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Resource Efficient Artificial Intelligence
Agenda

® Why Resource Efficient Al
® Understanding Al Model Performance
® Al Model Compression Methods and Results

® Search for Efficient Al Models

® Tricks to make Al models resource efficient



Part 1

Why Resource
Efficient Al




Al Arms Race DeepSeek-R1 Upsets Al Market
With Low Prices

= < Usnkist Estimated price for processing one million input/output
tokens on different Al models
‘ <— CNrank2nd $15
Input
$12 B Output
:1/ UK rank 4th 49 .J
-
Joa .
; . / IN rank 10th $3 I .
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Grok ChatGPT-o1 Gemini Mova Pro R1 Llama 3.1
Mini 1.5Pro (text only) Nemotron
(text only) 70B Instruct
(text only)

ﬂ{xhu @ openAl Google AMAZON Wy cecpseelc <24 NVIDIA

A token is the smallest unit of Al model processing (~4 characters). N Meta
o1 is ChatGPT's latest model. List includes most comparable model per company
* Uses Meta's open-source Llama Al

Source: DocsBot
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Advanced Al Models
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Massive Al Models

Parameters Count Training Data Size
$63 million
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175 B
1 B- GPT-2 1 TB-
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Source: Francesco Casalegno, ChatGPT Unveiled: What’s the ML Model Inside it, from GPT-1 to GPT-4 6



Al Model Training Energy Consumption

Common carbon footprint benchmarks
in Ibs of CO2 equivalent

Roundstrip flight b/w NY and SF (1
passenger)

‘ 1,084

Human life (avg. 1 year)

American life (avg. 1 year)

US car including fuel (avg. 1 lifetime) RPAKoll)
Transf 213M parameters) w
ransformer ( P ) w/ 626,155

neural architecture search

MIT Technology Review



Al Model Inference Energy Consumption

Image i o |
generation i Meani
? ' 519 Wh |
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to perform task 1,000 times



compute energy in J/year
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Altogether, data centers use more electricity than

most countries
Only 16 nations, including the US and China, consume more

Source: Bloomberg

Data Centres
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Altogether, data centers use more electricity than

most countries

Only 16 nations, including the US and China, consume more

350 TWh

200

166

20812

1
28

16

26024

Potential solutions to

energy problem:
Cloud Al » Edge Al

Moving Al appIiCations from the
cloud to the edge

« Al model simplification techniques to
reduce power consumption

. Al Model quantization, et¢, -
« On device (Edge) Al model training

- Federated Learning

11



Edge Al

Unlike Cloud Al (e.g., ChatGPT that runs in data centers), edge Al
runs at the edge computing devices such smartphones, cameras,
cars, medical devices, ensuring quality of data for inference

Reduces latency, cost, and power consumption

Protects data privacy and reduce improve data security and
cybersecurity

Reduces risk of inference failure in critical systems (e.g.,
autonomous vehicles, healthcare devices) that may endanger lives

12



Everyone is a walking Al computer

Any random mobile configuration/specification these days

. — N\

Chip

A18 Bionic chip :
6-core CPU with 2 performance
4 efficiency cores
5-core GPU

16-core Neural Engine
Capacity

512GB

Multiple Sensors
48MP camera
Satellite and GPS

13



The Emergence of
Edge Al: a game
changer for

industries
(Gartner 2023)
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The Rise of Generative Al at the Edge

image source: Arrow Intelligent Solutions

Things

Data Flow
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Small Language Models Could Redefine The Al Race,

Forbes

Model size (billions of parameters)

Exponential growth of LLMs stopped
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Al Model Size

input node

a8 Performance Trade-offs

Ly
Larger models, such as GPT-3 with 175 billion parameters, can

. o . imput layver hi-]-lc-n.l.n'vl output layer
handle complex tasks but require significant computational 2 5 -
resources and incur higher operational costs. = 4.5 4

T 4 o ¢ ¢
> 3.5
& Efficiency of Smaller Models S% 3
. =2 254
Smaller models offer faster performance and lower costs, making (a) ) o
them suitable for real-time applications, though they may l 15 )
compromise on accuracy. = 1 . . ®
- 14
Yy
. “~ 0.22
2. Architectural Impact a8 0.18 U2
&%, ° 010 014 01O High
N . . 4 4 01 V=
The structure of a model significantly affects how effectively its <e 0.08 Mode;nce -
orm
parameters are utilized, with optimized architectures enhancing g < per

It L()\\'
performance metrics.

Ojha et al, Applied Soft Compt.



Part 2
Understanding Al
Model Performance



Al Model Performance

Al model's performance predictably improves as you increase resources like model size (parameters), dataset
size, and compute power, often following power-law relationships where gains diminish but remain consistent.

Test Loss

L= (Cpin/2.3 - 108)~0.050

2 T T T T
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Compute
PF-days, non-embedding

Kaplan et al. (2020)
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Parameter-level learnability
using first-order statistics

combined across architectures.

Extends learnability, pruning,
and quantization analysis to
non-Euclidean geometries.
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Task-learnability in modular /
combined architectures.



Trained Network Exabits Gaussian distribution

1.257

1.00;

Density
©
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0.25

s 0.00

-2.500 2.5 -2500 2.5 —-2.50.0 2.5
1 2 3

Gao et al- 2023, NeurilPS
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Performance Characterization of Models

Irrespective of model parameter size the model's convergence cluster into optimal and suboptimal patterns

Network  Data Layer Input Output
MNIST, FC1 28 % 28 5-200
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Deep Neural Networks
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DNN'’s Learnable Parameters

Learned parameter of all
failed models,
suboptimal models and
successes full models
clearly show similarity of
their statistical
properties and weight
distribution irrespective
of their model size. i.e.
models of any size
converge to a similar
weight distribution when
trained to a fixed number
of epochs on a dataset
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DNN'’s Learnable Parameters Distribution

Learned parameter of all
failed models,
suboptimal models and
successes full models
clearly show similarity of
their statistical
properties and weight
distribution irrespective
of their model size. i.e.
models of any size
converge to a similar
weight distribution when
trained to a fixed number
of epochs on a dataset

FMNIST MNIST

CIFAR-10
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Convolutional Neural Nets

[Input - Convolution - RELU -  POOLING - Fully Connected - Output]

Dr Varun Ojha, Newcastle University 26



CNN’s Learnable Parameters

Similar complexity data shows
similar trainable parameter
statistical property pattern
(weight distribution),
irrespective of model size

High performing model weights
show that models of any size
converge to parameter with
similar statistics (weight
distribution)

High complexity data shows
that statistical property of
successful models has very
specific statistical property or
specific weight distribution

FMNIST MNIST
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CNN’s Learnable Parameters Distribution

Similar complexity data shows
similar trainable parameter
statistical property pattern
(weight distribution),
irrespective of model size

High performing model weights
show that models of any size
converge to parameter with
similar statistics (weight
distribution)

High complexity data shows
that statistical property of
successful models has very
specific statistical property or
specific weight distribution

FMNIST MNIST

CIFAR-10
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Vision Transformer Models

Vision Transformer (ViT) Transformer Encoder
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ViT’s Learnable Parameters

All failed models,
suboptimal models and
successes full model's
learned parameter
clearly show similarity
of their statistical
properties (weight

distribution)

irrespective of Model

Architecture
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CIFAR-10
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ViT’s Learnable Parameters Distribution
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Al Model "Slimming" Techniques

Model Compression
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Quantization Pruning Structure Knowledge Low-Rank
Optimization Distillation Factorization
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Unstructured
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Al Model "Slimming" Techniques

JL uantization Prunin
1 Q Lo :
Reduces model precision (32-bit to 8-bit), cutting memory Eliminates less important weights to create smaller,
by ~75% with minimal accuracy loss. sparser models while maintaining accuracy.
7= Knowledge Distillation E:F Model Splitting
Trains a compact student model to replicate behaviors of a Partitions processing between edge device and cloud for

large teacher model. co-inference.



Pruning and Quantization Aware Neural
Network Training

32-bit network pruned network 8-bit network

Ziwie, Ojha, et al (2025)
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Pruning

* Train-time (dynamic) pruning involves integrating the pruning process
directly into the training phase of the neural network. During training,
the model is trained in a way that encourages sparsity or removes less
Important connections or neurons as part of the optimization process

* Unstructured pruning involves zeroing individual weights within the
weight matrices

* Structured pruning removing entire structured groups of weights, the
method reduces the scale of calculations that would have to be made
in the forward pass through the model’s weights graph
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Pruning

* Magnitude-based Pruning:
Simple, small weights/channels
are pruned

* Gradient-based Pruning:
method prunes weights that
show smaller gradients over
time.

* Importance-based Pruning:
Weights with lower “importance
scores” are pruned first

* Training-time (dynamic)
pruning: dynamic pruning
adjusts the network structure
during training based on real-
time performance metrics

e Unstructured
Pruning

@ Structured

Pruning

THac

[ 1 1 1 [ [ | |
| | | | | | | [ JJ :
Element Pruning '

Structure

Irregular
< Sparsity
High
Processing/
T!Iigh Memory Demand
[ ] Pruned

[] Unpruned

Channel Pruning

>
Regular

Low

Low

37



Quantization

The main task of model quantization in deep learning is to convert

high-precision floating-point numbers in neural networks into low-
precision numbers

0.34 . 5.64 64 . 217

112 2.7 0.9 l 76 119 21

Quantization
. o |8
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32 Bits > Sign (1-bat) Magnﬂutle (7-bits)
I A
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S ; —— = — L
—LRt—+ @& 8 Bits > o — N Word (8-bit)
(0] 1 |
E— Shgn (1-bat) Magnitude (7-bits)
: i Mognnude  Maguude [ ‘ A
Single Precision 10101101 = —45
l ]

IEEE 754 Floating-Point Standard —
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Binarized Neural Networks

+1 1ifx >0,
—1 otherwise

y a2’ =Sign(x) = {

b +1 with probability p = o(x),
| —1 with probability 1 — p,

Binarized Neural Nets: (Courbariaux et al. 2016) https://arxiv.org/pdf/1602.02830 39



Architectural Invariance
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DNN Architecture

CONVERGENCE

PRUNING
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CNN Architecture

QUANTIZATION

CONVERGENCE

PRUNING
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VIT Architecture
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PRUNING

Maximal Pruning for Minimal Network

test results on MNIST
similar results of CIFAR 100 and other 8 datasets

1.0

0.8F———- Over70% o~ ____Y. __=
g pruning |
=0.6 A
© Over 80% |
- 4 °
& 0.4) —— llayer-arch pruning i
= 2layer-arch |

0.2 3layer-arch i

—— 4layer-arch i

O'Q).o 0.1 0.2 0.3 04 05 06 0.7 08 09 1.0
Pruning Ratio

44



Maximal Quntizatian for Minimal Network

test results on MNIST
similar results of CIFAR 100 and other 8 datasets
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Summary of Pruning and Quantization on Models

Dataset  Architecture Min. Params (Stability)

Safe Pruning %

8-bit Gap %

DNN 2 x 10% 60 0.15

MNIST CNN 3 % 10% 20 0.74

ViT 5 x 103 20 10.66

DNN 2 x 10% 40 1.42

F-MNIST CNN 3 x 104 20 1.10
ViT 5 % 10° 20 3.22

DNN 2 x 10° 40 7.50

CIFAR-10 CNN 3 x 10° 5 14.80
ViT 6 x 103 10 4.17
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Multitask Learning
and
Mixture of Experts
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MTL and MoE Convergence
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MTL and MoE Pruning

MTL
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MNIST
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Knowledge Distillation and Model Robusthess

Zhenyu, Ojha et al (2024), ICONIP
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Compression Using “Parameter Score” -> “ “Importance Score”

Test Accuracy
e e o o e
= N w = u

e
o

ResNet18 model on
ImageNet before filtering
~45 MB

ResNet18 modelon
ImageNet after filtering

ResNet-18 MNIST (h;), layer convl
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Epoch 40
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Frac. of Parameters Retained

Pravin, Ojha et al (2024), AlJ

' Singla processing funnels (filters)
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and parameters
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Epoch 10 Epoch 50 e Epoch 80
Epoch 20 e Epoch 60 e Epoch90
Epoch 30 e Epoch70 e Epoch 100
Epoch 40

1.0 09 08 06 05 04 02 01 0.0
Frac. of Parameters Retained

0.7

0.6

0.5

0.4

0.3

0.2

0.1

ResNet-18 MNIST (h3), layer fc

Epochs
Epoch 10 Epoch 50 e Epoch 80
Epoch 20 e Epoch 60 e Epoch90
Epoch 30 e Epoch70 e Epoch 100
Epoch 40

10 09 08 06 05 04 02 01 0.0
Frac. of Parameters Retained

52




Optimization Techniques for Edge Deployment

Beyond quantization, pruning, and distillation, several other methods can enhance the deployment of large models on edge and loT devices:

@

Neural Architecture Search U Hardware-Aware Training L Sparsity-Inducing

(NAS) (HAT) Regularization

Automates the design of efficient Incorporates hardware characteristics Encourages models to develop sparse
neural networks tailored for specific during training to optimize models for weight matrices during training,
hardware constraints. particular devices. leading to smaller and faster models.
Winograd Transformations 0|]|] Fast Fourier Transforms (FFTs)

Optimizes convolutional operations to reduce the number of Efficiently performs convolutions in the frequency domain,

multiplications, improving inference speed. particularly useful for large kernel sizes.



Part 4
Search for Efficient Al
Models



Neural Architecture Search (NAS)

Catering the need of specialized problem and hardware

_
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Neural Networks

NN Component3: “'{‘if.ﬂP active node
* Inputs "
* Weights

 Architecture
e Activation functions
* Learning algorithms

input layer hidden layer output layer
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What Could be optimized?

Architecture
Optimization
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Plausible Biological Inspiration

Travis et al. (2005) Jones and Kording (2021) Ojha and Nicosia (2022)

Ojha et al (2022), Neural Networks
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Neural Tree

Neural Networks Architecture Search

weight — , active node
A
1 > o1(.)
@1(-) Y
L] > 7:_’|I } ’
: ’ : 2a(-) ‘
input node~, LA Yq
(..-"
a
-ILP . T:Jl!["}
input layer hidden layer output layer

e 5, iy 5 :
J = p(wiv? +wivd+b,,)

root node
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Neural Computation

ul D 6 7

((45) —=2) ((67)—=3)] —1
forward pass: post-order

Ojha et al (2022), Neural Networks



Types of Neural Tree

Regression Tree

7§ = o(wi*vi+w

root node

Up
2

Vs +by, )

Ojha et al (2022), Neural Networks
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Types of Neural Tree

Classification Tree )
Y= a’rgma}{{cla Ca, 63}

root node

output
wy’ =1 vy’ =1 " class
C1 w3 = . Co.:
wWe°
by, @ @ _;..bm @ neural node
U1 0 ?}— bl&S I
w 'i ] ]
1 Wy w? w? ,wéq
T by, @ iy Is Io| LT3 @ va
vs - w2 input node Vs Vs vs
Wy” ~wy 3 Wy AWy W3
L3 L1 T3 9 T3 T4

Ojha et al (2020), CEC 62



Neural Architecture Search

Trade-offs

A
3 I
- Complex, but
T accurate models
%
S
i Simple, but
N\ ... inaccurate models .-
— >
Low <e—ro Error — High

Ojha et al (2017), Applied Soft Computing



Neural Architecture Search

Trade-offs

Multiobjective
Genetic Programming
Crossover

Ojha et al (2017), IEEE Trans. Fuzzy Systems

Subtree of a
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I 3
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Parent tree: a Child tree: ¢
I
€Iy
Iy
T3 Iy
: 4.&-‘3 ;
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I3 .
Subtree of b Child tree: d

Parent tree: b
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Neural Architecture Search

Trade-offs

Multiobjective
Genetic Programming

Mutation
Ojha et al (2017), IEEE Trans. Fuzzy Systems

|
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All leaves mutation

Jﬁréi _'“‘lr-il
Iy L4

A subtree insertion A subtree deletion

A subtree
replacement
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Architecture Search Trade-offs

Multiobjective Genetic Programming

Selection of trees using Hypervolume indicator from a Pareto Front
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Ojha and Nicosia (2020), CEC
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Learnability of Classes

Competition between classes: TPR/Recall/Sensitivity vs FPR/(1 - Specificity)

Ojha and Nicosia (2020), CEC
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Heterogeneous Neural Tree

Multiobjective Genetic Programming
Activation Function Search

Root node
e S-Sigmoid

e G-Gaussian

e T-Tanh

Function nodes

e F—-Fermi

Leaf nodes

Ojha et al (2017), Applied Soft Computing 68



Activation Function Performance

Higher values are better

Unipolar Sigmoid 21
Bipolar Sigmoid 23
Linear Tangent hyperbolic 27
Linear Fermi 31
Fermi Function 53

Tangent hyperbolic I — 67
Gaussian Function I 67

0 10 20 30 40 50 60 70 80

. . , Activation function score
Ojha et al (2017), Applied Soft Computing 69



Neural Modelling
Sparse Neural Tree

Input Processing
(forward pass)

Gradient propagation
(backwards pass) Information
processing

channel.

Fig A. Forward pass and gradient backpropagation

Ojha and Nicosia (2022), Neural Networks
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Backpropagation Neural Tree

y = hy

neural
node

Iy

Aw

wi, j

0ij, <

I3

input

node To Ts

Ojha and Nicosia (2022), Neural Networks

forward phase: depth-first search (post-order)

backward phase: depth-first search (pre-order)

<t

2

6

[((4 5)

forward pass: post-order

— 2)

((6 7)—3)] — 1

b,

b,

(2 -[Jr.h];u
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Backpropagation Neural Tree

Regression results

Vs

a) baseball (.85, 48) ) dee (.89, 89) (c) diabetese (.63, 67) (d) friedman (.95, 116)

(e) mpg6 (.9, 82)

Algorithm Bas Dee Dia Frd Mpg Avg Acc

BNeuralT 0.665 0.837 0.492 0.776 0.867 0.727
MLP 0.721 0.829 0.49 0.943 0.874 0.772

Weights

Ojha and Nicosia (2022), Neural Networks
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Backpropagation Neural Tree

Regression results

* BNeurall used only 14.6% of MLP

* Accuracy differs only 5.8% lower than the
best MLP result

Ojha and Nicosia (2022), Neural Networks



Neural Tree vs Neural Networks

Regression Problems
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(k) MLP: Sigmod, n = default
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(1) MLP: ReLU, 7 = 0.1
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Backpropagation
Neural Tree

Classification results.

Data BNeuralT MLP
Aus 0.895 0.876

Hrt 0.897 0.833

lon 0.952 0.882
Pma 0.822 0.774
Wis 0.986 0.984

Irs 0.992 0.972

Win 0.991 0.991

Vhl 0.75 0.826

Gls 0.732 0.635
Avg. Accuracy 0.891 0.863
Avg. Weights 261 1969

Ojha et al (2022), Neural Networks



Novel type of Neural Modelling
Sparse Neural Tree

* Neural Tree used only 13.25% parameters
of standard MLP

 Accuracyis 2.65% better than the best
MLP result

Ojha et al (2022), Neural Networks



Neural Tree vs Neural Networks

Classification Problems
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Architectural Stochasticity

avg £acc(g)]
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0 100
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Ojha et al (2022), Neural Networks
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Deep Neural Networks
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Backpropagation Neural Tree

DALY M . PR P4
i »

MNIST Model Accuracy ~95%

Algorithms Error(%)
£ BNeuralT-10K (pixels) 7.74
= BNeuralT-18K (pixels) 6.58 —
Z BNeuralT-20K (pixels) 6.08 :
g BNeural T-200KT (pixels) 5.19 .
» GUIDE (pixels, oblique split) 26.21 :
€ OC1 (pixels, oblique split) 25.66
= GUIDE (pixels) 21.48
S CART-R (pixels) 11.97 :
=  CART-P (pixels) 11.95
£ 5.0 (pixels) 11.69
£ TAO (pixels) 11.48
~  TAO (pixels, oblique split) 5.26

Ojha and Nicosia (2022), Neural Networks



Model Size vs Accuracy

Algorithms Error(%)
£ BNeuralT-10K (pixels) 7.74
= BNeuralT-18K (pixels) 6.58
Z BNeuralT-20K (pixels) 6.08
% BNeural T-200KT (pixels) 5.19
» GUIDE (pixels, oblique split) 26.21
S OC1 (pixels, oblique split) 25.66
= GUIDE (pixels) 21.48
2 CART-R (pixels) 11.97
% CART-P (pixels) 11.95
£ 5.0 (pixels) 11.69
£ TAO (pixels) 11.48
~  TAO (pixels, oblique split) 5.26

Ojha and Nicosia (2022), Neural Networks
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Learnability of Different Classes

Competition between classes: TPR/Recall/Sensitivity vs FPR/(1 - Specificity)
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@© cd
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=
= 1.0 - ROC: test
=
% C.
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0.00 0.01 0.02
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epochs = 50: n=0.1
epochs = 50: n=0.01

Ojha et al (2022), Neural Networks
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Part5
Clever tricks to Make

Al Models Resource
Efficient




Early Exit Neural Nets

(E, M, and H represent samples with easy, medium, and hard complexity data inputs)

Output
M i
I E,MH

(a) Conventional DNN (b) Early-exit DNN
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Early Exit Neural Nets

e Class0
e C(Class1

Source: https://intellabs.github.io/distiller/algo_earlyexit.html
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Model Splitting

e Model splitting is a deployment technique used to divide a neural network into two or more parts, which are then executed on different devices or platforms.

e This is particularly useful when a model is too large or computationally intensive to run on a single edge or loT device.

e Thereare several strategies for model splitting:

° Layer-wise splitting, where different layers of the network are executed on
Cut layer

Smashed data !

o o

different devices

e Feature-wise splitting, where the model is split based on feature maps

1
i .
| . : -
q}“" . : A, q>J‘"
e Thechoice of splitting strategy depends on the specific architecture of the L \ . @ =
+ 1 —
model and the capabilities of the devices involved. g_ . . X . g_
c . ! P
e Challenges associated with model splitting include: - ! . \ 8
. I .
. Minimizing communication overhead between devices WC q .: . WS
e  Ensuring thatthe split model maintains acceptable accuracy and latency \CIient-side model portion | Server-side model portion
V
Full model (W)

e Techniques such as knowledge distillation and quantization can be used to

mitigate these challenges.
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