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Resource Efficient Artificial Intelligence
Agenda

•Why Resource Efficient AI

• Understanding AI Model Performance

• AI Model Compression Methods and Results

• Search for Efficient AI Models

• Tricks to make AI models resource efficient
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Part 1
Why Resource 

Efficient AI
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AI Arms Race 

https://www.tortoisemedia.com/intelligence/global-ai

UK rank 4th

US rank 1st

IN rank 10th

CN rank 2nd
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Advanced AI Models
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Massive AI Models

Source: Francesco Casalegno, ChatGPT Unveiled: What’s the ML Model Inside it, from GPT-1 to GPT-4

petabyte
trillion

billion terabyte

$63 million

$4.6 million
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AI Model Training Energy Consumption

7
MIT Technology Review



AI Model Inference Energy Consumption
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Data Centres
Source: Bloomberg
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Potential solutions to 
energy problem: 
Cloud AI → Edge AI
 
• Moving AI applications from the 

cloud to the edge

• AI model simplification techniques  to 
reduce power consumption

• AI Model quantization, etc.

• On device (Edge) AI model training

• Federated Learning
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Edge AI
• Unlike Cloud AI (e.g., ChatGPT that runs in data centers), edge AI 

runs at the edge computing devices such smartphones, cameras, 
cars, medical devices, ensuring quality of data for inference

• Reduces latency, cost, and power consumption

• Protects data privacy and reduce improve data security and 
cybersecurity

• Reduces risk of inference failure in critical systems (e.g., 
autonomous vehicles, healthcare devices) that may endanger lives
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• Chip
• A18 Bionic chip
• 6-core CPU with 2 performance 
• 4 efficiency cores
• 5-core GPU
• 16-core Neural Engine
• Capacity
• 512GB
• Multiple Sensors
• 48MP camera
• Satellite and GPS

Everyone is a walking AI computer
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Any random mobile configuration/specification these days



The Emergence of 
Edge AI: a game 
changer for 
industries 
(Gartner 2023)
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The Rise of Generative AI at the Edge
image source: Arrow Intelligent Solutions
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Small Language Models Could Redefine The AI Race, 
Forbes

Image source: objectbox.io
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Performance Trade-offs

Larger models, such as GPT-3 with 175 billion parameters, can 

handle complex tasks but require significant computational 

resources and incur higher operational costs.

Efficiency of Smaller Models

Smaller models offer faster performance and lower costs, making 

them suitable for real-time applications, though they may 

compromise on accuracy.

Architectural Impact

The structure of a model significantly affects how effectively its 

parameters are utilized, with optimized architectures enhancing 

performance metrics.

Ojha et al, Applied Soft Compt.
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Part 2
Understanding AI 

Model Performance 
18



Kaplan et al. (2020)

AI Model Performance
AI model's performance predictably improves as you increase resources like model size (parameters), dataset 
size, and compute power, often following power-law relationships where gains diminish but remain consistent.





Trained Network Exabits Gaussian distribution
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Gao et al· 2023, NeuriIPS

Convergence to the fixed point (left); joint distributions for the first neuron for three outputs for 10, 000 
neuron networks, with orange curve denotes the Gaussian distribution (right)



Performance Characterization of Models
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Irrespective of model parameter size the model's convergence cluster into optimal and suboptimal patterns



Deep Neural Networks

Hidden 
layer 1

input layer
flatten image

Hidden 
layer 2

Output 
layer

Hidden 
layer M-1

Hidden 
layer M

image of size 
[8 x 8] pixels 𝒙64

𝒙𝟏
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a pixel
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DNN’s Learnable Parameters

24

Learned parameter of all 
failed models, 
suboptimal models and 
successes full models 
clearly show similarity of 
their statistical 
properties and weight 
distribution irrespective 
of their model size. i.e. 
models of any size 
converge to a similar 
weight distribution when 
trained to a fixed number 
of epochs on a dataset



DNN’s Learnable Parameters Distribution
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Learned parameter of all 
failed models, 
suboptimal models and 
successes full models 
clearly show similarity of 
their statistical 
properties and weight 
distribution irrespective 
of their model size. i.e. 
models of any size 
converge to a similar 
weight distribution when 
trained to a fixed number 
of epochs on a dataset



Convolutional Neural Nets

[Input           -             Convolution   -        RELU           -       POOLING   -   Fully Connected -    Output]   

height

width
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CNN’s Learnable Parameters
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Similar complexity data shows 
similar trainable parameter 
statistical property pattern 
(weight distribution), 
irrespective of model size

High performing model weights 
show that models of any size 
converge to parameter with 
similar statistics (weight 
distribution)

High complexity data shows 
that statistical property of 
successful models has very 
specific statistical property or 
specific weight distribution



CNN’s Learnable Parameters Distribution
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Similar complexity data shows 
similar trainable parameter 
statistical property pattern 
(weight distribution), 
irrespective of model size

High performing model weights 
show that models of any size 
converge to parameter with 
similar statistics (weight 
distribution)

High complexity data shows 
that statistical property of 
successful models has very 
specific statistical property or 
specific weight distribution



Vision Transformer Models

Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,  ICLR 2017
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ViT’s Learnable Parameters
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All failed models, 
suboptimal models and 
successes full model's 
learned parameter 
clearly show similarity 
of their statistical 
properties (weight 
distribution) 
irrespective of Model 
Architecture



ViT’s Learnable Parameters Distribution
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All failed models, 
suboptimal models and 
successes full model's 
learned parameter 
clearly show similarity 
of their statistical 
properties (weight 
distribution) 
irrespective of Model 
Architecture



Part 3
AI Model 

Compression 
Methods and Results
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AI Model "Slimming" Techniques



AI Model "Slimming" Techniques

Quantization

Reduces model precision (32-bit to 8-bit), cutting memory 

by ~75% with minimal accuracy loss.

Pruning

Eliminates less important weights to create smaller, 

sparser models while maintaining accuracy.

Knowledge Distillation

Trains a compact student model to replicate behaviors of a 

large teacher model.

Model Splitting

Partitions processing between edge device and cloud for 

co-inference.



Pruning and Quantization Aware Neural 
Network Training

Ziwie, Ojha, et al (2025) 35



Pruning

• Train-time (dynamic) pruning involves integrating the pruning process 
directly into the training phase of the neural network. During training, 
the model is trained in a way that encourages sparsity or removes less 
important connections or neurons as part of the optimization process

• Unstructured pruning involves zeroing individual weights within the 
weight matrices

• Structured pruning removing entire structured groups of weights, the 
method reduces the scale of calculations that would have to be made 
in the forward pass through the model’s weights graph

36



Pruning
• Magnitude-based Pruning: 

Simple, small weights/channels 
are pruned

• Gradient-based Pruning: 
method prunes weights that 
show smaller gradients over 
time.

• Importance-based Pruning: 
Weights with lower “importance 
scores” are pruned first

• Training-time (dynamic) 
pruning: dynamic pruning 
adjusts the network structure 
during training based on real-
time performance metrics
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Quantization
The main task of model quantization in deep learning is to convert 
high-precision floating-point numbers in neural networks into low-
precision numbers
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Binarized Neural Networks

Binarized Neural Nets: (Courbariaux et al. 2016) https://arxiv.org/pdf/1602.02830

Weights and activation of Neural 
Networks:
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Maximal Pruning for Minimal Network
test results on MNIST

similar results of CIFAR 100 and other 8 datasets

Over 70%
pruning 

Over 80% 
pruning
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Maximal Quntizatian for Minimal Network
test results on MNIST

similar results of CIFAR 100 and other 8 datasets

Minimal 
degradation 
on 8-bit Nets
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Summary of Pruning and Quantization on Models
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Multitask Learning 
and 
Mixture of Experts
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Knowledge Distillation and Model Robustness 
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0.8

0.1 0.8
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0.8

0.1 0.8

… bird … panda

… 

Soft Label

Knowledge 

Distillation

Zhenyu, Ojha et al (2024), ICONIP

pre-trained 
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Model layers 
and parameters

Compression Using “Parameter Score” -> “ “Importance Score”

Pravin, Ojha et al (2024), AIJ

Singla processing funnels (filters)

ResNet18 model on 
ImageNet before filtering 

~45 MB

ResNet18 model on 
ImageNet after filtering

Model layers 
and parameters
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Optimization Techniques for Edge Deployment

Beyond quantization, pruning, and distillation, several other methods can enhance the deployment of large models on edge and IoT devices:

Neural Architecture Search 
(NAS)

Automates the design of efficient 

neural networks tailored for specific 

hardware constraints.

Hardware-Aware Training 
(HAT)

Incorporates hardware characteristics 

during training to optimize models for 

particular devices.

Sparsity-Inducing 
Regularization

Encourages models to develop sparse 

weight matrices during training, 

leading to smaller and faster models.

Winograd Transformations

Optimizes convolutional operations to reduce the number of 

multiplications, improving inference speed.

Fast Fourier Transforms (FFTs)

Efficiently performs convolutions in the frequency domain, 

particularly useful for large kernel sizes.



Part 4
Search for Efficient AI 

Models
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Neural Architecture Search (NAS)
Catering the need of specialized problem and hardware

Ojha et al (2020), CEC 55



Neural Networks
NN components: 
• Inputs
• Weights 
• Architecture 
• Activation functions
• Learning algorithms 

56



What Could be optimized?
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Plausible Biological Inspiration

Travis et al. (2005) Jones and Kording (2021) Ojha and Nicosia (2022) 

Ojha et al (2022), Neural Networks 58



Neural Tree
Neural Networks Architecture Search
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Neural Computation

Ojha et al (2022), Neural Networks 60



Types of Neural Tree
Regression Tree

61Ojha et al (2022), Neural Networks



Types of Neural Tree
Classification Tree

Ojha et al (2020), CEC 62



Neural Architecture Search

Ojha et al (2017), Applied Soft Computing 63

Trade-offs



Multiobjective 
Genetic Programming 
Crossover
Ojha et al (2017), IEEE Trans. Fuzzy Systems

64

Neural Architecture Search
Trade-offs



Single leaf mutation

A subtree insertion

A subtree 
replacement

All leaves mutation

A subtree deletion

Multiobjective 
Genetic Programming 
Mutation
Ojha et al (2017), IEEE Trans. Fuzzy Systems

65

Neural Architecture Search
Trade-offs



Architecture Search Trade-offs

Ojha and Nicosia (2020), CEC 66

Multiobjective Genetic Programming 
Selection of trees using Hypervolume indicator from a Pareto Front



Learnability of Classes

Ojha and Nicosia (2020), CEC 67

Competition between classes: TPR/Recall/Sensitivity vs FPR/(1 - Specificity)



Heterogeneous Neural Tree

S

G T

F

Multiobjective Genetic Programming 

Activation Function Search

• S – Sigmoid

• G – Gaussian  

• T – Tanh

• F – Fermi

Ojha et al (2017), Applied Soft Computing 68



Activation Function Performance
Higher values are better

Ojha et al (2017), Applied Soft Computing 69



Fig A. Forward pass and gradient backpropagation

Input Processing
(forward pass)

Gradient propagation 
(backwards pass)

Ojha and Nicosia (2022), Neural Networks 70

Information 
processing 
channel.

Neural Modelling
Sparse Neural Tree



Backpropagation Neural Tree

Ojha and Nicosia (2022), Neural Networks 71



Regression results

Algorithm Bas Dee Dia Frd Mpg Avg Acc Avg 
Weights

BNeuralT 0.665 0.837 0.492 0.776 0.867 0.727 152 
MLP 0.721 0.829 0.49 0.943 0.874 0.772 1041

Ojha and Nicosia (2022), Neural Networks 72

Backpropagation Neural Tree



• BNeuralT used only 14.6% of MLP

• Accuracy differs only 5.8% lower than the 
best MLP result

Regression results

Ojha and Nicosia (2022), Neural Networks 73

Backpropagation Neural Tree



Neural Tree vs Neural Networks
Regression Problems

74



Backpropagation 
Neural Tree
Classification results.  

Data BNeuralT MLP
Aus 0.895 0.876
Hrt 0.897 0.833
Ion 0.952 0.882

Pma 0.822 0.774
Wis 0.986 0.984
Irs 0.992 0.972

Win 0.991 0.991
Vhl 0.75 0.826
Gls 0.732 0.635

Avg. Accuracy 0.891 0.863
Avg. Weights 261 1969

75Ojha et al (2022), Neural Networks



• Neural Tree used only 13.25% parameters 
of standard MLP

• Accuracy is 2.65% better than the best 
MLP result

76Ojha et al (2022), Neural Networks

Novel type of Neural Modelling
Sparse Neural Tree



Classification Problems

Neural Tree vs Neural Networks
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Architectural Stochasticity 

78Ojha et al (2022), Neural Networks



Deep Neural Networks

79

Hidden 
layer 1

input layer

Hidden 
layer 2

Output 
layer

Hidden 
layer M

Gary scale image of size 
[28 x 28] 𝒙𝟕𝟖𝟒

𝒙𝟏
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28

SoftMax



MNIST Model  Accuracy ~95% 

Ojha and Nicosia (2022), Neural Networks 80

Backpropagation Neural Tree



Model Size vs Accuracy

Ojha and Nicosia (2022), Neural Networks 81



Learnability of Different Classes

82Ojha et al (2022), Neural Networks

Competition between classes: TPR/Recall/Sensitivity vs FPR/(1 - Specificity)



Part 5
Clever tricks to Make 
AI Models Resource 

Efficient
83
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Early Exit Neural Nets
(E, M, and H represent samples with easy, medium, and hard complexity data inputs)



Early Exit Neural Nets

Source: https://intellabs.github.io/distiller/algo_earlyexit.html 85



Model Splitting
• Model splitting is a deployment technique used to divide a neural network into two or more parts, which are then executed on different devices or platforms.

• This is particularly useful when a model is too large or computationally intensive to run on a single edge or IoT device.

• There are several strategies for model splitting:

• Layer-wise splitting, where different layers of the network are executed on 

different devices

• Feature-wise splitting, where the model is split based on feature maps

• The choice of splitting strategy depends on the specific architecture of the 

model and the capabilities of the devices involved.

• Challenges associated with model splitting include:

• Minimizing communication overhead between devices

• Ensuring that the split model maintains acceptable accuracy and latency

• Techniques such as knowledge distillation and quantization can be used to 

mitigate these challenges.
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