterogeneity.

Recovery

- **RP3.** Investigate and develop data and model quality certification/robustness to various challenges such as data distribution shift, impurities, adversarial attacks, hardware resources limitations, etc.
- **RP4.** Investigate the model quality certification/robustness to cyber disturbances, cyber-attacks, on federated/distributed EC environment.

Assurance

RP5. Identify quality issues with AI model implementation on edge and offer mitigation strategies to resolve the challenges for ensuring model quality continuity.

Our Smart City Testbench

Newcastle University's Urban Observatory Sensors

>**£8 million** pounds (Capital investment)

10 billion city observations 10,000 a minute

Billions of smart building observations

Only open data **weather** radar in the UK

CCTV: **500** views, **500m+** images, 24 real-time feeds

65 different variables

Source: Phil et al (Newcastle)

Our Experience with Data Quality Challenges

Data quality

- degradation of sensors over time
- anomalous values, random spikes, or environmental issues
- data out of range, out distribution, uncertainty

Data stream issues

- data retrieval source API failure
- source API failure, network failure, network overload
- system throughput queues building up, hardware issues

Cyber security

- adversarial attacks
- denial of services, spoofing

Failure

hardware failure at sensor

03-2019 00:12:38

Data Certification (Safe ML) – Example Solution

Trusted dataset for AI model training

Our Solutions:

- **D-ACE** a framework for • certifying training datasets using various characteristics
- **SafeML** a framework for • safety monitoring of ML models at run time

We will extend these to **Edge Al**

- D-ACE for certifying ٠ datasets in federated Edge Al architecture
- Safety of Federated Learning algorithms in **EdgeAl** architecture

Source: Thakker et al (Hull)

Expectation AI model training data

Reality data in reality for testing AI model

Model Certification – Example Solution

Models adversarial Attacks Mitigation in Autonomous Vehicle and Vehicle to **Everting Transportation Communication Scenario**

One of objectives of the AI Model Quality analysis is to subject AI model to the 'worst case conditions' (such as adversarial cyber/attacks) and evaluate the ability for a model to remain invariant under such settings.

Source: Ojha et al (Newcastle)

(c) PGD attack

(d) AP attack

(a) Default image

(b) FGM attack

Edge AI for Flood Tracking and Monitoring Fusion of Environmental Agency Data Edge Data (CCTV Cameras) across UK & Ireland

Our research help automat tracking and monitoring of flood saturation

We achieve 94% accuracy in correctly predicting real flood events The River Avon and River Severn.

Source: Ojha et al (Newcastle)

Energy Efficient Al Models

(Ojha et al.)

Backpropagation neural tree: Performance on regression

Regression results

baseball (.85, 48)(b) dee (.89, 89)(c) diabetese (.63, 67) (d) friedman (.95, 116)(a)

Algorithm	Bas	Dee	Dia	Frd	Mpg	Avg A
BNeuralT	0.665	0.837	0.492	0.776	0.867	0.72
MLP	0.721	0.829	0.49	0.943	0.874	0.7

Ojha and Nicosia (2022), Neural Networks

(e) mpg6 (.9, 82)

Backpropagation neural tree: Performance on regression

Regression results

- Neural Trees use only 14.6% of MLP parameters \bullet
- Accuracy differs only 5.8% lower than the best MLP result lacksquare

Ojha and Nicosia (2022), Neural Networks

13

Backpropagation neural tree: Performance on Classification

Classification results.

Data	BNeuralT	MLP
Aus	0.895	0.876
Hrt	0.897	0.833
lon	0.952	0.882
Pma	0.822	0.774
Wis	0.986	0.984
Irs	0.992	0.972
Win	0.991	0.991
Vhl	0.75	0.826
Gls	0.732	0.635
Avg. Accuracy	0.891	0.863
Avg. Weights	261	1969

Ojha et al (2022), Neural Networks

Backpropagation neural tree: Performance on classification

Classification results

- Neural Trees used only 13.25% parameters of MLP \bullet
- Accuracy is **2.65% better than the best MLP** result lacksquare

Ojha et al (2022), Neural Networks

Backpropagation neural tree: Image Classification

Ojha and Nicosia (2022), Neural Networks

Model size vs accuracy

	Algorithms	$\operatorname{Error}(\%)$
euralTs	BNeuralT-10K (pixels)	7.74
	BNeuralT-18K (pixels)	6.58
	BNeuralT-20K (pixels)	6.08
BN	BNeuralT-200 \mathbf{K}^{\dagger} (pixels)	5.19
Classification Trees	GUIDE (pixels, oblique split)	26.21
	OC1 (pixels, oblique split)	25.66
	GUIDE (pixels)	21.48
	CART-R (pixels)	11.97
	CART-P (pixels)	11.95
	C5.0 (pixels)	11.69
	TAO (pixels)	11.48
	TAO (pixels, oblique split)	5.26

Ojha and Nicosia (2022), Neural Networks

Single neuron

Biological Inspiration for Backpropagation Neural Trees

Travis et al. (2005)

Jones and Kording (2021)

Ojha et al (2022), Neural Networks

Ojha and Nicosia (2022)

Backpropagation neural tree

Ojha and Nicosia (2022), Neural Networks

$$\Delta w_{b_k} = \delta_k$$

$$\hat{y}_i$$

$$e = \hat{y}_i - y_i$$

$$\delta_k = (\hat{y}_i - y_i)\hat{y}_i(1 - \hat{y}_i)$$

Federated leaning

Leaning on user's edge devices rather than on cloud

FL network architectures: (a) 2-level FL; (b) 3-level HFL; (c) 4-level HFL *Alqattana et al. ICANN,* (2024)

Attack on AI models in distributed systems

Attacks in individual (single)models

We measure the average magnitude difference d at the output of the first convolutional layer, between fragile and non-fragile neurons, on both clean and adversarial inputs.

Ojha et al. ICANN, (2021)

Fragility of individual neural kernels

Fragile kernels shown in blue below mean performance line in red and null kernels S 0 are shown in black star above mean line in red

Fragility, robustness and antifragility

Ojha et al. Artificial Intelligence, Elsevier. (2024)

a new method of parameter filtering (**synaptic filtering**)

synaptic filtering of all layers and parameters of a DNN architecture.

compare clean and adversarial performance of a regular DNN and perturbed DNN.

characterise parameters as fragile, robust, and antifragile

Robustness scores (layer-wise)

Making model robust against attacks

When we **retrain** networks at periodic intervals using only the characterised robust and antifragile layer parameters (selective backpropagation), we observe an increase in adversarial performance, and clean performance for some networks and datasets.

Securing an Al model against attacks

Dynamic Label Adversarial Training

Liu et al. ICONIP (2024)

References

- Fragility, Robustness and Antifragility in Deep Learning Artificial Intelligence, Elsevier. (2024) Pravin C, Martino I, Nicosia G, Òjha Ý
- Backpropagation neural tree Neural Networks (2022) Ojha, V., & Nicosia, G
- Adversarial robustness in deep learning: Attacks on fragile neurons 30th Int. Conf. on Artificial Neural Net., ICANN (pp 16-28), Springer, LNCS, Bratislava (2021) Pravin C, Martino I, Nicosia G, Ojha V
- Security Assessment of Hierarchical Federated Deep Learning 33rd International Conference on Artificial Neural Networks (ICANN). (2024) Alqattan D, Sun R, Liang H, Nicosia G, Snasel V, Ranjan R, and Ojha V
- Dynamic Label Adversarial Training for Deep Learning Robustness Against Adversarial Attacks 31st International Conference on Neural Information Processing (ICONIP). (2024) Liu Z, Duan H, Liang H, Long Y, Snasel V, Nicosia G, Ranjan R and Ojha V
- On Learnable Parameters of Optimal and Suboptimal Deep Learning Models 31st International Conference on Neural Information Processing (ICONIP). (2024) Zheng Z, Liang H, Snasel V, Latora V, Pardalos P, Nicosia G, and Ojha V

Edge Al Hub @ APRIL Hub

Dr Varun Ojha

Edge AI Hub AI Theme Lead Newcastle University varun.ojha@newcastle.ac.uk ojhavk.github.io/ https://github.com/vojha-code

