Resource Efficient Artificial
Intelligence

Dr Varun Ojha
School of Computing, Newcastle University
varun.ojha@newcastle.ac.uk
ojhavk.github.io

4> National

(13 Edge
\J

2=/ Newcastle
Umversﬂ:y

Resource Efficient Artificial Intelligence
Agenda

® Why Resource Efficient Al
® Understanding Al Model Performance
® Al Model Compression Methods and Results

® Search for Efficient Al Models

® Tricks to make Al models resource efficient

Part 1

Why Resource
Efficient Al

Al Arms Race DeepSeek-R1 Upsets Al Market
With Low Prices

= < Usnkist Estimated price for processing one million input/output
tokens on different Al models
‘ <— CNrank2nd $15
Input
$12 B Output
:1/ UK rank 4th 49 .J
-
Joa .
; . / IN rank 10th $3 I .
$0 - I
Grok ChatGPT-o1 Gemini Mova Pro R1 Llama 3.1
Mini 1.5Pro (text only) Nemotron
(text only) 70B Instruct
(text only)

ﬂ{xhu @ openAl Google AMAZON Wy cecpseelc <24 NVIDIA

A token is the smallest unit of Al model processing (~4 characters). N Meta
o1 is ChatGPT's latest model. List includes most comparable model per company
* Uses Meta's open-source Llama Al

Source: DocsBot

https://www.tortoisemedia.com/intelligence/global-ai 4

Advanced Al Models

©

+ Ny W

Gemini Qwen perpIeXIty Mistral Al

& @ D\ @ Veo 3

Deepseek R1
O rd midjoorney ru nway

Massive Al Models

Parameters Count Training Data Size
$63 million
: -[”_l“o” $4.6 million ?ﬂ};ﬁ S GPT-3
' GPT-3 | petabyie 57 TB
175 B
1 B- GPT-2 1 TB-
billion terabyte GPT-2

X 1.54 B GPT-2
117 M 1 GB- G4P('3|'é1

1 M E T T r ! l T T
2018 2020 2022 2024 2018 2020 2022

Source: Francesco Casalegno, ChatGPT Unveiled: What’s the ML Model Inside it, from GPT-1 to GPT-4 6

Al Model Training Energy Consumption

Common carbon footprint benchmarks
in Ibs of CO2 equivalent

Roundstrip flight b/w NY and SF (1
passenger)

‘ 1,084

Human life (avg. 1 year)

American life (avg. 1 year)

US car including fuel (avg. 1 lifetime) RPAKoll)
Transf 213M parameters) w
ransformer (P) w/ 626,155

neural architecture search

MIT Technology Review

Al Model Inference Energy Consumption

Image i o |
generation i Meani
? ' 519 Wh |
Text o @ |
generation "ﬂi 288 Wh E ';
: . 22Wh ;| !
Image Energy required ; e !
captioning tofullychargea : | 105Wh |
_ ; smartphone ! =\
ston R O R -
g | 23Wh 11,000 Wh
| E i A battery with
Automatic spe..e.ch : '. i E this much
recognition I 22 Wh | energy could
: } I run a laptop
: : : : 1 1
Summarization : @ | I for 20 hD:.II'E.
: ': . TWh | | |
. H H H | H | v
H i Pniiie i [EEELH i i [il [NERH i il i [in
0.01 0.1 1 10 100 1,000 10,000

Total energy consumed (in watt hours, Wh)
to perform task 1,000 times

compute energy in J/year

1.E+2]

1L.E+20

1L.E+19

1.E+18

World's energy production

2010

2020

2030

Source; SRC decadal plan 2020

2040

2050

Altogether, data centers use more electricity than

most countries
Only 16 nations, including the US and China, consume more

Source: Bloomberg

Data Centres

: t .-) =
350 TWh (Terawatt-hour) ALL DATA CENTERS Nt ,‘;-‘,‘:\,
o' C' ‘bO.
u"'.'.-j'_' a::é’ Y
e Min !:Efj'J T T_', B ,j"{‘ '"',
300 ates .~ VY
. [JIta].}" . Lo don ! Q‘\.‘.‘
- Ir .. a 8
cTaiwan " UQ} '_:1/.”.._ [f:_ R a
Y@ te . Poland
258 T r ncerss o o i |]
e cAustralia P -y Dt a
Wee> s _ .0, W A Cow %2 :
copain g %, % " Switzerla * L 0
o, . Sge° ©W .4 & 4 =
") : :-fll“-', :0.. ™ .Q.}o -
269 oThailand 4 - L e C 3 ,
g) co " N
oSouth : " 2 “et o
Africa YR e itatly ° TH
- A ..
150 Malaysi e - o e ‘B riae
L cMalaysia g © 0 % y
cArgentina Maoroee . o -
cNorway e - v :‘
@ | [U d . o 4
cBelgium =
—ocAustria (g el
1]
= Mauritan
—— C
............................. = Libva Cairo

2008 26004 20683 2012 2016

2628

2024

Altogether, data centers use more electricity than

most countries

Only 16 nations, including the US and China, consume more

350 TWh

200

166

20812

1
28

16

26024

Potential solutions to

energy problem:
Cloud Al » Edge Al

Moving Al appIiCations from the
cloud to the edge

« Al model simplification techniques to
reduce power consumption

. Al Model quantization, et¢, -
« On device (Edge) Al model training

- Federated Learning

11

Edge Al

Unlike Cloud Al (e.g., ChatGPT that runs in data centers), edge Al
runs at the edge computing devices such smartphones, cameras,
cars, medical devices, ensuring quality of data for inference

Reduces latency, cost, and power consumption

Protects data privacy and reduce improve data security and
cybersecurity

Reduces risk of inference failure in critical systems (e.g.,
autonomous vehicles, healthcare devices) that may endanger lives

12

Everyone is a walking Al computer

Any random mobile configuration/specification these days

. — N\

Chip

A18 Bionic chip :
6-core CPU with 2 performance
4 efficiency cores
5-core GPU

16-core Neural Engine
Capacity

512GB

Multiple Sensors
48MP camera
Satellite and GPS

13

The Emergence of
Edge Al: a game
changer for

industries
(Gartner 2023)

]
Industrial loT Smart Factor

!

AR
Smart Healthcare T

Security & Surveillance [Q

Drones

Autonomous Vehicles

o* ’o
X\ ; Hyperscale A
Responsible Al 4
Q‘\ R ® ® Edge Computing 00/
o> <
‘bo @ 096
N ® Decentralized Identity Web3 ®
S %
g i : :
R Digital Ethics @ Blockchain ,
& . Hyperautomation
,g . in Security ®6G
2 ® @ Tokenization
Knowledge
@® Human-Centered Graphs @
Neuromorphic
Computing
ter
Self-Supervised
Model Learning
@ Smart Space ompression @
@® Multimo ’
. v - . Synthetic Data @ |ntelligent
Digital Twins Applications S
Mo

S
Ry @ Generative Al S
% @® Spatial Computing &
'9», <

Digital Human 4{6
(o) \
%y (Al Avatars) \)é'
® o®
Q‘

14

The Rise of Generative Al at the Edge

image source: Arrow Intelligent Solutions

Things

Data Flow
Control Flow

Operations Loop

Fast Processing Optimization Loop

Training, Analysis, and Optimization loop

o o < —@—
loT/Endpoints Edge Compute Core/Cloud
Sensors/Actuators Far Edge Near Edge Core DC/
Private Cloud
= i () 1 A ()
&: &) by T b B = ===
B:: Customer Premises Closer to Core/Cloud : =
17 &(«G — T
bt d bl =]
i} Al 1 (O Hybrid Cloud
N
- - - (| é — 00
== — 00
__ [T """_""""":
E g . Public Cloud
Data Acquisition & Early Analytics, :
-y Aggregation, Light Light/Heavy | &)
D . Computation, Al Computation, ML I
= Inferencing Inferencing : Deep Learning, ML Training,
I

Reporting, Archiving
15

Small Language Models Could Redefine The Al Race,

Forbes

Model size (billions of parameters)

Exponential growth of LLMs stopped

10000 ‘

GPT-4
1000 /Q_
Magatr/CJ.n;Tur{ng Grok Llama 3
\
GPT-3 ‘ ® ,’
./ \\ II\\ ! \\
100 ¥ \\ II . Llama 3 70B !I \\ Qwen2.5-72B
// \ ,I \\ /Q\ II \\ ’”\
Tuning‘NLG A Y A U)
5 e Vo A ! . -
0 ,/ i \ ' GPT4-mini Mistral-NeMo-Minitron
! Vi Phi-3 \ Gem%'i‘lis. I;Ia;s.h\BB / \
/ . ~ ..
y, Gemma 28 @ Dantibe ni o | Minigjral 3B
GF;T/Z ‘. Llama-3.1-Minitron = ~-@
1 / \ / Granite 2B
BE.FS’T 2024: development of SLMs ¢
Qwen2.5-0.5B

/
/

0.1 Tr‘an/sformers

A > &)) Q Q N 2o > (Y ™ B ™ ™ > ™ ™ ™ ™ ™ ™ ™ ™
R R RO I SR SR R SR IR LR SRS IR SR SRR S o
MM ERSVYVSIFFHFMNMNANNRETSSSSN

16
Year

.||'I:l'\\.'l' |||.-|:||'

Al Model Size

input node

a8 Performance Trade-offs

Ly
Larger models, such as GPT-3 with 175 billion parameters, can

. o . imput layver hi-]-lc-n.l.n'vl output layer
handle complex tasks but require significant computational 2 5 -
resources and incur higher operational costs. = 4.5 4

T 4 o ¢ ¢
> 3.5
& Efficiency of Smaller Models S% 3
. =2 254
Smaller models offer faster performance and lower costs, making (a)) o
them suitable for real-time applications, though they may l 15)
compromise on accuracy. = 1 . . ®
- 14
Yy
. “~ 0.22
2. Architectural Impact a8 0.18 U2
&%, ° 010 014 01O High
N . . 4 4 01 V=
The structure of a model significantly affects how effectively its <e 0.08 Mode;nce -
orm
parameters are utilized, with optimized architectures enhancing g < per

It L()\\'
performance metrics.

Ojha et al, Applied Soft Compt.

Part 2
Understanding Al
Model Performance

Al Model Performance

Al model's performance predictably improves as you increase resources like model size (parameters), dataset
size, and compute power, often following power-law relationships where gains diminish but remain consistent.

Test Loss

L= (Cpin/2.3 - 108)~0.050

2 T T T T
10~ 107 10=®> 10=3% 107!

Compute
PF-days, non-embedding

Kaplan et al. (2020)

101

4.2

3.9

3.6

3.3

3.0

2.7

—— L=(D/5.4-1013)70:0%

1028 109
Dataset Size
tokens

5.6
4.8

4.0

3.2

2.4

— L= (N,I"SB . 1013}—0.076

105

107 109

Parameters
non-embedding

Parameter-level learnability
using first-order statistics

combined across architectures.

Extends learnability, pruning,
and quantization analysis to
non-Euclidean geometries.

N QO
7 & 9 ’
Q)Q}\/ QO"@ .
&L &
o o (a
00-7 &O_; \Q) 'y/»
N %, Vo
SNPCPS % ©
& &S %, O,
GECSIRS R
N\ ¥ : ¢ T
O Deep Learning Or
Learnability & .
¢ i &
4 %, Compression NG
S N
/5 \Q,o é)\ . Q)o
Y % N
A, % X L
e © O v
Yo %, S
0,4‘9/ o &

Structure-level learnability,
pruning, quantization, topology
& data complexity.

Task-learnability in modular /
combined architectures.

Trained Network Exabits Gaussian distribution

1.257

1.00;

Density
©
~
o

o
Ul
o

0.25

s 0.00

-2.500 2.5 -2500 2.5 —-2.50.0 2.5
1 2 3

Gao et al- 2023, NeurilPS

21

Performance Characterization of Models

Irrespective of model parameter size the model's convergence cluster into optimal and suboptimal patterns

Network Data Layer Input Output
MNIST, FC1 28 % 28 5-200
ey FO2 5-200 5-200
NN FC3 5-200 10
FC1 3% 32%32 5-1000
CIFAR-10 FC2 5-1000 5-1000
FC3 5-1000 10
MNIST Convl 28%x 28 x1 26x26xC
oy F-MNIST - FC 26% 26 x C 10
Convl 3x32x32 30x30xC
CIFAR-10 FC 30x30xC 10
MNIST Encoder d—hmogilg 124
VT F-MNIST I;Sza(__ - 0 0
CIFAR-10 Hpt

MNIST

—— non -
low
mid

—— high

H

H

Accuracy

100
-
g
©
e
=
v
1%
"iet.
@
»
100
®
.8
©
e
=1
b3
%
.
— low
0.5 . 2
mid
high

0.0
012345678 910111213141516171819

Epoch

0.4

FMNIST

—— non
low

—— mid

—— high

012345678 910111213141516171819

Epoch

9012345678 910111213141516171819

Epoch

151

Loss

[
°

low

051

0.4

mid
high

001334567 8 610111213141516171819

Epoch

Accuracy

Accuracy

Accuracy

2.5
—— non -
low
mid
high
9
10
0.5
&0 12345678 910111213141516171819
Epoch
low
2.0 mid
—— high
w
wn
S
Epoch
25
2.0 = :
15
w
0
<]
-
1.0
low
05 .
mid
high
0.0
012345678 910111 1516171819
Epoch 232

2

Accuracy

Accuracy

Accuracy

Deep Neural Networks

A N _—
oo "
-
\ —
NS
\\
8 -
pixels -
v
pixels I
< 8 2 1
|
H Hidden
layer 1

image of size
[8 x 8] pixels

input layer
flatten image

Hidden
layer 2

Hidden
layer M-1

Hidden
layer M

9:17 AM

23

DNN'’s Learnable Parameters

Learned parameter of all
failed models,
suboptimal models and
successes full models
clearly show similarity of
their statistical
properties and weight
distribution irrespective
of their model size. i.e.
models of any size
converge to a similar
weight distribution when
trained to a fixed number
of epochs on a dataset

FMNIST MNIST

CIFAR-10

std

std

std

0.25 1

0.20 1

0.15 1

0.10

0.05 1

0.00

0.35 1

0.30 1

0.25 1

0.20 4

0.15 1

0.10 A

0.05 4

0.00 4

0.16

0.14 4

0.12 4

0.10 1

0.08 1

0.06 1

0.04 1

0.02

A
Aa a 0.4 A A
7y A
A
‘ 0.3 1
A
o
A i
0.2 1
. non . non
e+ low 0.1 1 e low
4 mid 4 mid
Eapnioh anes ° 0.0 4 ® * high
T T T T T T T T T T T
—0.015-0.010-0.005 0.000 0.005 —=0.05 0.00 0.05 0.10 0.15 0.20
mean mean
o84 ¢ non
e low
a mid
m 06d * high
A
A
. kel
¢ non E 0.2
* low
a mid ‘
* high . 00 ®
—0.04 —0.03 —0.02 —0.01 0.00 0.01 0.0 0.1 0.2 0.3
mean mean
° L]
0.10 1
° o0
° ® ome?, * W+ S La
%, ° ."" 0.08 o %
® .08
[] ® > o
W e ®
T 0.06
2 "
004{ W
. non . non
e low b e low
4 mid 0.02 4 4 mid
« high . ° + high
T T T T T T T T T
—0.002 0.000 0.002 0.004 —-0.02 0.00 0.02 0.04 0.06

mean

mean

std

std

std

FC2 -O/P Whole Net
1.4 4 e non i
e low 0.25 -
1.2 h
A "’Id A "‘A A
= high
1.0 o 0.20 4 A
0.8 - 01s 1
=
wn
0.6 N A R A %
A 0.10 1
0.4 ‘g 1 ST
02 - o5 ¢ v
4 mid
0.0 [* high L X
T T T T T ﬂﬂﬂ T T T T T
-0.20 =015 =0.10 -0.05 0.00 —0.015-0.010~0.005 0.000 0.005
mean mean
0.8 4 e non i
A s low xS
0.7 4 a mid 0.30 4
0.6 + high A
0.25 A
0.5 N
A ‘ T 0.20 A
0.4 i
ee 0.15 A
0.2 0104 ¢ non ’
e low -
0.1 ‘ 0.054 a mid
» high
S — Y R
-0.20 —0.15 —0.10 —0.05 0.00 0.04 —0.03 —0.02 -001 0.00
mean mean
® . non 0.16
* low ®
0204," s+ mid e d o P omel, ®
® * high 0.12 4 [] ‘ ® ‘
1219 @
. e § .
0.15 - 0.10 4
* AR T anliple
‘ot ® @ 0.08 "
0.10 4 .,»._\q\ - 0.06 |
N . non
004 e low
0.05 - s mid
A e 0027, hign .
T T T T T T T
—-0.03 -0.02 -0.01 —0.002 0.000 0.002 0.004
mean mean

1.0

0.8

>
0.6 8

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

[}
(%}
<

>
9
e

=1
o
=]
<

>
)
o

[
o

<

24

DNN'’s Learnable Parameters Distribution

Learned parameter of all
failed models,
suboptimal models and
successes full models
clearly show similarity of
their statistical
properties and weight
distribution irrespective
of their model size. i.e.
models of any size
converge to a similar
weight distribution when
trained to a fixed number
of epochs on a dataset

FMNIST MNIST

CIFAR-10

I/P - FC1 FC1 - FC2 FC2 -O/P Whole Net
6
high high high | 154 high
o\ mid 124 mid mid mid
low low low low
._é‘ 10 8
é 15 4
o 81 o
o
ﬁ 3
N 64
=10
e d ’
s
2] 1 | 24
0 0 j 0 L] J
=2 -1 0 1 2 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 - —4 -3 =2 -1 [1 2 - -4 -3 -2 -1] 1 2
Weights Weights Weights Weights
6
high high high | high
? mid | 12 mid mid mid
low low low 8 low
2°] 10
E N
A s s
B 41 3
& 6
[i
E 2]
2,
2
i ’ J“L 17 J k
0 T . . 0 \ - . 0 . . T 0 T . T T
-2 -1 [1 2 1 [1 2 3 -3 -2 -1] 1 -3 2 -1 "] 1 2 3
Weights Weights Weights Weights
high | high | 175 high high
mid 7 mid o mid mid
low low h low low
Z
‘n © 12.5
=
g 3 10 4
- 10.0
ﬁ 8
ﬁ 2] 7.5
E . |
8 50
1]
2 J) J L
[0 0.0 2
-1.0 —0.5 0.0 0.5 1.0 -1.00 -0.75 -0.50 -0.25 0.00 025 0.50 -0.8 06 -04 02 0.0 0.2 04 -1.0 —0.5 0.0 0.5 1.0
Weights Weights Weights Weights

9:17 AM

Convolutional Neural Nets

[Input - Convolution - RELU - POOLING - Fully Connected - Output]

Dr Varun Ojha, Newcastle University 26

CNN’s Learnable Parameters

Similar complexity data shows
similar trainable parameter
statistical property pattern
(weight distribution),
irrespective of model size

High performing model weights
show that models of any size
converge to parameter with
similar statistics (weight
distribution)

High complexity data shows
that statistical property of
successful models has very
specific statistical property or
specific weight distribution

FMNIST MNIST

CIFAR-10

std

std

std

Convl FC All
o~ (.
* low * low
a mid a mid
0.30 - * high 0.30 + high

0.15 x

mean

010 L T T T T T }b
-0.12 -0.10 -0.08 -0.06 -0.04 -0.02 L

mean

T T T T T T
-0.12 -010 -0.08 —-0.06 -004 —0.02 0.00
mean

std

T T T T
-0.08 -0.06 -—0.04 -0.02

T T T T
-0.08 -0.06 -0.04 -—0.02

mean mean
L2 . low oasd ® low o low
. . T . 0.13 4 .
S a mid a mid 4 mid
+ high « high + high
s 0.12 012 - *
0.40 ~
T 0.11 B on
0.35 Ly w
] 0.10
0.3 0.10
0.25 o
g 0.09
0.09
0.20
T T — T T T T T T T T T T T T T
—0.010 -0.005 0.000 0.005 0.010 0.015 —=0.012 —0.010 —0.008 —0.008 —0.004 —=0.012 -0.010 —0.008 —0.008 —0.004
mean mean mean

1.00

0.98

>
0.96

0.94

0.92

0.90

>
o
o
<

std of weights

mean of weights

high

Accuracy

e |ow
A mid
high

»

27

CNN’s Learnable Parameters Distribution

Similar complexity data shows
similar trainable parameter
statistical property pattern
(weight distribution),
irrespective of model size

High performing model weights
show that models of any size
converge to parameter with
similar statistics (weight
distribution)

High complexity data shows
that statistical property of
successful models has very
specific statistical property or
specific weight distribution

FMNIST MNIST

CIFAR-10

Normalized Density

Normalized Density

2
=

Normalized Density

=]
®

=]
N

=]
N

Convl FC All
high | ¢ high | ¢ high
mid l mid l mid
low low low
5
| |
\ . .
0 -0.5 0.0 0.5 1.0 1.5 -1 0 -1 0
Weights Weights Weights
high high high
mid mid mid
low low low
|
|
3 |
X 2
1 \ |

0.0 T v v T v v T
-2.0 -15 -10 -0.5 0.0 0.5 1.0 15

0
0.75
0.50
0.25
0

5 -1.0 1.0

Weights

Weights

0 T T T v T v
-25 -20 -1.5 -l.0 -0.5 0.0 0.5 10 15

0t T v T T T T T
-25 -2.0 -1.5 -1l0 -05 00 0.5 1.0

Weights

high

low

2

mid | 4

|

high

mid G

low

|

high
mid
low

-035 0.0 0.5
Weights

2
| |
‘
| j \
o
1.5 -10 0.5

-035 0.0
Weights

2
11
\
I 1
1 j \
0
5 -L0 1.0

-0.5 0.0 0.5
Weights

Kernel density
estimation lines

Histogram

Low
Mid
High
28

9:17 AM

Vision Transformer Models

Vision Transformer (ViT) Transformer Encoder

, A
L x (:)I
[MLP

A

Norm

Class

Bird MLP
]3:?1] Head \

Transformer Encoder

i

|

|

|

I h, y
, |

| ("

| L _
h | =

- | : . ~
Rmmuﬁ@ﬁﬁﬁﬁéiéé | [

|

I .

| {

|

|

1

* Extra learnable l I I

[class] embedding [Lmear Prq] ection i)f Flattened Patches
Norm

™k | | -
I

WER—
f 2 P

Dosovitskiy et al. AnImage is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR 2017

Embedded
Patches

29

ViT’s Learnable Parameters

All failed models,
suboptimal models and
successes full model's
learned parameter
clearly show similarity
of their statistical
properties (weight

distribution)

irrespective of Model

Architecture

FMNIST MNIST

CIFAR-10

Attn MLP Norm All
e low * * low 1.4 ¢ low * e low *
357 4 mid 0654 a mid 2+ mid 14 & mid
50 * hiah « high . 124 « nign + high
0.60 - ° 124
2.5 L o 1.0 xk ¥ .
- 5 551 ° - * x|
H 2.0 @ . A £ 054 * 104
* 0.50 * N * - ¥
* * %k
p * * *
15 * * *
* 0.6 4 0.8 -
0.45 - - - x
1.0 - * * * =
(v 0.40 4 044 o (A 0.6 4
051 4 * ¢ W °
T T T T T T T T T T T T T T T T T T T T
—-0.50 —0.25 0.00 0.25 0.50 0.75 -0.10 —0.05 0.00 0.05 1.0 11 12 13 14 15 0.0 0.1 0.2 0.3
mean mean mean mean
4.0 1 o low e low 1.64 e low 16 e low
a mid a mid a mid : a mid
.5 0.7 -
e « high « high 144 « high 14 = high
3.0 1 o
2.5 0.6 * 1.2
o o * * - 1.0+ o
I * |4 ® = 2 *
2.0 1 * N " * 1.0 x
05 08 %
*
1.5 * * & 0.8 -
* * 0.6 *
1.0
0.4
0.4 1 % 0.6 -
0.5 -
T T T T T T T ﬂz T T T T T T T T
0.0 0.5 1.0 -0.02 0.00 0.02 0.04 1.0 12 1.4 16 18 0.0 0.1 0.2 0.
mean mean mean mean
1.6
e low A * low
4 mid 0.52 4 A 1.0 4 a mid
1.4 4 + high A « high 0.8 1
0.50
1.2 * 0.8 -
A - 0.7 -
* 0.48 - L
kel kel kel o *
% 10 % e * % * % At
* * 0.46 0.6 - * 0.6 4
: Y
0.8 | *
0.44 - * a4
A o low L] 0.4 4 * 0.5 4 P e low
0424 & mid g * LYY ab a mid
c + high A « + high
T T T T T T T T T T T T T T T T T T T
—-0.75 —0.50 —0.25 0.00 0.25 0.50 -0.05 0.00 0.05 0.10 1.0 1.2 1.4 —-0.05 0.00 0.05 0.10 0.15 0.20
mean mean mean mean

©c o o o ¢
N R o m O
Accuracy

I
o

©c o ©o o ~»
N R O @ O
Accuracy

o
=}

© ©o o o ©o
= N w £ wu
Accuracy

o
o

w
o

ViT’s Learnable Parameters Distribution

Attn MLP Norm All

-
19

All failed models, e B
1 CD] 06 o5 o6

suboptimal models and 5 3

successes full model's = b o

o =
=3 19

learned parameter k)) |
Clearly ShOW Simila rity ’ -4 -2 0 \Zr\ﬁeigdhtsa i B o2 -2 -1 Weig;ts 1 2 0 1 i‘\ieight; 4 5 -4 -2 0 \aneig‘;tsa 8 10 12

H H H low | 10 low | 12 low | 07 low
of their statistical = e o i
. . high | high | 1.0 high | high
properties (weight = g
. H . n a 06 ° 0.6
distribution) =2 y
] X
o . ® 04 J 0.4
irrespective of Model E E
=
M 02) 0.2
Architecture N
00 00 o 0.
-75 -50 -25 00 25 50 7.5 -2 1 [} 1 H [1 2 3 4 5 75 50 -25 00 25 50 15
Weights Weights Weights Weights
10 low 10 low 12 low 104 low
mid mid mid mid
high high high high
>, 08 08 10 08
3 4
1 @ 08
m“ g 0.6 06 0.6
<ﬁ E 06
m E 04 044 0.4
— zc 0.4
&) 02 02 02
0.2
00 00 00 00
-4 3 3 4 0.0 0.5 1.0 1.5 2.0 25 3.0 35 -4 -3 - 3 4

Weights

Part 3
Al Model

Compression
Methods and Results

Al Model "Slimming" Techniques

Model Compression

v v v v v
Quantization Pruning Structure Knowledge Low-Rank
Optimization Distillation Factorization
v v v
Unstructured
Pruning

Quantization-
aware Training

Neural Archi-
tecture Search

Al Model "Slimming" Techniques

JL uantization Prunin
1 Q Lo :
Reduces model precision (32-bit to 8-bit), cutting memory Eliminates less important weights to create smaller,
by ~75% with minimal accuracy loss. sparser models while maintaining accuracy.
7= Knowledge Distillation E:F Model Splitting
Trains a compact student model to replicate behaviors of a Partitions processing between edge device and cloud for

large teacher model. co-inference.

Pruning and Quantization Aware Neural
Network Training

32-bit network pruned network 8-bit network

Ziwie, Ojha, et al (2025)

35

Pruning

* Train-time (dynamic) pruning involves integrating the pruning process
directly into the training phase of the neural network. During training,
the model is trained in a way that encourages sparsity or removes less
Important connections or neurons as part of the optimization process

* Unstructured pruning involves zeroing individual weights within the
weight matrices

* Structured pruning removing entire structured groups of weights, the
method reduces the scale of calculations that would have to be made
in the forward pass through the model’s weights graph

36

Pruning

* Magnitude-based Pruning:
Simple, small weights/channels
are pruned

* Gradient-based Pruning:
method prunes weights that
show smaller gradients over
time.

* Importance-based Pruning:
Weights with lower “importance
scores” are pruned first

* Training-time (dynamic)
pruning: dynamic pruning
adjusts the network structure
during training based on real-
time performance metrics

e Unstructured
Pruning

@ Structured

Pruning

THac

[1 1 1 [[| |
| | | | | | | [JJ :
Element Pruning '

Structure

Irregular
< Sparsity
High
Processing/
T!Iigh Memory Demand
[] Pruned

[] Unpruned

Channel Pruning

>
Regular

Low

Low

37

Quantization

The main task of model quantization in deep learning is to convert

high-precision floating-point numbers in neural networks into low-
precision numbers

0.34 . 5.64 64 . 217

112 2.7 0.9 l 76 119 21

Quantization
. o |8
FP32
32 Bits > Sign (1-bat) Magnﬂutle (7-bits)
I A
‘ Sign J | Exponent L Mantissa Sign bit LD 0/110]1]110 1J =45
S ; —— = — L
—LRt—+ @& 8 Bits > o — N Word (8-bit)
(0] 1 |
E— Shgn (1-bat) Magnitude (7-bits)
: i Mognnude Maguude [‘ A
Single Precision 10101101 = —45
l]

IEEE 754 Floating-Point Standard —

T
Word (B-bit) S

Binarized Neural Networks

+1 1ifx >0,
—1 otherwise

y a2’ =Sign(x) = {

b +1 with probability p = o(x),
| —1 with probability 1 — p,

Binarized Neural Nets: (Courbariaux et al. 2016) https://arxiv.org/pdf/1602.02830 39

Architectural Invariance

1-layer experiments 3-layer experiments 4-layer experiments

.+< =] > 0 =] =D =] O > o <o D 10
2-layerexperiments [[= = =] XD [X]] == I:[:D = [= [0

d >] [[0 o =D o] g 0= e o OT5 O

(a)
ILAYER-ARCH 2LAYER-ARCH 3LAYER-ARCH 4LAYER-ARCH

1.0 I I | 1 i | I
H 1.0 I —— I L]
0.9/ i i i 10 i 1.0
] 1 1 1
0.8/ i i i 09 i 0.9
1 1 1 0.8 1 1 0.8
F‘ 0.7 ! | : oz : Arch-Groupl linc-nc} =N G e e
v > 1 1 1 > U 1 = Arch-Group2 finc.dec) >0.7
-go‘ﬁ' : : : -’-‘:; 0.6 : —— Arch-Group3 (inc-eq) 0.6 {
@ 05 | ' ' ®05 ' ®05 !
| | | - I rch-Group (dec-inc] . !
Zﬁuq. 1 1 1 & H Arch-Groupd (d) 171'04 H
9 I I I 3 0.4 I —— Arch-Group5 (dec-dec) oY I - Arch-Groupl# {Dec eq-eqh
E Fos i i ! Fos ! T reh-Group (dec-eq) Fo3 ! A Grow icneced |~ e GrupED e e dech
! ! Arch-Groun1 (1 - i e Grou - e
—_ pl(inc) 1 0.2 1 A Graupt lin-desrind o Graupz2 (Eq-dec-nc)
0.2 ! ! 0.2 I Arch-GroupT (eq-inc) .] o aren 4E0-0c.dec)
I i —— Arch-Group2 (dec) I e 01 I i
0.1 | Arch-Groupl Arch-Gr 3 (eq) 0.1 H Arch-Group# (sq-dec) 3 i - G = Ba-saing
: —_— | CI oup3 (eq 00 : —— Arch-Group9 (eg-eq) 0.0 : — AhGrowdlinceatal —— AvhGroup2? iEa-caeal
0015 3 4 s & 7 8 9 10 11 12 %1 32 3 4 5 6 7 & 9 10 11 12 01 2 3 4 5 6 7 & 8§ 10 11 12 i 2 3 4 5 6 7 8 9 10 11 12
Increasing order of model parameters Increasing order of model parameters Increasing order of model parameters Increasing order of model parameters
v Lo . T 1.0 7 q 1.0 i 1.0
] 1 [!
]
0.9 | | |
Z [| 0.8 I ! 0.8 1 1 0.8
) 1 } 1 | }
—_— I [— | I _— I ! finc-inc| -_— 1
;-1 mU‘B 1 1 > | H S : | Arch-Groupl) = H
% : : % 0.6 : : 5 0.6 ‘L : = Arch-Group2 (inc-dec) % 0.6 :
U 0‘7 H H ‘_J g 1 H ._J I | = Arch-Group3 (inc-eq) U 1
® i i E i i ® i i ® i
| Arch-Groupd (dec-inc) 0.4
QO nos ! ! 204 ! ! 704 | | — nrentroups ideccee | T8 !
—_ ! ! & ! ! e ! | wenarows ecen | 1 ! Pl
m 0.5 i 1 i 1 0.2 I] 0.2 1 A oot s o
: : 0.2 : 1 : ‘L : Arch-Group? leqiine) : —— Arch-Graups finc decdech
7 o gt e oo
U) 0.4 I rchs 1 I I | T Ach-Group8 leq-dec) 1 —— drch mmr.w:..:l Group2 (R eqincl
: — .A ch-Groupl ! R IArch Groupl 0.0 ! | wer s s 0.0- b R imircess = Ak gt Sasaen
< 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
LT_‘ Increasing order of model parameters Increasing order of model parameters Increasing order of model parameters Increasing order of model parameters
1.0 : i 1.0 i : 1.0; ; 1.0- :
]] } 1] } 1 1
) 1 1 1) } 1
0.9 1 1 1 1 1 1
) 1 } | 1
O | 1 ! 1] I
0.8 i 0.8 i ; 08 i 08 i
= : : o : : S ‘L : Arch-Groupl. finc-inc) S :
I 507 I] > | I > I | == Arch-Groupz linc-dec) > |
M ﬁ ! ! 30-5' ! | _'_“, 0.6 ! | — arch Group3 linc-eq) 30'6
506 i i g ' i 8 i g
< © i : o 4 : © : Arch-Groupd (dec-inc) ©
45 0.5 I 1 i 0.4 H H o4 1 | == Arch-Groups (dec-dec) %04
~ @ I i & I i & [| = rch Groups toecear | 12 /| o o
—{ " 04 ! ! ! ! | ! ' P iotintery
O o i i 0.2 i : 0.2 i b B [t roporll ot s
! Arch-Groupl ! Arch-Group1 ! I | T e
0.2 T 1 T | ! i | | | | I ! 1 | | H | | Arch-Group! ‘“"“‘f \ e ARG Inc-egedl e AhGruRZ? (E-ea)
1 2 3 4 5 6 7 8 9 10 11 12 i 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 s5 6 71 8 9 10 11 12 1 2 3 4 5 6 7 9 10 11 12
Increasing order of model parameters Increasing order of model parameters Increasing order of model parameters Increasing order of modéi(parameters

(b)

DNN Architecture

CONVERGENCE

PRUNING

QUANTIZATION

1.0

o e o
N o o

Test acclavg)

o
N

Test acc(avg)
S e e
L (=)} o]

o
N

0% 01 02 03 04 05 06 07 08 09 1.

1.0¢

o
@®

Test acc(avg)

©
[N]

—— llayer-arch
2layer-arch
3layer-arch

—— dlayer-arch

3 5 10 20 30 50 100 200 500 1000

Number of nodes at layerl of nets

—— llayer-arch

—— 4layer-arch

2layer-arch
3layer-arch

I
1
I
1
1
1
1
1
I
I
il

Pruning Ratio

o
S

o
i

1

1
|
1
|
|
1 |

: —— 1llayer-arch

| 2layer-arch

| 3layer-arch

: —— 4dlayer-arch

I —— Unquantized (Solid)

N Quantized (Dashed)

| . ! 1 | ! I I 1 I |
2 3 5 10 20 30 50 100 2005001000
Number of nodes at layerl of nets

=
o

o [=}
[=2] oo

o

Test accl(avyg)

Test acc(avg)

Test acc(avg)

o
")

©
o

°
IS

e
N

0.8% 01 02 03 04 05 06 07 o

1.0

o
o)

c
o

@
B

e
[N

FASHION MNIST

—— llayer-arch
2layer-arch
3layer-arch

—— dlayer-arch

3 5 10 20 30 50 100 200 500 1000
Number of nodes at layerl of nets

—— llayer-arch

—— 4layer-arch

NI N SUNL D M. S

2layer-arch
3layer-arch

Pruning Ratio

1

|

I

|

I

I

: —— llayer-arch

I 2layer-arch

I 3layer-arch

: —— 4layer-arch

1 —— Unquantized (Solid)
| I N Quantized (Dashed)
1

2 3 5 10 20 30 50 1002005001000
Number of nodes at layerl of nets

1.0

o o o
- o ©

Test acclavg)

o
)

o o o
I o o

Test acc(avg)

o
[N]

0.

1.0

CIFAR-10

—— llayer-arch
2layer-arch
3layer-arch

—— dlayer-arch

1 2 3 5 10 20 30 50 100 200 500 1000

Number of nodes at layerl of nets

i
1
1
—— 1llayer-arch i
2layer-arch i
3layer-arch i

—— dlayer-arch i
1

.0 01 02 03 04 05 06 07
Pruning Ratio

© o o
» =) o)

Test acc(avg)

o
N

—— 1llayer-arch }

2layer-arch
3layer-arch
—— 4layer-arch
—— Unquantized (Solid)
----- Quantized (Dashed)
1 —~

-

| T S I — !
10 20 30 50 100200 5001000

i 2 3 5
Number of nodes at layerl of nets

41

CNN Architecture

QUANTIZATION

CONVERGENCE

PRUNING

MNIST

1.00
0.99
20.98‘
30.97
© 0.96
©0.95
[M]
©0.94
0.93 i _ i _
1 2 4 8 16 32
Number of channels at convl of CNN

ch=1 —— ch=16
0.2 ch=2 —— ch=32

- ch=4 — Mean
ch=8

1.00
0.99
©0.98
£0.97
©0.96
%0.95
~0.94
0.93 -=--= Quantized (Dashed)
1 2 4 8 16 32
Number of channels at convl of CNN

—— CNN-channels |

0.2 0.4 0.6 0.8 1.0
Pruning Ratio

—— Unquantized (Solid) |

FASHION MNIST

1.00,
0.98
©0.96
>
%0.94-
30.92
50.90-
F0.88
0.86 —— CNN-channels
1 2 4 8 16 32
Number of channels at convl of CNN

0.2l a2 T amm
- ch=4 — Mean
ch=8
0.2 0.4 0.6 0.8 1.0
Pruning Ratio

] —— Unquantized (Solid)
/ --- Quantized (Dashed)

Test acc(avg)
COOOOO0O0OH
WOOWWWLWWWO
PROOWONR,O®OO

1 2 4 8 16 32
Number of channels at convl of CNN

1.0
0.9
20.8
4]
T0.7
o
©0.6

0.5
0.4

1.0
0.8

vg)

0.6

0.4

Test acc(

0.2/
0.0

1.0
0.9
(@)
0.8
0.7
m
£0.6
()]
0.5

0.4

CIFAR-10

—— CNN-channels

1 2 4 8 16 32 64 128
Number of channels at convl of CNN

ch=1 —— ch=16

cth=2 —— ch=32
+~— cth=4 —— Mean |
ch=8

0.2 0.4 0.6 0.8 1.0
Pruning Ratio

—— Unquantized (Solid)
--- Quantized (Dashed)

-
-
-
-
-
-

-
-
-

2 4 8 16 32
Number of channels at convl of CNN

42

VIT Architecture

QUANTIZATION

CONVERGENCE

PRUNING

MNIST

Test acc(avg)

COo0O0O0DOOH
NwhUuo~Nowo

—— Transformer-hidden_d

2 4 6 8 10 16
Number of hidden dimensions of VIT

hidden d=2 —=— hidden_d=10

hidden_d=4 —— hidden_d=16
—— hidden_d=6 === Mean

-~ hidden_d=8

0.0 02 04 06 08 10

Pruning Ratio

FASHION MNIST

—— Transformer-hidden_d

2 4 6 8 10 16
Number of hidden dimensions of VIT

hidden d=2 —— hidden_d=10
hidden_d=4 —— hidden_d=18
—— hidden_d=6 = Mean

— 0.8 ~— hidden_d=8

0.0 02 04 06 08 1.0

Pruning Ratio

—— Unquantized (Solid)
- --- Quantized (Dashed)

00, 4 6 8 10 16

Number of hidden dimensions of VIT

0.2 —— Unquantized (Solid)
--- Quantized (Dashed)
00, 4 6 8 10 16
Number of hidden dimensions of VIT

0.50
0.45
$0.40
£0.35
g0.30
50.25
20.20
0.15
0.10

0.5

CIFAR-10

—— Transformer-hidden_d

2 4 6 8 10 16
Number of hidden dimensions of VIT

hidden_d=2 —— hidden_d=10
hidden_d=4 —— hidden_d=16
—— hidden_d=6 === Mean

~— hidden_d=8

0.2 0.4 0.6 0.8 1.0
Pruning Ratio

—— Unguantized (Solid)
-=-- Quantized (Dashed)

2 4 6 8 10 16
Number of hidden dimensions of VIT

43

PRUNING

Maximal Pruning for Minimal Network

test results on MNIST
similar results of CIFAR 100 and other 8 datasets

1.0

0.8F———- Over70% o~ ____Y. __=
g pruning |
=0.6 A
© Over 80% |
- 4 °
& 0.4) —— llayer-arch pruning i
= 2layer-arch |

0.2 3layer-arch i

—— 4layer-arch i

O'Q).o 0.1 0.2 0.3 04 05 06 0.7 08 09 1.0
Pruning Ratio

44

Maximal Quntizatian for Minimal Network

test results on MNIST
similar results of CIFAR 100 and other 8 datasets

QUANTIZATION

Test acc(avg)

1.0

O
=

O
=

©
IN

o
N

llayer-arch
2layer-arch
3layer-arch
4layer-arch
Unquantized (Solid)
Quantized (Dashed)

2 3 5 10 20 30 50 1002005001000

Number of nodes at layerl of nets

Minimal
degradation
on 8-bit Nets

45

Summary of Pruning and Quantization on Models

Dataset Architecture Min. Params (Stability)

Safe Pruning %

8-bit Gap %

DNN 2 x 10% 60 0.15

MNIST CNN 3 % 10% 20 0.74

ViT 5 x 103 20 10.66

DNN 2 x 10% 40 1.42

F-MNIST CNN 3 x 104 20 1.10
ViT 5 % 10° 20 3.22

DNN 2 x 10° 40 7.50

CIFAR-10 CNN 3 x 10° 5 14.80
ViT 6 x 103 10 4.17

46

Multitask Learning
and
Mixture of Experts

Input

Input

3

Shared Block
(1-4 x [Linear + ReLU])

=5
L Q &
S

22

S
Q)
P

Input

¥

Shared Block
(1-4 x [Linear + ReLU])

Input

QuantStub

Shared Block
(14 x [Linear + ReLU])

Expert 1 ;
G(x),
Expert 2 Y
G(x),
Expertn ¥
G(x)y
Gating Network —

(1-4 x [Linear + ReLU])

(1-4 x [Linear + ReLU])

Network(1-4 x [Linear + ReLU]

| Main Task | Auxiliary || Auxiliary . Auxiliary || Auxiliary . Auxiliary || Auxiliary
Task 1 Task 2 Main Task Task 1 Task 2 Main Task Task 1 Task 2
/o&& loss_main™~Joss]al oss_a2
\{)’«9,;9 DeQuantStub
Loss_total Loss_total Loss_total
Original MTL Network Pruning MTL Network Quantization MTL Network
Expert of Original MoE Network Expert of Pruning MoE Network Expert of Quantization MoE

47

MTL and MoE Convergence

MTL

MOE (k=8) MoOE(k=4) MoE(k=2)

MNIST

1.0 . .
)
I H
|
0.8 . 6=10
1 1
1]
—_ 1 |
206 : |
S I 1
v 1 |
o | |
gos : :
L : 1layer-arch
| 2layer-arch
0.2
: 3layer-arch
: —— Jdlayer-arch
1 1
1 2 3 5 10 20 30 50 100 200 500 1000
Number of nodes at layerl of nets
1.0
]
|
0.9 1
1 |
o8 i | 0210°
[y | 1
207 i]
o 1 1
5. | |
gos : :
£ : —— 1llayer-arch
0.5 : 2layer-arch
I 3layer-arch
04 i —— dlayer-arch
1 1
1 2 3 5 10 20 30 50 100 200 500 1000
Number of nodes at layerl of nets
1.00 ;
I
I
0.95, I i
| |
} I
$0.90 i i
) I |
ke I |
v | }
To.85 : :
§ | |
060 0=103 : @=10% — llayer-arch
: : 2layer-arch
1 3layer-arch
0.75 ; —— 4layer-arch
1 1
1 2 3 5 10 20 30 50 100 200 500 1000
Number of nodes at layerl of nets
1.00 1 —
0.98 — i
I |
0.96 : :
$0.94 | |
S | |
50.92 ! i
. I I
% 0.90! | 1
] ! —— 1llayer-arch
0.88 : 2layer-arch
0.86 : 3layer-arch
' —— 4layer-arch
0.84/

1 1
1 2 3 5 10 20 30 50 100 200 500 1000
Number of nodes at layerl of nets

6=10° 6=10* 8=10°

FAasnioN MNIST

o
o

Mean Accuracy
°
a

o
N

llayer-arch
2layer-arch

3layer-arch
0.0 ~=— 4layer-arch
1 2 S 10 20 30 50 100 200 500 1000
First Hidden Layer Node Count
1.0 : g
0.9 !
H 5
0.8 H ! 6=10
= 1
g'o 7 1 :
=0 1 i
v 1 1
o | |
©0.6 1 1
g i i
Fos ! —— 1llayer-arch
0.4 : 2layer-arch
: 1 3layer-arch
|
0.3 : S— ; 4layer-arch
1 2 3 5 10 20 30 50 100 200 500 1000
Number of nodes at layerl of nets
1.00 ; :
]
| |
0.95 H

e

Test acc(avg)
o
< <
w

6=10*

S
@
=]

—_— llayér-arch

2layer-arch
0.75 3layer-arch
—— dlayer-arch
1 L
1 2 3 5 10 20 30 50 100 200 500 1000
Number of nodes at layerl of nets
1.000 i i
] |
0.975 ' !
] 1
|
0.950 |
l // . H
_ | |
20.925 | 1
) |
£ 0.900 i i
- | |
8o.s7s i i
: —— 1llayer-arch
0.850 : 2layer-arch
0.825 : 3layer-arch
| —— 4layer-arch
0.800 - _6=210%_ 1 6=10% L O=4u
2 1 2 3 5 10 20 30 50 100 200 500 1000

Number of nodes at layerl of nets

08

o
o

Mean Accuracy

)
’Y

0.2

Test acc(avg)
o
~

1.0

Test acc(avg)
e e I
~] ©o

o
o

o
[

CIFAR-10

5 10 2 50 100
First Hidden Layer Node Count

6=10° 6=10°

i
]
|
|
|
1
|
|

/
|

|

(]
1
1
|
1
!
|
!
!

1 1
3 5 10 20 30 50 100 200 500 1000

Number of nodes at layerl of nets

6=10°

Number of nodes at layerl of nets

.
1
|
|
|
|
1
|
|
|
|
|

Number of nodes at layerl of nets

1layer-arch
2layer-arch
3layer-arch
-~ 4layer-arch

200 500 1000

6=10°

—— 1llayer-arch

2layer-arch
3layer-arch

—— dlayer-arch

6=10°

—— llayer-arch

2layer-arch
3layer-arch

—— Adlayer-arch
+ 1
3 5 10 20 30 50 100 200 500 1000

6=10°

—— llayer-arch

2layer-arch
3layer-arch

—— 4layer-arch
1
3 5 10 20 30 50 100 200 500 1000

08

e
o

Mean Accuracy
°
S

)
~

0.0

Test acc(avg)
o o
» =

o
N

bt
=)

1 o
ES =)

Test acc(avg)

e
~N

o o oy
) © =)

o
>

Test acc(avg)

0.2

CIFAR-100

llayer-arch
2layer-arch
3layer-arch
~«— 4layer-arch

5 10 20 30 S50 100 200 500 1000
First Hidden Layer Node Count

6=10° 6=10*

—— llayer-arch
2layer-arch
3layer-arch

—— 4layer-arch

1 1
10 20 30 50 100 200 500 1000

2 3 5
Number of nodes at layerl of nets

| |
1 |
| |
I]
|
|
1
|
}
|
|
|
!
|
I

6=10° 6=10*

|
|
|
|
|
]
'

—— llayer-arch
2layer-arch
3layer-arch

—— dlayer-arch

1 1
10 20 30 50 100 200 500 1000

2 3 5
Number of nodes at layerl of nets

0=10°

—— llayer-arch
- 2layer-arch
1 3layer-arch
: —— 4layer-arch
1

1
2 3 5 10 20 30 5&800 200 500 1000
Number of nodes at laye nets

MTL and MoE Pruning

MTL

MoOE(k=8) MoE(k=4) MoE(k=2)

MNIST

FasnioN MNIST

CIFAR-10

CIFAR-100

1.0
0.5 —— 0.7
e e L it i < . ! _ 0.6
g 20.6 i 205
Sos os \ ¢ e &
% A % : g 04
1 0.4 '
EUA' —— 1layer-arch 0.4 i g —— 1llayer-arch i EU-3 —— 1layer-arch
= 2layer-arch —— 1llayer-arch | = 2layer-arch i o2 2layer-arch
0.2/ 3layer-arch 0.2 3layer-arch i 0.2 3layer-arch i 3layer-arch
—— 4layer-arch —— 4layer-arch i —— 4layer-arch i (U p— 4layer-arch
095 01 02 03 04 05 06 07 08 09 10 0.5 01 02 03 04 05 06 07 08 09 10 0.5 01 02 03 04 05 06 07 08 09 10 0.5 51 02 03 04 05 06 07 08 09 L0
Pruning Ratio Pruning Ratio Pruning Ratio Pruning Ratio
1.0! 1.0 1.0
— |
0.8F=—=————————= ===
)] MU S S S S S . 0.8F-———-————m——mmm =5 ¥ 0.8F-—————mmmm e b e B !
= = h — ; G |
g : o i o ! =06 |
Los i Bo.6 H m0.6 : 8 |
bl '] H 9 ; s |
© i © li o H T4 '
*8'0‘4‘ —— llayer-arch i ‘.;"30-4 —— 1llayer-arch 3: ‘,;,’0'4 —— llayer-arch E E’ —— 1llayer-arch
= 2layer-arch | e 2layer-arch H [2layer-arch : = 2layer-arch
0.2/ 3layer-arch | 0.2 3layer-arch H 0.2 3layer-arch ; 0.2 3layer-arch
—— dlayer-arch i —— 4layer-arch H —— 4layer-arch i —— dlayer-arch
085 o1 02 03 o4 05 06 07 08 08 10 095 01 02 03 o4 05 06 07 08 08 10 005 01 02 03 o4 05 026_0'.5' 08 08 10 085 01 02 03 04 05 06 07 08 09 10
Pruning Ratio Pruning Ratio Pruning Ratio Pruning Ratio
1.0! 1.0 1.0
0.8~
T -] SO AUV PR I IREPRS SRS SORDR SR . L L 2 e ?---\(
o =) = =
> g‘ g, >0.6
206 m06 806)
8 [} v} [v]
g 5 5 804
‘@'0-4‘ —— 1llayer-arch 50.4 —— 1llayer-arch 0.4 . 1jayerarch ‘8’ ' llayer-arch
= 2layer-arch = 2layer-arch & 2layer-arch = 2layer-arch
0.2 3layer-arch 0.2 3layer-arch 0.2 3layer-arch 0.2 3layer-arch
—— 4layer-arch —— 4layer-arch —— 4layer-arch —— 4layer-arch
096 61 02 03 04 05 06 07 08 08 10 0.6 61 02 03 04 05 06 07 08 08 10 095 61 02 03 04 05 06 07 08 03 10 0.9%5 61 02 03 04 05 06 07 08 08 L0
Pruning Ratio Pruning Ratio Pruning Ratio Pruning Ratio
1.0 1.0 1.0
08
I F e e B e e e At L8 e e 1O R . ;
o ! = y ° H o L
> ' > !
20.6 : Eo.ﬁ ; ©0.6 H 20'6 b
[] i o 1] [v] [1
g AN \ |3 i 3 |
a] 0.4 .
$U‘4' —— 1llayer-arch : 50-4 —— 1layer-arch : £ 04 . Jjayer-arch H g —— 1layer-arch [
= 2layer-arch ' = 2layer-arch i ¢ 2layer-arch H = 2layer-arch i
0.2/ 3layer-arch ' 0.2 3layer-arch : 0.2 3layer-arch H 02 3layer-arch P
—— 4layer-arch E —— 4layer-arch i f —— 4layer-arch i: —— 4layer-arch : i
0.5 o1 02 03 04 05 06 07 08 09 10 0.0%5 01 02 03 04 05 06 07 08 08 10 0.Q%5 01 02 03 04 05 06 07 08 08 10 005 01 02 03 04 05 0497 08 09 10

Pruning Ratio

Pruning Ratio

Pruning Ratio

Pruning Ratio

MNIST

FasuioNn MNIST CIFAR-10 CIFAR-100

s 1.0 I 1 1 0.9 1layer-arch s | 0.8) —— liyerarch 8=10" | ?
! : ! - 0.8 2layer-arch 8=10° 5 0.7 2layer-arch :
0.8 I a=10° 0.8 i 8=10° o 3layer-arch : 3layer-arch I
J - I I - =Y T —— alayer-arch —~0.6/ —— alayer-arch 1
E‘ : : g‘ : 2‘0.5 —— Unguantized (Solid) E‘ —— Unguantized (Solid) 1
© m— L6 i i Bos i 8P| . Quantized (Dashed) i 13,05 —— Quantized (Dashed)
= = : : 3 : : S0 :
o llayer-arch @ —— llayer-arch ot
@ | 2layer-arch H ! 21 h ! %03 !
0.4 I ayer-arc 004 i layer-arc 1 0 |
= I 3layer-arch = I 3layer-arch 1 = 0.2 I
' —— d4layer-arch ! —— dlayer-arch ' H ’
I I I 1
N 0.2 1 —— Unquantized (Solid) 0.2 | —— Unquantized (Solid) 1 I 0.1
: --=== Quantized (Dashed) : ----- Quantized (Dashed) 01 : : | 0.0 ! !
1 L N .
© == 1 2 3 5 10 20 30 50 1002005001000 1 2 3 5 10 20 30 50 100 200 5001000 1 2 3 5 10 20 30 50 100 200 5001000 1 2 3 5 10 20 30 50 100 2005001000
H Number of nodes at layerl of nets Number of nodes at layerl of nets Number of nodes at layerl of nets Number of nodes at layerl of nets
- ™~ 1.0 ; - H 1.0 . 1lan i i
-~ — yer-arch
s N : e 0.8 2layer-arch 6=10* : =10°
I 8=10* I g=10° 0. ! - 8=10° 3layer-arch
| | ﬁ0.8 I 1 . 8 1 —_ —— 4layer-arch 1
g.' : : g‘ : 8‘0-5 —— Unquantized (Solid)
=2 B8 1 1 By I) ----- Quantized (Dashed)
G 0.6 T
R ;2 I 1 5] ; I g
B : —— 1llayer-arch o i : —— 1llayer-arch —— 1llayer-arch 2 0.4
m 50.4 / 1 2layer-arch ﬁ 0.4 4 | 2layer-arch | 2layer-arch g
L I 3layer-arch = / I 3layer-arch I «— 3layer-arch i R
O i : —— dlayer-arch I' : —— dlayer-arch : —=— dlayer-arch 0.2
0.21 ¢ f‘] 1 —— Unguantized (Solid) 0.2 . I I —— Unquantized (Solid) - | —— Unquantized (Solid) S
/ i ----- Quantized (Dashed) \'-_f i ----- Quantized (Dashed) 0.2| =+ T Quantized (Dashed) 0.0 |
1 2 3 5 10 20 30 50 100 200 5001000 1 2 3 5 10 20 30 50 100 200 5001000 1 2 3 5 10 20 30 50 100 200 5001000 1 2 3 5 10 20 30 50 100 200 5001000
Number of nodes at layerl of nets Number of nodes at layerl of nets Number of nodes at layerl of nets Number of nodes at layerl of nets
LI_I o : : P — S : —
ﬂ" T ! 1 0.9 : 0.8 2layer-arch 6=10*
|] - |] 5 1 ~— 3layer-arch
O ” 08 : =10" , 8=10° _ 08 ¢ O=F i | =10 o8 : _ 1 ararart
2 : ! o ’ : ! 0.7 : 20.6/ — Unauantized (Solid)
~Z = I 1 C / I | B 8 |- Quantized (Dashed)
506 i i To6 , | 1 506 3 |
~ oo o ¥ []
S : —— llayer-arch © | : —— 1llayer-arch Bos i —— llayer-arch E 0.4 !
| I | i /] 2layer-arch 'ﬁ i] 2layer-arch 2 | 2layer-arch]
0.4 ¥ 1 - 3layer-arch @04 / | - 3layer-arch ~0.4 g | - 3layer-arch =
O i : —— dlayer-arch : —— dlayer-arch 1 : —— Alayer-arch 0.2
/ | —— Unquantized (Solid) 5 ." 1 —— Unquantized (Solid) 03 | —— Unquantized (Solid)
2 0.2 | b Quantized (Dashed) 0. i I e Quantized (Dashed) 0.2 / I -=-=- Quantized (Dashed) 0.0l =
| 1 | 1 | 1 N | |
1 2 3 5 10 20 30 50 100 200 5001000 1 2 3 5 10 20 30 50 100 200 5001000 1 2 3 5 10 20 30 50 100 200 5001000 3 5 10 20 30 50 100 200 5001000
Number of nodes at layerl of nets Number of nodes at layerl of nets Number of nodes at layerl of nets
I ~ 1.0 = = ; l W71 71 I T — —— llayer-arch —— llayerarch }
w 0.9 /’; 1 H 0.9 H 0.9 2layer-arch 0.8 2layer-arch 8=10% 1
{ y |] o |] 3layer-arch 3layer-arch
” ~o08f | 8107 6z10* | 8=10°| g £x10° | e=10t 4 @=10° —— 4layer-arch _ —— 4layer-arch
E‘O ? [—’r ll : g‘ ; : : 2‘9-3 —— Unquantized (Solid) " 48 8t E‘UIS —— Unguantized (Solid)
4& .8. ' / I 1 807 1 I | _3. ----- Quantized (Dashed) . ‘E’ ----- Quantized (Dashed)
~— 206 ' ! o / ! ! o S . :
o | ’,/’ : —— 1llayer-arch 206 | / ! —— 1llayer-arch s 0.7 S04 ! i
| I | 9051 |/ I 2layer-arch Mosl 4 | 2layer-arch 2 o <
= 0.4 _/ | 3layer-arch o] N | 3layer-arch F o6 = I
O . Y : —— dlayer-arch 0.4{ I."r : —— dlayer-arch 0.2 :
0.3 / 1 —— Unquantized (Solid) ; | —— Unquantized (Solid) ’ 1
2 R I ~--- Quantized {Dashed) 03] 7 T — Quantized (Dashed) 05 ; !
. 1 1 | 1 | 1 | =N |
1 2 3 5 10 20 30 50 100 200 5001000 1 2 3 5 10 20 30 50 100 2005001000 1 2 3 5 10 20 30 50 100 2005001000 1 2 3 5 10 20 30080 100 200 5001000

Number of nodes at layerl of nets Number of nodes at layerl of nets Number of nodes at layerl of nets Number of nodes at layerl of nets

Knowledge Distillation and Model Robusthess

Zhenyu, Ojha et al (2024), ICONIP

LARGE
Teacher
Network 0.1 -
Output
— 01 j08] | » = Soft Label
08 Knowledge
Distillation
' ... bird ... panda
Natural Images
0.1 . 0.7 Bird Panda.... Panda
M [0.1 Io.s]
SMALL —
Student [os] True Label
Network 51

Compression Using “Parameter Score” -> “ “Importance Score”

Test Accuracy
e e o o e
= N w = u

e
o

ResNet18 model on
ImageNet before filtering
~45 MB

ResNet18 modelon
ImageNet after filtering

ResNet-18 MNIST (h;), layer convl

Epochs
Epoch 10 Epoch 50 e Epoch 80
Epoch 20 o Epoch 60 e Epoch90
Epoch 30 e Epoch 70 e Epoch 100
Epoch 40

1.0

09 08 06 05 04 02 01 0.0
Frac. of Parameters Retained

Pravin, Ojha et al (2024), AlJ

' Singla processing funnels (filters)

fit®

0.74
0.72
0.70
0.68
0.66
0.64
0.62
0.60
0.58

Model layers
and parameters

Modellayers l
and parameters

ResNet-18 MNIST (h;), layer layer2.1.convl

Epoch 10 Epoch 50 e Epoch 80
Epoch 20 e Epoch 60 e Epoch90
Epoch 30 e Epoch70 e Epoch 100
Epoch 40

1.0 09 08 06 05 04 02 01 0.0
Frac. of Parameters Retained

0.7

0.6

0.5

0.4

0.3

0.2

0.1

ResNet-18 MNIST (h3), layer fc

Epochs
Epoch 10 Epoch 50 e Epoch 80
Epoch 20 e Epoch 60 e Epoch90
Epoch 30 e Epoch70 e Epoch 100
Epoch 40

10 09 08 06 05 04 02 01 0.0
Frac. of Parameters Retained

52

Optimization Techniques for Edge Deployment

Beyond quantization, pruning, and distillation, several other methods can enhance the deployment of large models on edge and loT devices:

@

Neural Architecture Search U Hardware-Aware Training L Sparsity-Inducing

(NAS) (HAT) Regularization

Automates the design of efficient Incorporates hardware characteristics Encourages models to develop sparse
neural networks tailored for specific during training to optimize models for weight matrices during training,
hardware constraints. particular devices. leading to smaller and faster models.
Winograd Transformations 0|]|] Fast Fourier Transforms (FFTs)

Optimizes convolutional operations to reduce the number of Efficiently performs convolutions in the frequency domain,

multiplications, improving inference speed. particularly useful for large kernel sizes.

Part 4
Search for Efficient Al
Models

Neural Architecture Search (NAS)

Catering the need of specialized problem and hardware

_

< Complex, but

"&b
I accurate models 50 - . N
45 ® ®
-, R .
g 40 - ® ° ™
. ® .
-
.E 35 - ° L ° ®
= Q
= = o ®
" o i
) o 30 o0
bt ®
2571 4% e °
e o ° °
204 G000’ o R
Simple. but Py P
e . 15 - d s, .
. ... inaccurate models .- T, 0°00.%0, 1o
z . ° e o e
Q - 104 T, ® oeseeee e iris
Q

Low Err Hicl = 0.0 0.1 0.2 0.3 0.4
ow — rror - " 1gh error rate

55

Ojha et al (2020), CEC

Neural Networks

NN Component3: “'{‘if.ﬂP active node
* Inputs "
* Weights

 Architecture
e Activation functions
* Learning algorithms

input layer hidden layer output layer

56

What Could be optimized?

Architecture
Optimization

57

Plausible Biological Inspiration

Travis et al. (2005) Jones and Kording (2021) Ojha and Nicosia (2022)

Ojha et al (2022), Neural Networks

58

Neural Tree

Neural Networks Architecture Search

weight — , active node
A
1 > o1(.)
@1(-) Y
L] > 7:_’|I } ’
: ’ : 2a(-) ‘
input node~, LA Yq
(..-"
a
-ILP . T:Jl!["}
input layer hidden layer output layer

e 5, iy 5 :
J = p(wiv? +wivd+b,,)

root node

59

Neural Computation

ul D 6 7

((45) —=2) ((67)—=3)] —1
forward pass: post-order

Ojha et al (2022), Neural Networks

Types of Neural Tree

Regression Tree

7§ = o(wi*vi+w

root node

Up
2

Vs +by,)

Ojha et al (2022), Neural Networks

61

Types of Neural Tree

Classification Tree)
Y= a’rgma}{{cla Ca, 63}

root node

output
wy’ =1 vy’ =1 " class
C1 w3 = . Co.:
wWe°
by, @ @ _;..bm @ neural node
U1 0 ?}— bl&S I
w 'i]]
1 Wy w? w? ,wéq
T by, @ iy Is Io| LT3 @ va
vs - w2 input node Vs Vs vs
Wy” ~wy 3 Wy AWy W3
L3 L1 T3 9 T3 T4

Ojha et al (2020), CEC 62

Neural Architecture Search

Trade-offs

A
3 I
- Complex, but
T accurate models
%
S
i Simple, but
N\ ... inaccurate models .-
— >
Low <e—ro Error — High

Ojha et al (2017), Applied Soft Computing

Neural Architecture Search

Trade-offs

Multiobjective
Genetic Programming
Crossover

Ojha et al (2017), IEEE Trans. Fuzzy Systems

Subtree of a

ABOBLOODEBabE T-
I 3
; Nel: NS
. : il > _N'E
| - l M T2 j‘:-]
ol 4"" 3 - jt—l i'|,|"'._r; -
I3
> Ng Ve
T4 - -2
Parent tree: a Child tree: ¢
I
€Iy
Iy
T3 Iy
: 4.&-‘3 ;
;ﬂ:l > b Ta
I3 .
Subtree of b Child tree: d

Parent tree: b

64

Neural Architecture Search

Trade-offs

Multiobjective
Genetic Programming

Mutation
Ojha et al (2017), IEEE Trans. Fuzzy Systems

|
Ea
L2
Ty A
Iy
Ng
Iy

Parent tree

>’H | B
. : N lri > 4""*"11
e ssessssemens y dg

.'ITQ:
Ly
L Ty

Ng

All leaves mutation

Jﬁréi _'“‘lr-il
Iy L4

A subtree insertion A subtree deletion

A subtree
replacement

65

Architecture Search Trade-offs

Multiobjective Genetic Programming

Selection of trees using Hypervolume indicator from a Pareto Front

un
o
i

. *
45 -]]
» .
40 ’ . B
]
- »
35 - . » o ®
]
N ® ®
; 30 A a8
@ o
“ 251 o%e ™ ™
L .. . L] »
20 o’a® o o
wa ™
15
PR O N
e ® © 000 s @ . .
10 4 T ” aEgeEe [] Iris
0.0 0.1 0.2 0.3 0.4

error rate

Ojha and Nicosia (2020), CEC

Xo O—_ Co
Ro— O N G
X3

Xp O—
X3 O— G Xp Cs
13 D_d_ﬂ_ﬂ_ T xa §>.
X2 O ! T:

Xg
xﬂ O__———-_____ xa
x3o— & X3 G

66

Learnability of Classes

Competition between classes: TPR/Recall/Sensitivity vs FPR/(1 - Specificity)

Ojha and Nicosia (2020), CEC

0.30-

0.25-

b
MJ
o

error rate
=
=
i

0.10-

0.05-

L

& Setosas Versicoloum Virginica

sensitivity (train)
o =
wn o

o
o

0.0 02 04 06 0.8 1.0
1 - specificity (train)
E LOP
>
= 0.5
:'U_-_;
c
Q0.0+ s . . ; ;
0.0 0.2 0.4 0.6 0.8 1.0
1 - specificity (test)
0 20 40 60 80 100
training generations
67

Heterogeneous Neural Tree

Multiobjective Genetic Programming
Activation Function Search

Root node
e S-Sigmoid

e G-Gaussian

e T-Tanh

Function nodes

e F—-Fermi

Leaf nodes

Ojha et al (2017), Applied Soft Computing 68

Activation Function Performance

Higher values are better

Unipolar Sigmoid 21
Bipolar Sigmoid 23
Linear Tangent hyperbolic 27
Linear Fermi 31
Fermi Function 53

Tangent hyperbolic I — 67
Gaussian Function I 67

0 10 20 30 40 50 60 70 80

. . , Activation function score
Ojha et al (2017), Applied Soft Computing 69

Neural Modelling
Sparse Neural Tree

Input Processing
(forward pass)

Gradient propagation
(backwards pass) Information
processing

channel.

Fig A. Forward pass and gradient backpropagation

Ojha and Nicosia (2022), Neural Networks

70

Backpropagation Neural Tree

y = hy

neural
node

Iy

Aw

wi, j

0ij, <

I3

input

node To Ts

Ojha and Nicosia (2022), Neural Networks

forward phase: depth-first search (post-order)

backward phase: depth-first search (pre-order)

<t

2

6

[((4 5)

forward pass: post-order

— 2)

((6 7)—3)] — 1

b,

b,

(2 -[Jr.h];u

71

Backpropagation Neural Tree

Regression results

Vs

a) baseball (.85, 48)) dee (.89, 89) (c) diabetese (.63, 67) (d) friedman (.95, 116)

(e) mpg6 (.9, 82)

Algorithm Bas Dee Dia Frd Mpg Avg Acc

BNeuralT 0.665 0.837 0.492 0.776 0.867 0.727
MLP 0.721 0.829 0.49 0.943 0.874 0.772

Weights

Ojha and Nicosia (2022), Neural Networks

72

Backpropagation Neural Tree

Regression results

* BNeurall used only 14.6% of MLP

* Accuracy differs only 5.8% lower than the
best MLP result

Ojha and Nicosia (2022), Neural Networks

Neural Tree vs Neural Networks

Regression Problems

data: miles per gallon
3501 avg tree size; 61.43
200 | -4 RMSprop
i -4~ Momentum-gd
- 250 1 1 -#- NAG
Em 200 "i -#- Adagrad
g [-§- GD
= 150 '."‘ -4- Adam
]
100 -
W
[
50 4 -
0

0.0 0.5 L0 15 2.0 25
logglepochs) [epoch 0.0 = 1, epoch 2.7 = 500]

(g) BNeuralT: Sigmod, n = 0.1

0.4 data: miles per gallon
1% RMSprop
0.34 14~ Momentum-gd J_] el -
-@- NAG
Tg.2- +#- Adagrad
® | +¥-cD
jﬂ,l' —:— Adam B Al s L
0.0 '==:.-.::::::;-------——-_-‘--I-ﬂ'-l- WA
0.0 0.5 1.0 1.5

logglepochs) [epoch 0.0 = 1, epoch 2.F = 500]

(j) MLP: Sigmod, n = 0.1

400 data: miles per gallan
157 4 awyg tree size: 56.9
+4-_ RMSprop
001 - Momentom-gd
= 250 18 MNAG N
% -4% ‘Adagrad ™
#2001 5 ap
= 1504 -4 Adam
(] LY
100 1 VN
L S
s0d 00 TTmeall = _-_-.:‘ =
|
0.0 0.5 10 15 n 25

logglepochs) [epoch 0.0 = 1, epoch 2.7 = 500]

h) BNeuralT: Sigmod, n = default
g n

| data: miles per gallon
0.05 =4 RMSprop
J4="Momentum-gd

0.041 1# nNaG I
3 2§~ ‘mdagrad "I'I-{.{H
#0.03{ % cb
5 -4=: Adam

0.021 % N\ 1,

B, 1
U.Gl q %khh_\i:m-

00 05 1.0 15 20 25
logyp{epochs) [epech 0.0 = 1, epoch 2.7 = 500]

(k) MLP: Sigmod, n = default

500 4 data: miles per gallon
avg tree size: 55.87
saa4 7% RMSprop
%~ Momenturm-gd
= F01 ~# MNAG
= -42 Adagrad
£ w04 -¥-% GD
- -4= whdam
100 4 (]
W
[sl ———
e
a4
—104 1 T T T T ' T
0.0 0.5 1.0 15 2.0 2.5
logyplepochs) [epoch 0.0= 1, epoch 2.7 = 500]
(i) BNeuralT: ReLU, n = 0.1
data: miles per gallon
| % RMSprop
0.3 14~ Momentum-gd
— 8- -NAG
Eﬂ.?' +#- Adagrad
¥ 1¥- GD
< .1A -$- Adam
0.0 *152:;;;:::::;; e

0

0 05 10 15 20 25
logyglepochs) [apoch 0.0 = 1, epoch 2.7 = 500]

(1) MLP: ReLU, 7 = 0.1

74

Backpropagation
Neural Tree

Classification results.

Data BNeuralT MLP
Aus 0.895 0.876

Hrt 0.897 0.833

lon 0.952 0.882
Pma 0.822 0.774
Wis 0.986 0.984

Irs 0.992 0.972

Win 0.991 0.991

Vhl 0.75 0.826

Gls 0.732 0.635
Avg. Accuracy 0.891 0.863
Avg. Weights 261 1969

Ojha et al (2022), Neural Networks

Novel type of Neural Modelling
Sparse Neural Tree

* Neural Tree used only 13.25% parameters
of standard MLP

 Accuracyis 2.65% better than the best
MLP result

Ojha et al (2022), Neural Networks

Neural Tree vs Neural Networks

Classification Problems

. 0.0 4 data: glass
- o avg tree size: 212,23
L I Y T B T | 0] -*1— RMSprop
= % — YRR - 1 Momentum-gd il
% o “data: glass 552 - data: glass -‘% a7 =% MAG | LT MH '
® o6 dwg tree size: 259.37 & avg tree size:. 244,33 E -ft- L Adagrad ||ﬂ|||| |
é - -4 RAMSprop é 05| ~# RMSprop . é 0s{ 1~ 'GD . Je
e 4~ Momentum-gd | % i~ Momentum-gd -] -4= Adam o i li[| |
S A : 4] me T R il
-4- Adagrad “1 -#- Adagrad ik A, 'H".“ '
0.3 i - e 0.4 1 1 §¢1 I th
i o [I o “11 |
azd ~T Adam =+= Adam .
0.0 05 10 15 20 25 0.0 05 10 15 2.0 25 0.0 0s 10 15 20 25
logyglepochs) [epoch 0.0 = 1, epoch 2.7 = 500] logyglepochs) [epoch 0.0= 1, epoch 2.7 = 500] logyplepochs) [epoch 0.0= 1, epoch 2.7 = 500]

(a) BNeuralT: Sigmod, n = 0.1 (b) BNeuralT: Sigmod, 1 = de fault (¢) BNeuralT: ReLU, = 0.1

ort £ 0] |
*. 06 $:- . $
3 S . i ., S Sy ™ o s cn [
069 [5 S 5 07 tz::'-:‘i':.--_ . 1 1 11 = pter-A SO i 11
¥ datarglass.. el & data-glass -~ "{‘ i i i '["; 2 data: glass e l :
1051 % RMSprop e 7 0.61 -+ RMSprop N ta T0.44 -+ RMsprop . ! i .
E i~ Momentum-gd ::-:::jﬁ:.{\"‘ b g i Momenturri-gd__ =] T] i~ Momentum-gd iy ;-
J0.44 % NG IR T e e < 05{ % NAG “'-If"‘:\.,v. ol < -# NAG R
-4- Adagrad ! 'u,_t“«-T 2 ‘.;*{- -#- Adagrad ‘*-'-;:?‘,-) -"'_“1"._ 0.2 1 -4~ Adagrad B ‘r.{.ihb"ﬁ*' —
0.3 -§- GD i “|"’ j‘% -#- GD [, = 1\&) -4- GO S =
. '*‘ Adam r"-“ 0.4 _‘:‘_ Adam i %,] -‘:“ Adam
0.00 0.25 050 0.75 1.00 1.25 1.50 1.75 0.0 0.5 1.0 15 2.0 00 05 10 15 20 25
logyplepochs) [epoch 0.0 = 1, epoch 2.7 = 500] logyglepochs) [epoch 0.0 = 1, epoch 2.7 = 500] logiglepochs) [epoch 0.0 = 1, epoch 2.7 = 500]

(d) MLP: Sigmod, n = 0.1 (e) MLP: Sigmod, n = default (f) MLP: ReLU, = 0.1

Architectural Stochasticity

avg £acc(g)]

0.9-

wisconsin

0 100

200

tree size, ||

Ojha et al (2022), Neural Networks

0.4-

miles per gallon

100 200 300
tree size, |g]

78

Deep Neural Networks

X1
A
|} //7.— —
5 —
\
10 \\\
28 AN
15
il
r
v
0 5 10 15 20 5
I
< 28 - :
i Hidden
layer 1
Gary scale image of size
[28 x 28] X784
input layer

Hidden
layer 2

Hidden
layer M

/

?P9

Output
layer

79

Backpropagation Neural Tree

DALY M . PR P4
i »

MNIST Model Accuracy ~95%

Algorithms Error(%)
£ BNeuralT-10K (pixels) 7.74
= BNeuralT-18K (pixels) 6.58 —
Z BNeuralT-20K (pixels) 6.08 :
g BNeural T-200KT (pixels) 5.19 .
» GUIDE (pixels, oblique split) 26.21 :
€ OC1 (pixels, oblique split) 25.66
= GUIDE (pixels) 21.48
S CART-R (pixels) 11.97 :
= CART-P (pixels) 11.95
£ 5.0 (pixels) 11.69
£ TAO (pixels) 11.48
~ TAO (pixels, oblique split) 5.26

Ojha and Nicosia (2022), Neural Networks

Model Size vs Accuracy

Algorithms Error(%)
£ BNeuralT-10K (pixels) 7.74
= BNeuralT-18K (pixels) 6.58
Z BNeuralT-20K (pixels) 6.08
% BNeural T-200KT (pixels) 5.19
» GUIDE (pixels, oblique split) 26.21
S OC1 (pixels, oblique split) 25.66
= GUIDE (pixels) 21.48
2 CART-R (pixels) 11.97
% CART-P (pixels) 11.95
£ 5.0 (pixels) 11.69
£ TAO (pixels) 11.48
~ TAO (pixels, oblique split) 5.26

Ojha and Nicosia (2022), Neural Networks

0.95 -

0.90 -

0.85 -

0.80-

0.75 -

0.70 -

MNIST
(]¢|x1000)

4

5 7 8 11 18 20 200
tree size, |C|

81

Learnability of Different Classes

Competition between classes: TPR/Recall/Sensitivity vs FPR/(1 - Specificity)

0.25 1

0.20 1

EError(g)

0.10 1

0.05 1

—&— train (5.31%) c# are classes eg cl

~®- test (6.08%) > —
BNeuralT 20K w g 1.0 - . ROC: train
RMSprop training @
@© cd
® 0.9 :
=
= 1.0 - ROC: test
=
% C.
w094 S
0.00 0.01 0.02
1 - specificity

epochs = 50: n=0.1
epochs = 50: n=0.01

Ojha et al (2022), Neural Networks

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
log,o(epochs) [epoch 0.0= 1, epoch 1.9 = 70]

82

Part5
Clever tricks to Make

Al Models Resource
Efficient

Early Exit Neural Nets

(E, M, and H represent samples with easy, medium, and hard complexity data inputs)

Output
M i
I E,MH

(a) Conventional DNN (b) Early-exit DNN

84

Early Exit Neural Nets

e Class0
e C(Class1

Source: https://intellabs.github.io/distiller/algo_earlyexit.html

Image
CNN Layers
Y
EEBlock-0
Y
CNN Layers : ;
0 0
L
EEBlock-1
Y
CNN L + +
ayers A
: hy ¥
' Y
v
CNN Layers EEfIOCI:N
¢ hN—l j}N—l
Exit Block
In

85

Model Splitting

e Model splitting is a deployment technique used to divide a neural network into two or more parts, which are then executed on different devices or platforms.

e This is particularly useful when a model is too large or computationally intensive to run on a single edge or loT device.

e Thereare several strategies for model splitting:

° Layer-wise splitting, where different layers of the network are executed on
Cut layer

Smashed data !

o o

different devices

e Feature-wise splitting, where the model is split based on feature maps

1
i .
| . : -
q}“" . : A, q>J‘"
e Thechoice of splitting strategy depends on the specific architecture of the L \ . @ =
+ 1 —
model and the capabilities of the devices involved. g_ . . X . g_
c . ! P
e Challenges associated with model splitting include: - ! . \ 8
. I .
. Minimizing communication overhead between devices WC q .: . WS
e Ensuring thatthe split model maintains acceptable accuracy and latency \CIient-side model portion | Server-side model portion
V
Full model (W)

e Techniques such as knowledge distillation and quantization can be used to

mitigate these challenges.

References

¢ Backpropagation Neural Tree
Neural Networks, Elsevier. (2022)
Ojha V, Nicosia G

Fragility, Robustness and Antifragility in Deep Learning
Artificial Intelligence, Elsevier. (2024)
Pravin C, Martino |, Nicosia G, Ojha V

Dynamic Label Adversarial Training for DeeP Learning Robustness A%ainst Adversarial Attacks
31st International Conference on Neural Information Processing (ICONIP). (2024)
Liu Z, Duan H, Liang H, LongY, Snasel V, Nicosia G, Ranjan Rand OjhaV
On Learnable Parameters of Optimal and Suboptimal Deep Learnin% Models
31stInternational Conference on Neural Information Processing (ICONIP). (2024)
ZhengZ, Liang H, Snasel V, Latora V, Pardalos P, Nicosia G, and OjhaV
¢ Sensitivit;(analysis for deep learning: Ranking hyper-parameter influence
33rd IEEE Int. Conf. on Tools with Artificial Intelligence, ICTAI. IEEE (2021)

Taylor R, Martino |, Nicosia G, OjhaV

¢ Multi-objectiv timization of multi-output neural tr
IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK (pp 1-8). IEEE. (2020)
Ojha 'V, Nicosia G

® Multiobjective programming for type-2 hierarchical fuzzy trees (Code)
IEEE Transaction on Fuzzy Systems, 26(2), 915-936. (2018)
Ojha VK, Snasel V, Abraham A

Metaheuristic design of feedforward neural networks: a review of two decades of research
EnﬁineeringApplications in Artificial Intelligence, 60, 97-116. Elsevier (2017)
Ojha VK, Snasel V, Abraham A

Ensemble of heterogen flexible neural tr ing multiobjectiv netic programmin
Aplf])lied Soft Computing, 52, 909-924. Elsevier (2017)
Ojha VK, Abraham A, Snasel V

https://arxiv.org/abs/2202.02248
https://arxiv.org/abs/2202.02248
http://arxiv.org/abs/2312.09821
http://arxiv.org/abs/2312.09821
https://www.arxiv.org/abs/2408.13102
https://www.arxiv.org/abs/2408.13102
https://arxiv.org/abs/2408.11720
https://arxiv.org/abs/2408.11720
https://centaur.reading.ac.uk/100199/
https://centaur.reading.ac.uk/100199/
https://centaur.reading.ac.uk/100199/
https://centaur.reading.ac.uk/100199/
https://centaur.reading.ac.uk/90076/
https://centaur.reading.ac.uk/90076/
https://centaur.reading.ac.uk/90076/
https://centaur.reading.ac.uk/90076/
https://centaur.reading.ac.uk/90076/
https://centaur.reading.ac.uk/90076/
https://arxiv.org/abs/1705.05769
https://arxiv.org/abs/1705.05769
https://arxiv.org/abs/1705.05769
https://arxiv.org/abs/1705.05769
https://github.com/vojha-code/Hierarchical-Fuzzy-Tree
https://arxiv.org/abs/1705.05584
https://arxiv.org/abs/1705.05584
https://arxiv.org/abs/1705.05592
https://arxiv.org/abs/1705.05592

Resource Efficient Artificial Intelligence

Varun Ojha

Senior Lecturer in Artificial Intelligence

Al Theme Lead National Edge Al Hub
School of Computing, Newcastle University
varun.ojha@newcastle.ac.uk
https://ojhavk.github.io/

B> Newcastle <% National

' y 2.« Edge Al
University ‘@ 569

	Slide 1: Resource Efficient Artificial Intelligence
	Slide 2: Resource Efficient Artificial Intelligence Agenda
	Slide 3: Part 1 Why Resource Efficient AI
	Slide 4: AI Arms Race
	Slide 5: Advanced AI Models
	Slide 6: Massive AI Models
	Slide 7: AI Model Training Energy Consumption
	Slide 8: AI Model Inference Energy Consumption
	Slide 9
	Slide 10: Data Centres
	Slide 11: Potential solutions to energy problem: Cloud AI → Edge AI
	Slide 12: Edge AI
	Slide 13: Everyone is a walking AI computer
	Slide 14: The Emergence of Edge AI: a game changer for industries (Gartner 2023)
	Slide 15: The Rise of Generative AI at the Edge image source: Arrow Intelligent Solutions
	Slide 16: Small Language Models Could Redefine The AI Race, Forbes
	Slide 17
	Slide 18: Part 2 Understanding AI Model Performance
	Slide 19
	Slide 20
	Slide 21: Trained Network Exabits Gaussian distribution
	Slide 22: Performance Characterization of Models
	Slide 23: Deep Neural Networks
	Slide 24: DNN’s Learnable Parameters
	Slide 25: DNN’s Learnable Parameters Distribution
	Slide 26: Convolutional Neural Nets
	Slide 27: CNN’s Learnable Parameters
	Slide 28: CNN’s Learnable Parameters Distribution
	Slide 29: Vision Transformer Models
	Slide 30: ViT’s Learnable Parameters
	Slide 31: ViT’s Learnable Parameters Distribution
	Slide 32: Part 3 AI Model Compression Methods and Results
	Slide 33
	Slide 34
	Slide 35: Pruning and Quantization Aware Neural Network Training
	Slide 36: Pruning
	Slide 37: Pruning
	Slide 38: Quantization
	Slide 39: Binarized Neural Networks
	Slide 40: Architectural Invariance
	Slide 41: DNN Architecture
	Slide 42: CNN Architecture
	Slide 43: ViT Architecture
	Slide 44: Maximal Pruning for Minimal Network test results on MNIST similar results of CIFAR 100 and other 8 datasets
	Slide 45: Maximal Quntizatian for Minimal Network test results on MNIST similar results of CIFAR 100 and other 8 datasets
	Slide 46: Summary of Pruning and Quantization on Models
	Slide 47: Multitask Learning and Mixture of Experts
	Slide 48: MTL and MoE Convergence
	Slide 49: MTL and MoE Pruning
	Slide 50: MTL and MoE Quantization
	Slide 51: Knowledge Distillation and Model Robustness
	Slide 52: Compression Using “Parameter Score” -> “ “Importance Score”
	Slide 53
	Slide 54: Part 4 Search for Efficient AI Models
	Slide 55: Neural Architecture Search (NAS) Catering the need of specialized problem and hardware
	Slide 56: Neural Networks
	Slide 57: What Could be optimized?
	Slide 58: Plausible Biological Inspiration
	Slide 59: Neural Tree
	Slide 60: Neural Computation
	Slide 61: Types of Neural Tree
	Slide 62: Types of Neural Tree
	Slide 63: Neural Architecture Search
	Slide 64: Multiobjective Genetic Programming Crossover
	Slide 65: Multiobjective Genetic Programming Mutation
	Slide 66
	Slide 67
	Slide 68: Heterogeneous Neural Tree
	Slide 69: Activation Function Performance
	Slide 70: Neural Modelling Sparse Neural Tree
	Slide 71: Backpropagation Neural Tree
	Slide 72: Backpropagation Neural Tree
	Slide 73: Backpropagation Neural Tree
	Slide 74: Neural Tree vs Neural Networks
	Slide 75: Backpropagation Neural Tree
	Slide 76: Novel type of Neural Modelling Sparse Neural Tree
	Slide 77: Neural Tree vs Neural Networks
	Slide 78: Architectural Stochasticity
	Slide 79: Deep Neural Networks
	Slide 80: MNIST Model Accuracy ~95%
	Slide 81: Model Size vs Accuracy
	Slide 82: Learnability of Different Classes
	Slide 83: Part 5 Clever tricks to Make AI Models Resource Efficient
	Slide 84: Early Exit Neural Nets
	Slide 85: Early Exit Neural Nets
	Slide 86
	Slide 87: References
	Slide 89

