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Safeguarding Artificial Intelligence
Agenda

• AI Safety Context

•Model Robustness

• Security and Privacy

•Continuity of Leaning

• Broader Context of AI Safety and Challenges
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Part 1
AI Safety Contexts 
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(The Fuel of AI) (The Brain of AI) (The Factory of AI)

The entire MLOps system 
becomes infected and executes 

the hacker's code.

bypass security systems or cause 
unsafe actions (e.g., in self-

driving cars).

The model learns the wrong rules 
and makes mistakes in 

production.

Attacker 
sneakily adds 
bad or wrong 
data to the 
training set.

Attacker adds 
tiny, invisible 
changes to a 
new input To 
trick the model

An attacker inserts 
malicious code into 
a harmless-looking 
software library or 
pre-trained model 

Security Vulnerabilities AI Models on the Edge







Safeguarding AI challenges

•Monitoring of Data/Model Quality
How to monitor cyber-disturbances impact on the quality of data, AI
algorithms learning and the overall application resilience?

•Recovery of Data/Model Quality
How to recover data and AI model quality that are impacted by cyber-
disturbances and ensure suitability for AI model deployment on devices at
Tiers 1, 2 of EC architectures ?

• Assurance of Continuity of Data Quality and Model Quality
How to assure AI algorithms continually adapt to EC environments where
unknown cyber-disturbances that were not present in the original training
dataset?



Part 2

Model Robustness



Adversarial Attacks



Consequences of Adversarial Attacks

Attackers can deduce 
characteristics or even 
reconstruct portions of 
the original training 
dataset

Attacks are designed to 
subtly alter inputs to 
mislead AI models during 
inference, causing them 
to misclassify specific 
inputs

Attacks are designed to subtly 
alter the labels of training 
examples or inject anomalous 
data points; thus,  attackers 
can manipulate the model to 
favour certain outcomes or 
fail under specific conditions

Adversary's attempts to deduce 
sensitive information from an AI 
model by examining its outputs and 
behaviours

Inversion Attacks

Evasion Attacks Poison Attacks

Inference Attacks

Image source: https://mindgard.ai/blog/ai-under-attack-six-key-adversarial-attacks-and-their-consequences
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White box attack: Gradient based attacks

𝑥1 and 𝑥2 are original and 
clean images with low loss 
values

𝑥’1 and 𝑥’2 represent their 
corresponding adversarial 
images with high loss values

Classification boundary

𝒙𝟏

𝒙𝟐

𝒙𝟐

Attacks known the model (gradient/parameters) and carefully craft an attack on the model

Image source: Xu et al 2021, Medical Image Analysis 13



AI Safety Concern in Medical Image Analysis

Unperceived changes in images make misclassification

Ophthalmology Radiology Pathology

Bortsova  et al. (2021). Adversarial attack vulnerability of medical image analysis systems: Unexplored factors. Medical Image Analysis,
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AI Safety Concern in Medical Image Analysis

Accuracy of detection decreases even on an unperceived modification

86% 75% 87%

44% 48% 41%

Bortsova  et al. (2021). Adversarial attack vulnerability of medical image analysis systems: Unexplored factors. Medical Image Analysis,

Ophthalmology Radiology Pathology
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𝑥 𝛿

+ 𝜀 ∗

𝑥𝜀

=

The general premise of a robustness analysis is to subject DNNs to the ‘worst case‘ 
conditions and evaluate the ability for a DNN to remain invariant under such settings.

Input example
Predicted as ‘Horse’

Adversarial perturbation
(‘Plane’ class)

Perturbation 
magnitude

Adversarial example
Predicted as ‘Plane’

Calculated using Deep Neural Networks 
(DNNs) weights (white-box attack)

Adversarial Robustness
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What can we promise for DNN robustness?

•We can use adversarial attacks to identify the strengths and 
weaknesses of DNN architectures. 

•Upon identifying the strengths and weaknesses of DNN architectures 
we can improve the performance of DNNs against both 
adversarial attacks and the clean dataset. 

•DNNs robustness analysis can develop stronger networks that are 
capable of performing under sub-optimal conditions.

18



Challenges for DNN robustness

• DNNs are susceptible to adversarial attacks and thus any DNN prediction can 
be unreliable and vulnerable to an adversary.

• How each component of a DNN behaves due to an adversarial attack is a 
lesser-known area of research.

• Adversarial attacks on DNNs has been well studies on state-of-the-art datasets, 
however, adversarial attacks on DNNs and their remedies has rarely been 
studied extensively.
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Attacks on fragile neurons

Fragile kernels (nodes) shown in blue (•) below mean/baseline 

DNN performance line in red and null kernels are shown in black 

star (★) above mean line in red

We remove kernel from the first convolutional layer and define fragile nodes to be all 
nodes that reduce the model performance on the test set to be below the mean dropout 
performance.

𝑘1

𝑘60

Input

Random 
dropout 
selector

⋮
𝑘2

𝑘0

ҧ𝑆

Nodal Dropouts
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if avg. distance of fragile kernels 𝑆
𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛

avg. distance of non-fragile kernels ҧ𝑠
then

𝑥𝜀 attacks fragile kernels

Adversarial targeting algorithm
We measure the average magnitude difference 𝒅 at the output of the first 
convolutional layer, between fragile and non-fragile neurons, on both 
clean and adversarial inputs.

FGSM attack 𝛿

𝜀
perturbation

Convolution 1

ො𝑦(0)

ො𝑦𝜀
(0)

𝑡0

𝑡1

⋮

𝑆

𝑆
𝑆
ҧ𝑠

ҧ𝑠

ҧ𝑠

clean input 𝑥

attacked input 𝑥𝜀

𝒅 = ො𝑦(0) − ො𝑦𝜀
(0)

2

Fragile kernel
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if avg. distance of fragile kernels 𝑆
𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛

avg. distance of non-fragile kernels ҧ𝑠
then

𝑥𝜀 attacks fragile kernels
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FGSM attack 𝛿
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perturbation
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𝑆

𝑆
𝑆
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𝒅 = ො𝑦(0) − ො𝑦𝜀
(0)

2

Fragile kernel
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Fragile kernels / neurons

Red crosses (+) represent fragile kernels and red circles around red crosses ( + ) 

represent kernels that have shown to be consistently fragile throughout the training 

phase for each model.
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How can we ensure DNN robustness?  

▪ Establish the relationship between DNN parameters and adversarial 
attacks to identify parameters that are targeted by the adversary. 

▪ Formalise the notions of DNN parameter perturbations and adversarial 
attacks as internal and external stressors on DNNs. 

▪ Define fragility, robustness, and antifragility in DNN to encapsulate 
parameter characterisations and 

▪ Evaluate the effects of only re-training parameters characterised as 
robust and antifragile (selective backpropagation).

24



Deep learning and systems

e.g., model poisoning 
attack or model parameter 

modification

e.g., data poisoning

25



Fragility, robustness and antifragility

▪ a new method of 
parameter filtering 
(synaptic filtering) 

▪ synaptic filtering of all 
layers and parameters 
of a DNN architecture.

▪ compare clean and 
adversarial 
performance of a regular 
DNN and perturbed DNN.

▪ characterise parameters 
as fragile, robust, and 
antifragile

26



Synaptic filtering algorithm

ℎ1

ℎ2
ℎ3

attack generation parameter filtering filtering score

Low pass

high pass

pulse pass
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The influence of parameters 
varies as the network is trained 
and learns more dataset 
features.

The three different filters ℎ1, ℎ2, 
and ℎ3 highlight different 
parameters as influential (■) 
and non influential (■) to DNN 
performance.

The combined performance 
highlights the parameters that 
are most influential (■) using 
all the three different filters.

Learning landscape 
(performance vs epoch vs filtering strength)

28



Different layers in the network show to have different characteristics when subjected to the 
parameter filters (internal stressor). The results are the combined responses using filters ℎ1, 
ℎ2, and ℎ3.

We show that the 
same layer of a DNN 
has similar learning 
landscapes for 
different datasets on 
filterining. 

This shows that there 
are invariant 
characteristics of 
DNN architectures, 
even when applied to 
different datasets.

Learning landscape 
(performance vs epoch vs filtering strength)

29

filtering strength

filtering strength

filtering strengthfiltering strength filtering strengthfiltering strength

filtering strength filtering strengthfiltering strength

filtering strength filtering strengthfiltering strength



Parameter scores (layer-wise and epoch wise)
We say that fragile parameters are important to network performance robust parameters are unaffected by 
internal and external stress, and antifragile parameters can be removed to improve performance .
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Selective backpropagation for DNN robustness

When we retrain
networks at periodic 
intervals using only 
the characterised 
robust and
antifragile layer 
parameters (selective 
backpropagation), we 
observe an increase 
in adversarial 
performance, and 
clean performance
for some networks 
and datasets.

Regular training Selective backpropagation 31



Adversarial training for DNN robustness
𝑥

𝑥𝜀

Clean example
Predicted as ‘Horse’

Adversarial perturbation
(‘Plane’ class)

+ 𝜀 ∗
Perturbation 
magnitude

Adversarial example
Predicted as ‘Plane’

Minimize CE + shared 
loss (e.g., KL-

divergence, MSE)

Clean Output 
distribution

Adversarial Output 
distribution

Backpropagation

Student
Target  
Model

32



Loss functions

Root Mean Squared Error (RMSE) :
Less extreme losses even for larger values, however, near 
minima, the gradient change is abrupt

Mean Squared Error (MSE) :
MSE helps converge to the minima efficiently, as the gradient 

reduces gradually. Ate the same time, extremely large loss may 
lead to a drastic jump during backpropagation, which is not 
desirable. MSE is also sensitive to outliers.

Mean Absolute Error (MAE) :
MAE calculates loss by considering all the errors on the same scale. 

Therefore, network will not be able to distinguish between them just 

based on MAE, and so, it’s hard to alter weights during 

backpropagation.

33

Loss function may be more influential in AI than architecture as we have seen in earlier results that parameters 
of any model size and architecture converge to similar weight distribution. This leaves with two other variables 
to pay attention to: gradient decent (backprop algo) and loss function (e.g. cross entropy)



RegMix: Adversarial mutual and generalization regularization

𝑥

Clean example
Predicted as ‘Horse’

Adversarial perturbation

+ 𝜀 ∗
PGD 

Perturbation 
magnitude

Random 
Noise

Adversarial example

Minimize loss =  
CE (ADV, LABLE) 
+ KL(ADV  || AUG) 
+ KL (AUG || ADV)
+ KL (ADV || CLN)

Clean Output 
distribution (CLN)

Adversarial Output 
distribution (ADV)

Backpropagation

+

Augmented example

Augmented Output 
distribution (AUG)

34

IEEE Trustcom 2025



Loss landscape comparison 
RegMix: Adversarial mutual and generalization regularization

Adversarial 
Mutual 
Regularization 

Adversarial 
Generalization 
Regularization 
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IEEE Trustcom 2025



Classification Visualisation
RegMix: Adversarial mutual and generalization regularization

Ground truth

Ground truth
Ground truth

Ground truth
Adv input

Adv input

36

Plot: Predicted adversarial and clean probability distribution



Performance
RegMix: Adversarial mutual and generalization regularization
WideResNet-34-10 on CIFAR-100 dataset
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Knowledge distillation for DNN robustness

Soft label

Hard label True label

Large 
Pre-trained 

Teacher 
Model

Small 
Student
Target  
Model

Knowledge 
Distillation

Distillation
Loss

Training Dataset

ba
ck

pr
op

ag
at

io
n

38



DynAT:  Dynamic Label Adversarial Training
Knowledge distillation framework

ICONIP (2024)



DynAT:  Dynamic Label Adversarial Training
Adversarial generation

ICONIP (2024)



DynAT:  Dynamic Label Adversarial Training
Knowledge distillation framework

ICONIP (2024)



Performance
Comparison with other typical defense methods

ICONIP (2024)



Performance 
Comparison with other defense methods

WideResNet-34-10 on CIFAR-10 dataset



Guide Model (Clean output)

Target Model (Adversarial output)

Target Model (Clean output)

D2R: Dual regularization loss with adversarial generation

44

ICANN 2025



D2R: Dual regularization loss with adversarial generation

45

ICANN 2025



D2R: Dual regularization loss with adversarial generation

A noticeably flatter loss profile can be observed in our methods, indicating improved 
robustness against adversarial perturbations

46
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(baseline)

WideResNet-34-10 on CIFAR-10 dataset

D2R: Dual regularization loss with adversarial generation

47



AdaGAT: Adaptive guidance for adversarial training

Guide Model Target Model

48PRCV 2025



AdaGAT: Comparison of the guiding model’s 
performance with and without backpropagation

49

PRCV 2025



WideResNet-34-10 on CIFAR-10 dataset

Performance
AdaGAT: Adaptive guidance for adversarial training

50PRCV 2025



Part 3

Security and Privacy 



Data privacy and Security
Model-centric federated learning 

Data is generated locally and 
remains de-centralised. Each 
client stores its own data and 
cannot read the data of 
other clients. Data is not 
independently or identically 
distributed (non-IID*)

*Non-IID (non-independent and identically distributed) data refers to datasets where samples are not drawn from 
the same underlying distribution or are not independent of each other. This means that the data exhibits skewness 
or heterogeneity across different clients or data points 52



Horizontal federated 
learning
(Sample-based/Homogenous) 
federated learning

Vertical federated 
learning
(Feature-based/Heterogeneous) 
federated learning

Multiple hospitals can collaboratively train 
a disease analysis model without sharing 
customer information. Hospitals A and B 
have the same feature but samples of 
different patients

Two Hospitals/Institutions jointly train a 
model, with the one providing users’ medical 
image data and other providing medical 
records. Hospital A has information about 
Patient A related to heart issues’ treatment 
history, and Hospital B has data about patient A’s 
monthly routine checkup history

Sachin et al . (2024). Federated learning for digital healthcare: concepts, applications, frameworks, and challenges. Computing, 106(9), 3113-3150.



Federated Learning Attack Scenario

Client 1 model

Client 2 model

Client 3 model

Clean Model 
update

Misclassification -
Reduced accuracy

(compromised)

Server (Aggregator)
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FSGM Attack in FL

# FGSM attack parameters
attack-start-round = 2 # Round when attack begins
malicious-clients = "0,2,4" # Malicious client IDs
epsilon = 0.90196 # Maximum perturbation (8/255 = 
0.03137)
attack-probability = 1.0 # Probability of attack per round
local-epochs = 20 #Local training epochs per round
target-label = " " # Target label (empty string for 
untargeted) single value

An FGSM (Fast Gradient Sign Method) attack in federated learning 
is an adversarial attack that perturbs the input data on a client's 
local model to cause a misclassification, even though the changes 
are often imperceptible to humans.

Easy attack quick win, Low 
computation overhead, less effective 

Client 1 Client 2 Client 3 Client 4 Client 5 Client 6

Attacker 
poisoned 
training of 

client 1

Attacker 
poisoned 
training of 

client 3

Attacker 
poisoned 
training of 

client 5



FSGM 
Attack in FL

Deployment running time: 33mins (10 rounds)

Client 
1

Client 
2

Client 
3

Client 
4

Client 
5

Client 
6



PGD Attack in FL

# PGD attack parameters
attack-start-round = 2 # Round when attack begins
malicious-clients = "0,2,4" # Malicious client IDs
epsilon = 0.9 # Maximum perturbation (L∞ norm)
alpha = 0.1 # Step size per iteration
num-steps = 40 # Number of PGD iterations
attack-probability = 1.0 # Probability of attack per round
random-start = true # Use random initialization
target-label = " " # Target label (empty string for 
untargeted)

A PGD (Projected Gradient Descent) attack in federated 
learning is an adversarial method where malicious clients 
use iterative gradient ascent to create adversarial 
examples that fool the global model.

High computation overhead, Strong and 
universally effective 

Client 1 Client 2 Client 3 Client 4 Client 5 Client 6

Attacker 
poisoned 
training of 

client 1

Attacker 
poisoned 
training of 

client 3

Attacker 
poisoned 
training of 

client 5



PGD 
Attack in FL

Deployment running time: 30mins (10 rounds)

Client 
1

Client 
2

Client 
3

Client 
4

Client 
5

Client 
6



Label flipping Attack in FL
# Label flipping attack parameters
attack-start-round = 2 # Round when attack begins
malicious-clients = "0,2,4" # Malicious client IDs
flip-probability = 0.95 # Probability of flipping labels
min-flip-rate = 0.9 # Minimum flip rate
max-flip-rate = 1.0 # Maximum flip rate
flip-pattern = "targeted" # Flip pattern: random, targeted, progressive, burst
flip-mapping = "0->1,1->0,2->9,9->2,3->5,5->6,6->3,4->7,7->8,8->4" # Label mapping for 
flipping (old->new,...)
progressive-rate = 0.05 # Progressive increase rate

A label flipping attack in federated learning is a 
type of data poisoning where a malicious 
client intentionally changes the labels of their 
training data to a target class, regardless of 
the original label.

Attacker change the ground truth 
of some data not all

Client 1 Client 2 Client 3 Client 4 Client 5 Client 6

Attacker 
poisoned 
training of 

client 1

Attacker 
poisoned 
training of 

client 3

Attacker 
poisoned 
training of 

client 5



Label 
flipping 
Attack in FL

Deployment running time: 29mins (10 rounds)

Client 
1

Client 
2

Client 
3

Client 
4

Client 
5

Client 
6



Gradient 
leakage attack 
on drone view 
data

https://federated.jointlab
.ai/
Gradient leakage 
(membership inference) 
attacks in federated 
learning (FL) are a type of 
privacy breach where an 
adversary attempts to 
reconstruct a client's 
private training data by 
analyzing the gradients 
shared with the server

An attacker, often the server, uses the client's shared gradients 
and the current global model to create a dummy image and 
iteratively optimizes that dummy image to match the real data 
by minimizing the distance between the dummy gradient and 
the shared gradient.

https://federated.jointlab.ai/
https://federated.jointlab.ai/


Actual drone view 
object recognition task
https://huggingface.co/spaces/
ZehaoLiu/FedAdv
PGD attack on object detection 
is challenging, we show attack 
on one client out of 5 in FedAvg
algorithms 

https://huggingface.co/spaces/ZehaoLiu/FedAdv
https://huggingface.co/spaces/ZehaoLiu/FedAdv


Hierarchical federated learning (HFL)

• Intermediate aggregation

Local devices aggregate updates before    

sending them to a  central node.

• Reduced communication overhead:

Fewer direct transmissions to ground 

stations, conserving  bandwidth.

• Scalable

Handles large number of clients with 

minimal latency.

Image source: Tursunboev et al. Hierarchical Federated Learning for Edge-Aided Unmanned Aerial Vehicle Networks. Appl. Sci. 2022

Wearable devices may transmit data to a hospital's local server, which trains a preliminary model, and 
then shares it with a central research institution for further refinement



Adversarial attacks on federated learning

65ICANN 2024



Targeted Attack Success rate (TASR)  Central Machine Learning (CML) Hierarchical Federated Leaning (HFL)

Targeted attack success rate on defense
Targeted attack success rate (TASR) on backdoor attacks: attack (dashed line ------) and after defense (solid line )

66



Attack/defense on hierarchical federated learning

Targeted Label Flipping (TLF), Untargeted Label Flipping (ULF), Client-Side Sign Flipping (CSF), and Server-Side Sign Flipping 
(SSF). For both scenarios, 50% of clients or edge servers were malicious.

Regional Attack                                    Distributed Attack

67



Defense on hierarchical 
federated learning

68

Model Discrepancy Score (MDS)

where N represents the number of metrics

Dissimilarity (Cosine similarity).

Dissimilarity quantifies the angular deviation between 

two model weight vectors

Distance (Euclidean distance).

Euclidean Distance measures the magnitude of 

deviation between two model updates

Uncorrelation (Pearson correlation).

Uncorrelation assesses the linear dependency 

between updates

Divergence (Jensen–Shannon divergence).

Jensen–Shannon Divergence (JSD) captures 

probabilistic shifts in weight distributions



Part 4

Continuity of Learning



Type of Incremental learning

70van de Ven, G.M., Tuytelaars, T. & Tolias, A.S. Three types of incremental learning. Nat Mach Intell 4, 1185–1197 (2022). https://doi.org/10.1038/s42256-022-00568-3



Catastrophic Forgetting

71

Performance on old task

Performance on new task



Class incremental  federated learning

Disentangled features refer to learning a data 
representation where each distinct, 
underlying factor of variation (like object 
shape, color, or pose) is captured by a 
separate, independent dimension in the 
latent space, making the representation more 
interpretable, where individual components 
(features) capture independent, interpretable 
aspects of the data, rather than being 
intertwined or correlated.

Condensed feature (meta 
features sets) refers to a 
transformed or derived 
feature that represents a 
subset of the original 
features or a combination 
of them

ExReplay (example replay) 

eliminates the limitations of 

exemplar selection in replay-

based approaches for 

mitigating catastrophic 

forgetting in federated 

continual learning



Ex Replay: Clients continuously learn from new class data sequences using a dual-distillation structure to 

mitigate catastrophic forgetting.

Class incremental  federated learning



Ex Replay: Clients continuously learn from new 

class data sequences using a dual-distillation 

structure to mitigate catastrophic forgetting.

The exemplar condensation process involves 
four key components: 

a gradient matching loss (𝑳𝒄𝒐𝒏𝒅) for meta-
information distillation, 
+
a feature matching loss (𝑳𝒓𝒆𝒍) for consistency 
between condensed samples and real images
+
a compensation loss (𝑳𝑴𝑲𝑪𝑳) to
address meta-information heterogeneity 
using disentangled features
= 𝑳Memory

A knowledge distillation loss
(𝑳𝑲𝑫) helps retain prior knowledge.

Class incremental  federated learning



Evaluation of multiple metrics (%) on CIFAR100 under a Non-IID setting

Remembering: calculates the 

degree of retention for previous 

tasks as part of the backward 

transfer process.

Forward Transfer (FwT): assesses 

the influence of learning a new task 

on the performance of future tasks.

Backward Transfer (BwT): 

measures the influence of learning a 

new task on the performance of 

previously learned tasks.

Forgetting: measures the average 

amount of forgetting across all tasks, 

helping to quantify how much 

information is lost as new tasks are 

learnedExReplay(ours)

Class incremental  federated learning Accuracy (ACC): measures the 

overall accuracy of the model.

ACC drop as 

model learn new 

task



RefFiL: Rehearsal free federated domain-incremental learning framework

Key steps: the 1st participant processes new domain data using global prompts from 

the 2nd to m-th participants and local prompts, enhancing robustness by aligning the 

model’s predictions across diverse domain prompts as inputs. RefFiL, a rehearsal-

free federated domain-incremental learning framework designed to overcome 

catastrophic forgetting when clients encounter new domains over time. Instead of 

storing past data, RefFiL uses a client-wise domain-adaptive prompt generator to 

create fine-grained, instance-level prompts that capture domain-specific information, 

which are then shared globally through a prompt clustering and global prompt 

learning scheme. A domain-specific contrastive prompt loss further helps models 

distinguish between prompts from similar and different domains. Experiments across 

multiple datasets show that RefFiL significantly improves robustness, cross-domain 

generalisation, and resistance to forgetting compared to existing rehearsal-free 

methods

unseen domains are continually learned in domain-incremental learning

Domain incremental federated learning 



RefFiL: Rehearsal free federated domain-incremental learning framework

RefFiL, a rehearsal-free federated domain-incremental 

learning framework designed to overcome catastrophic 

forgetting when clients encounter new domains over time. 

Instead of storing past data, RefFiL uses a client-wise 

domain-adaptive prompt generator to create 

fine-grained, instance-level prompts that capture 

domain-specific information, which are then shared 

globally through a prompt clustering and global prompt 

learning scheme. A domain-specific contrastive prompt 

loss further helps models distinguish between prompts from 

similar and different domains. Experiments across multiple 

datasets show that RefFiL significantly improves 

robustness, cross-domain generalisation, and resistance to 

forgetting compared to existing rehearsal-free methods

Domain incremental federated learning 

https://arxiv.org/pdf/2405.13900



Domain incremental federated learning 
RefFiL: Rehearsal free federated domain-incremental learning framework

Each participant first encodes local prompts using the tokenized feature map and task ID embedding. These local prompts are 

then concatenated with the feature map to compute the loss 𝐿𝐶𝐸 . Simultaneously, the feature map is combined with global 

prompts to calculate the loss 𝐿𝐺𝑃𝐿, and the loss 𝐿𝐷𝑃𝐶𝐿 is determined between global and local prompts. Subsequently, all local 

prompts, along with the updated local models, are transmitted to the central server.



Comparison of RefFiL’s performance with five baseline methods on four widely used datasets,

showcasing average accuracy (Avg %) and accuracy for each domain task (%)

Domain incremental federated learning 



Part 5

Challenges of AI Safety





Expectation
AI model training data

Reality
data in reality for testing AI model



Spurious Correlation in Medical Training Data 
Spurious correlation occur in medical training data where diagnosis results are affected by variables (e.g., 
Hospital tags, Strips, Medical devices) that are not related to the diagnostic information being predicted. This 
phenomenon leads to misleading interpretations.

Hospital tags Stripes Medical devices

Ye et al. (2024). Spurious correlations in machine learning: A survey.



Safe 
exploration

Robustness to 
distributional 

shift

Avoiding 
negative side 

effects

Avoiding 
“reward 
hacking” 
and “wire 
heading”

Scalable 
oversight 

Concrete 
Problems in 

AI Safety

AI agent learn through trial-and-
error (exploration) without 

causing harm or breaking rules in 
the real world. Unsafe situation:

Uber autonomous test vehicle 
struck and killed a pedestrian as the 

system did not identify the 
pedestrian crossing outside a 

crosswalk

Reward hacking involves the AI 
finding unintended strategies in 
the external environment to get 
high scores, while wire 
heading involves the AI directly 
manipulating its internal reward 
signal or input channels. 
Unsafe situation: A cleaning 
robot might disable its vision 
sensor to get high score as it 
would avoid seeing dirt.

Difficulty of a weaker 
intelligence (human or less 
capable AI) effectively 
supervising a more powerful or 
superhuman intelligence. Unsafe 
situation: a language model, 
trained to avoid admitting to 
harmful behaviour, learns to hide 
its misbehaviour and fabricate 
policy-compliant reasoning to 
deceive human or AI evaluators

Autonomous vehicles drives through puddles and 
splashes pedestrians because the objective function did 

not include altering speed specific to the environment. 
Other examples include bias and 

discrimination, privacy violations, misinformation 
(deepfakes), security risks, lack of transparency

An AI model maintains its 
performance (accuracy, 

reliability) even when the real-
world data it encounters differs 
from the data it was trained on. 
Unsafe situation: A medical AI 

system developed using 
patient data primarily from 

North American hospitals 
might perform poorly when 
deployed in Southeast Asia 

due to differences in patient 
demographics



References
• Fragility, Robustness and Antifragility in Deep Learning

Artificial Intelligence, Elsevier. (2024)
Pravin C, Martino I, Nicosia G, Ojha V

• Security Assessment of Hierarchical Federated Deep Learning
33rd International Conference on Artificial Neural Networks (ICANN). (2024)
Alqattan D, Sun R, Liang H, Nicosia G, Snasel V, Ranjan R, and Ojha V

• Adversarial robustness in deep learning: Attacks on fragile neurons
30th Int. Conf. on Artificial Neural Net., ICANN (pp 16-28), Springer (2021)
Pravin C, Martino I, Nicosia G, Ojha V

• Rehearsal-free federated domain-incremental learning
45th IEEE International Conference on Distributed Computing Systems (IEEE ICDCS 2025)
R Sun, H Duan, J Dong, V Ojha, T Shah, R Ranjan

• D2R: dual regularization loss with collaborative adversarial generation for model robustness
34th International Conference on Artificial Neural Networks (ICANN 2025)
Z Liu, H Liang, R Ranjan, Z Zhu, V Snasel, V Ojha

• RegMix: Adversarial Mutual and Generalization Regularization for Enhancing DNN Robustness
24th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (IEEE Trustcom 2025)
Z Liu and V Ojha

• AdaGAT: Adaptive Guidance Adversarial Training for the Robustness of Deep Neural Networks
8th Chinese Conference on Pattern Recognition and Computer Vision (PRCV 2025)
Z Liu, H Liang, X Li, V Snasel, V Ojha

• Analysis of deep learning under adversarial attacks in Hierarchical Federated Learning
High-Confidence Computing, Elsevier. (2025)
Alqattan DS, Snasel V, Ranjan R, Ojha V

• Dynamic Label Adversarial Training for Deep Learning Robustness Against Adversarial Attacks
31st International Conference on Neural Information Processing (ICONIP). (2024)
Liu Z, Duan H, Liang H, Long Y, Snasel V, Nicosia G, Ranjan R and Ojha V

85

http://arxiv.org/abs/2312.09821
http://arxiv.org/abs/2312.09821
https://arxiv.org/abs/2408.10752
https://arxiv.org/abs/2408.10752
https://arxiv.org/pdf/2201.12347.pdf
https://arxiv.org/pdf/2201.12347.pdf
https://arxiv.org/pdf/2405.13900
https://arxiv.org/pdf/2405.13900
https://arxiv.org/pdf/2405.13900
https://arxiv.org/pdf/2405.13900
https://arxiv.org/pdf/2405.13900
https://arxiv.org/pdf/2405.13900
https://arxiv.org/pdf/2405.13900
https://arxiv.org/pdf/2405.13900
https://arxiv.org/pdf/2510.05317
https://arxiv.org/pdf/2510.05317
https://arxiv.org/pdf/2508.17265
https://arxiv.org/pdf/2508.17265
https://doi.org/10.1016/j.hcc.2025.100321
https://doi.org/10.1016/j.hcc.2025.100321
https://www.arxiv.org/abs/2408.13102
https://www.arxiv.org/abs/2408.13102


Safeguarding Artificial Intelligence
AI safety problems and challenges

Varun Ojha
Senior Lecturer in Artificial Intelligence
AI Theme Lead National Edge AI Hub
School of Computing, Newcastle University
varun.ojha@newcastle.ac.uk
https://ojhavk.github.io/


	Slide 1
	Slide 2
	Slide 3: Safeguarding Artificial Intelligence Agenda
	Slide 4: Part 1 AI Safety Contexts 
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Safeguarding AI challenges
	Slide 10: Part 2  Model Robustness
	Slide 11: Adversarial Attacks
	Slide 12: Consequences of Adversarial Attacks
	Slide 13: White box attack: Gradient based attacks
	Slide 14
	Slide 15
	Slide 17: Adversarial Robustness
	Slide 18: What can we promise for DNN robustness?
	Slide 19: Challenges for DNN robustness
	Slide 20: Attacks on fragile neurons
	Slide 21: Adversarial targeting algorithm
	Slide 22: Adversarial targeting algorithm
	Slide 23: Fragile kernels / neurons
	Slide 24: How can we ensure DNN robustness?  
	Slide 25: Deep learning and systems
	Slide 26: Fragility, robustness and antifragility
	Slide 27: Synaptic filtering algorithm
	Slide 28: Learning landscape  (performance vs epoch vs filtering strength)
	Slide 29: Learning landscape  (performance vs epoch vs filtering strength)
	Slide 30: Parameter scores (layer-wise and epoch wise)
	Slide 31: Selective backpropagation for DNN robustness
	Slide 32: Adversarial training for DNN robustness
	Slide 33: Loss functions
	Slide 34: RegMix: Adversarial mutual and generalization regularization
	Slide 35: Loss landscape comparison  RegMix: Adversarial mutual and generalization regularization
	Slide 36: Classification Visualisation RegMix: Adversarial mutual and generalization regularization
	Slide 37: Performance RegMix: Adversarial mutual and generalization regularization
	Slide 38: Knowledge distillation for DNN robustness
	Slide 39: DynAT:  Dynamic Label Adversarial Training
	Slide 40: DynAT:  Dynamic Label Adversarial Training
	Slide 41: DynAT:  Dynamic Label Adversarial Training
	Slide 42: Performance  Comparison with other typical defense methods
	Slide 43: Performance  Comparison with other defense methods
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: AdaGAT: Adaptive guidance for adversarial training
	Slide 49: AdaGAT: Comparison of the guiding model’s performance with and without backpropagation
	Slide 50
	Slide 51: Part 3  Security and Privacy 
	Slide 52: Data privacy and Security Model-centric federated learning 
	Slide 53
	Slide 54: Federated Learning Attack Scenario
	Slide 55
	Slide 56: FSGM Attack in FL
	Slide 57: FSGM Attack in FL
	Slide 58: PGD Attack in FL
	Slide 59: PGD  Attack in FL
	Slide 60: Label flipping Attack in FL
	Slide 61: Label flipping Attack in FL
	Slide 62: Gradient leakage attack on drone view data
	Slide 63: Actual drone view object recognition task
	Slide 64
	Slide 65: Adversarial attacks on federated learning
	Slide 66: Targeted attack success rate on defense
	Slide 67: Attack/defense on hierarchical federated learning
	Slide 68: Defense on hierarchical federated learning
	Slide 69: Part 4  Continuity of Learning
	Slide 70: Type of Incremental learning
	Slide 71: Catastrophic Forgetting
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80: Part 5  Challenges of AI Safety
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85: References
	Slide 86

