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Safeguarding Artificial Intelligence
Agenda

® Al Safety Context

® Model Robustness

® Security and Privacy
® Continuity of Leaning

® Broader Context of Al Safety and Challenges



Part 1
Al Safety Contexts
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Security Vulnerabilities Al Models on the Edge
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Data Stage

(The Brain of Al) (The Factory of Al)
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Safeguarding Al challenges

® Monitoring of Data/Model Quality

How to monitor cyber-disturbances impact on the quality of data, Al
algorithms learning and the overall application resilience?

® Recovery of Data/Model Quality

How to recover data and Al model quality that are impacted by cyber-
disturbances and ensure suitability for Al model deployment on devices at
Tiers 1, 2 of EC architectures ?

® Assurance of Continuity of Data Quality and Model Quality

How to assure Al algorithms continually adapt to EC environments where
unknown cyber-disturbances that were not present in the original training
dataset?
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Model Robusthess



Adversarial Attacks
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Consequences of Adversarial Attacks

Attacks are designed to
subtly alter inputs to
mislead Al models during
inference, causingthem
to misclassify specific
inputs

Poison Attacks

Training Data (No Poisoning) Training Data (Poisoned)
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“Poison” -

30 MPH 0.986 Mislabeled Data

Attacks are designed to subtly
alter the labels of training
examples or inject anomalous
data points; thus, attackers
can manipulate the model to
favour certain outcomes or
failunder specific conditions

Evasion Attacks
Stop Sign 0.947 ' Green Light 0.92
Correct Deceptive Tweaks Dangeoursly
Classification (Stickers) Misclassified
Inversion Attacks

Stage 1: Biometrics Theft
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Stage 2: Follow Up Attack
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Hacker

Target Model

Attackers can deduce
characteristics or even
reconstruct portions of
the original training
dataset

Inference Attacks
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Data
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Hacker "Yes"

Target Model

Adversary's attempts to deduce
sensitive information from an Al
model by examining its outputs and
behaviours
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White box attack: Gradient based attacks

Attacks known the model (gradient/parameters) and carefully craft an attack on the model

High X1 and x, are original and
Loss clean images with low loss
values

x'1 and x’, represent their
corresponding adversarial
images with high loss values

Classification boundary

e

”r‘iéiﬁgnant: 100%7;‘»". 4

Low
Loss

x1: adversarial image
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Al Safety Concern in Medical Image Analysis

Original
Image

Adversarially
Modified

Ophthalmology Radiology Pathology

Unperceived changes in images make misclassification

Bortsova et al. (2021). Adversarial attack vulnerability of medical image analysis systems: Unexplored factors. Medical Image Analysis,



Original

Adversarially

Al Safety Concern in Medical Image Analysis

Image

Modified

Ophthalmology Radiology Pathology

Accuracy of detection decreases even on an unperceived modification

Bortsova et al. (2021). Adversarial attack vulnerability of medical image analysis systems: Unexplored factors. Medical Image Analysis,



Adversarial Robusthess caiculated using Deep Neural Networks
(DNNs) weights (white-box attack)

X Perturbation 0 ' s
] magnitude i
+ & %
Input example Adversarial perturbation Adversarial example
Predicted as ‘Horse’ (‘Plane’ class) Predicted as ‘Plane’

The general premise of a robustness analysis is to subject DNNs to the ‘worst case®
conditions and evaluate the ability for a DNN to remain invariant under such settings.
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What can we promise for DNN robustness?

® We can use adversarial attacks to identify the strengths and
weaknesses of DNN architectures.

® Upon identifying the strengths and weaknesses of DNN architectures
we can improve the performance of DNNs against both
adversarial attacks and the clean dataset.

® DNNs robustness analysis can develop stronger networks that are
capable of performing under sub-optimal conditions.
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Challenges for DNN robustness

® DNNs are susceptible to adversarial attacks and thus any DNN prediction can
be unreliable and vulnerable to an adversary.

® How each component of a DNN behaves due to an adversarial attack is a
lesser-known area of research.

® Adversarial attacks on DNNs has been well studies on state-of-the-art datasets,
however, adversarial attacks on DNNs and their remedies has rarely been
studied extensively.
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Attacks on fragile neurons

We remove kernel from the first convolutional layer and define fragile nodes to be all
nodes that reduce the model performance on the test set to be below the mean dropout

performance.
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Adversarial targeting algorithm

We measure the average magnitude difference d at the output of the first
convolutional layer, between fragile and non-fragile neurons, on both
clean and adversarial inputs.
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Adversarial targeting algorithm

We measure the average magnitude difference d at the output of the first
convolutional layer, between fragile and non-fragile neurons, on both
clean and adversarial inputs.
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How can we ensure DNN robustness?

= Establish the relationship between DNN parameters and adversarial
attacks to identify parameters that are targeted by the adversary.

* Formalise the notions of DNN parameter perturbations and adversarial
attacks as internal and external stressors on DNNSs.

= Define fragility, robustness, and antifragility in DNN to encapsulate
parameter characterisations and

= Evaluate the effects of only re-training parameters characterised as
robust and antifragile (selective backpropagation).
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Deep learning and systems

e.g., model poisoning
attack or model parameter
modification

Stress on the System T
(proposed analysis)

Internal stress
» (synaptic filtering)

X y

External stress
(adversarial attack)

l

e.g., data poisoning

Change in Performance i
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Fragility, robustness and antifragility

= anew method of

Training set Clean test accuracy Adv. test accuracy
@ @ Unperturbed parameter filtering
nperturoe (synaptic filtering)
DNN A

= synaptic filtering of all
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Clean data of a DNN architecture.

Parameter
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Synaptic filtering algorithm /... - { 0 if 0< oy,

1 otherwise

attack generation parameter filtering filtering score
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Learning landscape
(performance vs epoch vs filtering strength)

The influence of parameters
varies as the network is trained
and learns more dataset
features.

o
o

DNN Accuracy
o o
N

The three different filters hq, h,,
and h; highlight different
parameters as influential ()
and non influential (M) to DNN
performance.

The combined performance
highlights the parameters that
are most influential (M) using
Qo wlan i o 20l all the three different filters.
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Learning landscape
(performance vs epoch vs filtering strength)

We show that the
same layer of a DNN
has similar learning
landscapes for
different datasets on
filterining.

This shows that there
are invariant
characteristics of
DNN architectures,
even when applied to
different datasets.
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Different layers in the network show to have different characteristics when subjected to the
parameter filters (internal stressor). The results are the combined responses using filters h4,
h,,and hs.
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Parameter scores (layer-wise and epoch wise)

We say that fragile parameters are important to network performance robust parameters are unaffected by
internal and external stress, and antifragile parameters can be removed to improve performance .
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Selective backpropagation for DNN robustness
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When we retrain
networks at periodic
intervals using only
the characterised
robust and
antifragile layer
parameters (selective
backpropagation), we
observe an increase
in adversarial
performance, and
clean performance
for some networks
and datasets.
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Adversarial training for DNN robustness

I
I Student
I Target
I Model
I
I

Perturbation *

magnitude T & *

(‘Plane’ class)

Clean example
Predicted as ‘Horse’

Adversarial example
Predicted as ‘Plane’

Backpropagation

Clean Output
distribution

Minimize CE + shared
loss (e.g., KL- - -
divergence, MSE)

Adversarial Output
distribution
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Loss functions

Loss function may be more influential in Al than architecture as we have seen in earlier results that parameters
of any model size and architecture converge to similar weight distribution. This leaves with two other variables
to pay attention to: gradient decent (backprop algo) and loss function (e.g. cross entropy)

Mean Absolute Error (MAE) :
MAE calculates loss by considering all the errors on the same scale.

Therefore, network will not be able to distinguish between them just
based on MAE, and so, it’s hard to alter weights during
backpropagation.

Mean Squared Error (MSE) :
MSE helps converge to the minima efficiently, as the gradient

reduces gradually. Ate the same time, extremely large loss may
lead to a drastic jump during backpropagation, which is not
desirable. MSE is also sensitive to outliers.

Root Mean Squared Error (RMSE) :
Less extreme losses even for larger values, however, near
minima, the gradient change is abrupt

Loss

3.0 -

2.5

2.0

1.0 4

0.5

0.0

Loss Functions
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RegMix: Adversarial mutual and generalization regularization

IEEE Trustcom 2025

Backpropagation
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Loss landscape comparison
RegMix: Adversarial mutual and generalization regularization

IEEE Trustcom 2025

(a) FGSM.PGI (b) FGSM-PGK (¢) FGSM-AMR (Ours) (d) FGSM-AGR (Ours)
Adversarial Adversarial
Mutual Generalization

Regularization Regularization
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Classification Visualisation
RegMix: Adversarial mutual and generalization regularization

Plot: Predicted adversarial and clean probability distribution

t-SNE Dim 2

t-SNE of PGD, Clean & GT - FGSM_PGK under class [8]

t-SNE of PGD, Clean & GT - Ours under class [8]

16 Clean
Clean Ground truth
¢ Ground truth 100 Adv input
100 1 Adv input -

504

—50 4

—1001

€

Ground truth

-100 0 50

-50
t-SNE Dim 1

t-SNE Dim 2

50 1

-50 4

-100 1

\

&~ ¢ Ground truth

-100 -50 50 100

0
t-SNE Dim 1

36



Performance
RegMix: Adversarial mutual and generalization regularization

WideResNet-34-10 on CIFAR-100 dataset

Method Clean PGD-10 PGD-20 PGD-50 C&W AA
Best/Last | Best/Last | Best/Last | Best/Last | Best/Last | Best/Last
PGD-AT [56] 57.52/57.50(29.60/29.54 | 28.99/29.00 | 28.87/28.90 | 28.85/27.60 | 25.48/25.58
FGSM-RS [68] 49.85/60.55| 22.47/0.45 | 22.01/0.25 | 21.82/0.19 | 20.55/0.25 | 18.29/0.00
FGSM-CKPT [35] |60.93/60.93|16.58/16.69|15.47/15.61|15.19/15.24|16.40/16.60|14.17/14.34
FGSM-SDI [33] 60.67/60.82 [ 31.50/30.87|30.89/30.34 | 30.60/30.08 | 27.15/27.30|25.23/25.19
NuAT [63] 59.71/59.62 | 27.54/27.07 | 23.02/22.7220.18/20.09 [ 22.07/21.59|11.32/11.55
GAT [62] 57.01/56.07{24.55/23.92|23.80/23.18 |23.55/23.0022.02/21.93|19.60/19.51
FGSM-GA [2] 54.35/55.10(22.93/20.04 1 22.36/19.13 |22.20/18.84 | 21.20/18.96 | 18.88/16.45
Free-AT (m=8) [59]52.49/52.63 |24.07/22.86|23.52/22.3223.36/22.16|21.66/20.68 | 19.47/18.57
FGSM-PGI [30] 58.78/58.81|31.78/31.60|31.26/31.06 |31.14/30.88 | 28.06/27.72|25.67/25.42
FGSM-PGK [31] [56.27/58.13|33.15/32.38|32.85/31.90|32.83/31.87(28.39/27.95|26.86/26.35
FGSM-SAR (ours) [56.08/55.71|33.26/33.06|32.93/32.86|32.84/32.68 | 28.64/28.89 |27.27/27.22
FGSM-AGR (ours) |53.57/53.57|33.29/33.29 | 33.02/33.02| 32.95/32.95 | 28.91/28.91 | 27.42/27.42




Knowledge distillation for DNN robustnhess
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DynAT: Dynamic Label Adversarial Training

Knowledge distillation framework
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DynAT: Dynamic Label Adversarial Training

Adversarial generation
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DynAT: Dynamic Label Adversarial Training

Knowledge distillation framework
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Performance

Comparison with other typical defense methods
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Performance
Comparison with other defense methods

WideResNet-34-10 on CIFAR-10 dataset

Method Clean PGD-10 PGD-20 PGD-50 C&W AA
PGD-AT 60.89 32.19 31.69 3145 30.1 27.86
TRADES 58.61 2920 28.66 28.56 27.05 25.94
Others SAT 62.82 28.1 27.17  26.76 27.32 24.57
AWP 60.38 34.13 33.86 33.65 31.12 28.86
LBGAT 60.64 35.13 34775 34.62 30.65 29.33
DYNAT 67.25 28.03 2697 2681 26.62 24.10
Ours DYNAT-AWP (¢ =1) 62.29 3545 35.09 3492 31.50 30.20
DYNAT-Inner-AWP (¢ =1)|58.87 35.61 35.09 35.05 32.10 29.70




D2R: Dual regularization loss with adversarial generation

ICANN 2025
(a) Adversarial Samples Generation Process (b) Adversarial Training Process
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Clean Image 8 Guide Model CLG : : ! Shared weight l ALT A\
; | S : |
Adversarial ! : . . _.| Adversarial KL
Generation » : I Training [ L, —
- |
Adyersarlal : : ALT CLG
P Noise 8 - ‘ o
J’"‘Lﬁﬂg — @ // — W o h ! o ~LSKLC
:,';w : ) % \ A | /
| & ~ | Lee CLT
' Random Noise Target Model Adversarial Image Guide Model [ ][] B [] one-hot Label
5_ ) _S_g_: _S_tf)_p_—_g[‘a_(ili_e_n_t_(_)!:)_e_r?t_qr_ B _Q : _A_q(_j[t[qr_\ _QF_)?r_a_t_o_r_ - _A_d_v_e_r_s_a!'i_a_[_Logits From Target Model (ALT) Clean Logits From Guide Model(CLG) Clean Logits from Target model(CLT)
. Ln(x,y) =minkE {/1[3 g,, x
Guide Model (Clean output) p2r (%> ) 0,0, (x,y)€D cil w y)
! !
Target Model (Adversarial output) + EMSE(fg("x)') f;(x ) + O«’EKL(fg(x) | f;(x )

Target Model (Clean output) + B Lk (Fi) || &) — L (@) || £}



D2R: Dual regularization loss with adversarial generation

ICANN 2025
Loss Trend Under Adversarial Training

2.5 —eo— CE Loss
—m— MSE Loss
—4— Adv KL Loss
504 —4+— KL Asymmetry Diff
)
E 15'
©
=
n
n
9 1.0
0.5
0.0 T T 0000000090000 00000990999000000000000000000000000000e00000eteemm et

0 20 40 60 80 100
Ennchc
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D2R: Dual regularization loss with adversarial generation

ICANN 2025

Baseline Loss Landscape D2R Loss Landscape D2R-CAG Loss Landscape

g
rad 0.0
e
macheerS 1»0—1.0 >

(a) Baseline Method (b) D2R (ours) (c) D2R-CAG(ours)

A noticeably flatter loss profile can be observed in our methods, indicating improved

robustness against adversarial perturbations N



D2R: Dual regularization loss with adversarial generation

WideResNet-34-10 on CIFAR-10 dataset

Method Clean PGD-10 PGD-20 PGD-50 C&W AA
PGD-AT 85.17 56.07 55.08 5488 5391 51.69
TRADES 85.72  56.75 56.1 55.9 53.87 53.40

MART 84.17  58.98 58.56 58.06 54.58 51.10

FAT 87.97  50.31 49.86 48.79  48.65 47.48
GAIRAT 86.30 60.64 59.54 58.74  45.57 40.30
AWP 85.57  58.92 58.13 5792  56.03 53.90
LBGAT (baseline) 88.22  56.25 54.66 54.30 54.29 52.23
LAS-AT 86.23  57.64 56.49 56.12 55.73 53.58
RAT(TRADES) 85.98 - 58.47 - 56.13 54.20
D2R(ours) 86.00 58.17 56.88 56.60 55.69 54.04
D2R-CAG(ours) 85.68  58.50 57.22 56.73  56.66 54.65
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AdaGAT: Adaptive guidance for adversarial training

Clean Logits

Clea nII ma
I Lada®MSE  Lghare

4 Adversarlal Noise T //1

ge

Adversarial Logits

Adversarial Image Target Model

@ : Addition operation — : Forward operation <€— :Gradient flow

PRCV 2025

L AgaGAT-MSE = n;in{ Lok (f eg(x)a Jf)

4

+ Lpare + A Lygamse (fe,(x +9), fgg(x)) }

L AGaGAT-RMSE = n}gin{ Lcg (f 0, (%), v ) + Lpare

g

+ A L grMsE (fe,(x +9), ff’g(x)) }

Guide Model Target Model
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AdaGAT: Comparison of the guiding model’s
performance with and without backpropagation

PRCV 2025
9----- ----== ®
90 -
--".'_'_.‘.-‘-’.‘;: ——.""’ -
M SN e .-
80 _H.(/'

Test Accuracy

40 -

30 A

--®- Guide Clean Acc Non-BP
—m— Target Robust Acc Non-BP

| --&- Guide Clean Acc with BP

—#— Target Robust Acc with BP

90 A

~J (o]
o o
L

9]
(=]

Test Accuracy

40

wu
o
1

--®- Guide Clean Acc (Baseline)

| —m— Target Robust Acc (Baseline)

--@- Guide Clean Acc (with our Loss)

| —#— Target Robust Acc (with our Loss)

Robustness Improvement Area

Epochs
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Performance
AdaGAT: Adaptive guidance for adversarial training

WideResNet-34-10 on CIFAR-10 dataset

Method PGD-10 PGD-20 PGD-50 C&W AA
TRADES 29.20  28.66 28,56 27.05 25.94
SAT 28.10  27.17  26.76  27.32 24.57
LBGAT (baseline)  32.05 30.77 3042 28.72 27.16
AdaGAT-MSE (ours) 3250 31,59  31.31 29.24 27.69
AdaGAT-RMSE (ours) 32.63 31.63  31.35 29.37 27.79

PRCV 2025
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Part 3

Security and Privacy



Data privacy and Security
Model-centric federated learning

Data is generated locally and | fhwene 3 ental e
. . odel” /1N

remains de-centralised. Each R Google Cloud _
client stores its own data and I local ML weights o
cannot read the data of % becryption and

. . by {:\ aggregation of local ML
other clients. Data is not " weights to Central ML
independently or identically @ommmm @O
distributed (non-11D*) e e

G Local private and
secure data

3
KJ Local secure training .

52



Horizontal federated Vertical federated

learning learning
(Sample-based/Homogenous) (Feature-based/Heterogeneous)
federated learning federated learning
Multiple hospitals can collaboratively train Two Hospitals/Institutions jointly train a
a disease analysis model without sharing model, with the one providing users’ medical
customer information. Hospitals Aand B image data and other providing medical
have the same feature but samples of records. Hospital A has information about
different patients Patient A related to heartissues’ treatment
ooes history, and Hospital B has.data about patient A’s
1 0000 monthly routine checkup history
ﬂ > 0000
E | 0000 p \
Hospital A | 4 ()(J(J[ aeans
: 1 UOJOU |-
4 oee ﬂ 2 000 [ mOm A
8§ [0 - (2000070007 B
E ;000 0000, 000 &
Hospital B \8 00 JUU 5 Hospital B
- /

Sachin et al . (2024). Federated learning for digital healthcare: concepts, applications, frameworks, and challenges. Computing, 106(9), 3113-3150.



Federated Learning Attack Scenario

Clients

" Local Model Update
+ Poisoned Data

Server (Aggregator)

Aggregates
Updates

Malicious
Model Update
>

Benign Clients ,l‘

Federated

7 Send Clean Updates |
J

t

" Local Model Update
+ Clean Data

»
Clean Model \ Averaging

update ‘

" Global Model |
Update '

(compromised)

Impact

FN 5 E Client 1 model

Client2 model

(Updated)

M Client 3 model
(Updated)

Corrupted Global Model

4

Misclassification -
Reduced accuracy




Automated Target
Recogntion (ATR) System

Data Acquistion
(Survelilance Drone)

ATR Processing & Deep
Learning Model

Human-Computer Interface
(Command Center)

Convolutional Neural
Netwwork (CNN)

\

Object Detection @

& Classification

False
Cassification:
Civililan Truck




FSGM Attack in FL

Adversrial Attack Generation

An FGSM (Fast Gradient Sign Method) attack in federated learning
is an adversarial attack that perturbs the input data on a client's

local model to cause a misclassification, even though the changes
are often imperceptible to humans.

Easy attack quick win, Low
computation overhead, less effective

Central Server
(Agggeator)

1. Original Image: "Tank

Label: "Tank

Attacker Attacker

Attacker
poisoned poisoned poisoned
training of training of training of

client 1 client 3 client5

2. Calculate Sign
of Gradient

% sign$AL)
Gradient of Loss w.rt. Image
4. Add Scaled Signed Gradient
x' =x €+ sign(NA, L)

single step E

5. Adverserial Example
Adversial Image: "Tank”
(Classified as “Civilian Truck)

Attack Successful:
Model Misclassifies
“Tank as “Civillian Truck)




Central Server Aggregation Time (Server Model Aggregation)
(Agggeator)

01
0.08

0.06

FSGM
Attack in FL

0.04

Time (seconds)

0.02

Pl
fNCY) A A DU S

3 4 5 6 7 8 9 10
Training Round

Communication Overhead

Global Test Loss Over Rounds

== Gicbal Test Loss

Deployment running time: 33mins (10 rounds) A Tk beaion

—
£ fgsm Attack - /

Round: 3 | Client: server

0.8
Epsilon: 0.9020 &
-
0.4
True Label: cat | Original Prediction: cat + Adversarial Prediction: bird (B
0.2
3 5 >
% 1 2z a 4 5 [ 7 8 ¥
Original Step1 Adversarial Training Round
Global Test Accuracy Over Rounds
True Label: ship | Original Prediction: ship » Adversarial Prediction: airplane ([ENZ) A Atk
100% S
I —&— Global Test Accuracy
- - I
- - * Best Accuracy
1
- ) - - ao%b\?\v/\/_\’,‘
1
1
Original Step1 Step 2 Step 3 Step 4 1
60%% 1
=
2 I
E] 1
=1
True Label: ship | Original Prediction: ship + Adversarial Prediction: truck (B < Lo :
1
1
20% !
) - |
1
1
Original Step1 Step 2 Step 3 Step 4 Adversarial 1
0%, 1 2 3 4 5 6 7 8 9

Training Round



example at foo e globa ode
e 0 o atlc DVE ead DNE ando

Central Server

(Agggeator)

Client 1 Client2 Client4 Client5 Client6

PGD Adverssial Attack Generation

2. Calculate Gradient
Gradient of Loss
f . w..l. Image

T Itefations

1. Original Image: "Tank"

5. Adverserial Example

Label: “Tank"

3. Signed Gradient & Step 4. Signed Gradient & Step 5. Repeat (T &-Ball) =

X' =x+a-sign(AA L)

-

Advererial Image: "Tank"

. Clip values to £-budget (Classified as "Civilian Truck’)

€: Maximum pertbuation strength
sign(): Sign function

(L Gradient the loss function

a: Step size

T: Number of loss iterations

Attack Successful: Model Misclassifies

"Tank as "Civilian Truck"




Global Test Loss Over Rounds

Central Server
(Agggeator)

I, Attack

PGD
Attack in FL

—#— Global Test Loss

14 * Best Loss

12

0.8

0.6
0.4

0.2

Deployment running time: 30mins (10 rounds)

) U S S SS———- -

0
0 1
£ PGD Attack
Round: 10 | Client: O

Epsilon: 0.9000 Global Test Accuracy Over Rounds

True Label: horse | Original Prediction: horse + Adversarial Prediction: frog ([ 100% I, Attack
—&— Global Test Accuracy
Y Best Accuracy
' > =3 2 S
B0
original Step1 Step 4 Adversarial

I
I
I
I
I
I
I
True Label: automobile | Original Prediction: automobile + Adversarial Prediction: deer |
I
I

60%
oy
]
[
s g =
> N [=}
. ' . 2
A0
original Step1
True Label: ship | Original Prediction: ship + Adversarial Prediction: deer 2004

> -

Original Step1 Step2 Step3

|

|

|

|

|

|

|

o |
"o 1 2 3 4 5 B 78 g 10

Training Round



L a b e l fli p p i n g A‘tt a C k i n F L 1. Original Training Data 3 Corrupted Training Dataset

Label: Dog

A label flipping attack in federated learning is a
type of data poisoning where a malicious

Y Flip ‘Cat
Label: "Dog" FLIP LABEL W Label: Dog’

. | ' ' e Label: D
client intentionally changes the labels of their 9 M abel: "Cat’ g ot faaljivedjpestCat
ini Bl * vt
training data to a target class, regardless of . =
g g , g Attacker change the ground truth %

the original label. of some data not all

£ label_flipping Attack
Central Server

(Agggeator)

Round: 3 | Client: server

s N e N ' N s N (

ht-alhlﬂd
,-"’ Distribaution

True Label: True Label: True Label: True Label: True Label:
automobile automobile automobile automobile automobile

Client1 lient5 Client 6

(o]
Poisoned Label: Poisoned Label: Poisoned Label: Poisoned Label: Poisoned Label: _'?“-‘. - —.,_*_.— -W‘ _
airplane airplane airplane airplane airplane ® '

Model Prediction: Model Prediction: Model Prediction: Model Prediction: Model Prediction: T T T
airplane airplane airplane airplane airplane Attacker Attacker Attacker
poisoned poisoned poisoned

\ J J \ 0. J \ % training of training of training of
client 1 client 3 client 5




Label
fllpplng

Central Server
(Agggeator)

Deployment running time: 29mins (10 rounds)

£ label_flipping Attack

Round: 3 | Client: server

a N g

True Label: True Label:

automobile automobile

|
~

Poisoned Label: Poisoned Label:

airplane airplane

|
N N

Model Prediction: Model Prediction:

airplane

v Attack Successful

airplane

7 Attack Successful

=

True Label:
automobile

|
~

Poisoned Label:

¢«

Model Prediction:

airplane

7 Attack Successful

True Label:
automobile

+

Poisoned Label:
airplane
\)

Model Prediction:
airplane

v Attack Successful

True Label:
automobile

Poisoned Label:
1rp lc

Model Prediction:
airplane

v Attack Successful

Accuracy

Loss

Global Test Loss Over Rounds

I, Attack
1
0.8
0.6
0.4
0.2
0
0 1 2 3 4 5 6 7 8 9 10

Training Round

Global Test Accuracy Over Rounds

I, Attack

100%%

800

G0

4004

2004
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Training Round

—&— Global Test Loss

* Best Loss
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1. Select an Image 3. Results

Gradient
leakage attack [EEGEEEEE
onh drone view
data

Gradient leakage
(membership inference)
attacks in federated
learning (FL) are a type of |-
privacy breach where an Normal L (No Attack)
adversary attempts to
reconstruct a client's
private trai ning data by Defense (FedKL) An attacker, often the server, uses the client's shared gradients

analyzing the gradients ~ and the current global model to create a dummy image and
: | R Shmnlation | iteratively optimizes that dummy image to match the real data
shared with the server | - by minimizing the distance between the dummy gradient and

2. Configure Simulation

@ Gradient Leakage Attack (GRNN)

Stop Attack the shared gradient.


https://federated.jointlab.ai/
https://federated.jointlab.ai/

Federated Adversarial Attack — FGSM/PGD Demo

Adversarial examples are generated locally using a client-side model’s gradients (white-box), then evaluated against the server-side aggregated (FedAvg) central

model. If the perturbation transfers, it can degrade or alter the FedAvg model’s predictions on the same input image.

Actual drone view
object recognition task

Evaluation model

Client model weights/fed_model2.pt

PGD attack on object detection
Is challenging, we show attack :
on one clientout of 5in FedAvg -
algorithms

random noise

normal gradient: A,

Public malicious gradient:

dataset
alpha (PGD step)

9 ———"

PGD iterations 10

¢ —

Confidence threshold (live)

Client 1 Client 2 Client k Client n
(Malicious
participants)



https://huggingface.co/spaces/ZehaoLiu/FedAdv
https://huggingface.co/spaces/ZehaoLiu/FedAdv

Hierarchical federated learning (HFL)

Wearable devices may transmit data to a hospital's local server, which trains a preliminary model, and
then shares it with a central research institution for further refinement

® Intermediate aggregation

Cloud server

Local devices aggregate updates before

Edge
server 1

Edge
server N

: Shared data
) f

sending them to a central node.

Edge
server 4

® Reduced communication overhead

Fewer direct transmissions to ground

stations, conserving bandwidth.

* Scalable \3@@@

Handles large number of clients with

minimal latency.

Image source: Tursunboev et al. Hierarchical Federated Learning for Edge-Aided Unmanned Aerial Vehicle Networks. Appl. Sci. 2022



Adversarial attacks on federated learning

Training time Inference time

| | & |
'] l 1

Model Global Clean Data Aggregation Q o 9 Adversarial Neural
poisoning model dataset poisoning greg Training {5 Inference Training cleanse

ICANN 2024 65



Targeted attack success rate on defense

Targeted attack success rate (TASR) on backdoor attacks: attack (dashed line ------) and after defense (solid line

)

mnist fashion-mnist cifarlO

100

90 +

80

70 4

60

TASR %

50

40

30

20 4

Percent of mailious clients %

~%- 2L FL -~ 4L HFL —e— 2L FL(Def) —e— 4L HFL(Def)
~-s-- 3L HFL -3- 4L HFL-O —o— 3L HFL(Def) —o— 4L HFL-O(Def)
-%- 3L HFL-O -+%- CML —e— HFL-O(Def) —e— CML(Def)

Targeted Attack Success rate (TASR) Central Machine Learning (CML) Hierarchical Federated Leaning (HFL) 66



Attack/defense on hierarchical federated learning

Regional Attack Distributed Attack

__ALHFL | [ 3WHFL | | 4LHFL | | 3LHFL
___Global server
_Regional servers
- Model (il Fdge servers |
 Discrepancy || QU SR
___ Clients
LIE2 TUEI IGEL

__ AttackScenariol L Attack Scenario2 |

Malicious region Semi-malicious region Semi-benign region Benign region

Targeted Label Flipping (TLF), Untargeted Label Flipping (ULF), Client-Side Sign Flipping (CSF), and Server-Side Sign Flipping
(SSF). For both scenarios, 50% of clients or edge servers were malicious. 67



Defense on hierarchical

federated learning
Model Discrepancy Score (MDS)

MDS = /% 3L, (Normalized Metric;)’
where N represents the number of metrics

Dissimilarity (Cosine similarity).

Dissimilarity quantifies the angular deviation between
two model weight vectors

Distance (Euclidean distance).

Euclidean Distance measures the magnitude of
deviation between two model updates
Uncorrelation (Pearson correlation).
Uncorrelation assesses the linear dependency
between updates

Divergence (Jensen-Shannon divergence).

Jensen—Shannon Divergence (JSD) captures
probabilistic shifts in weight distributions

9
S
o

2
'S
IS

Model Discrepancy Score
=} =}
B »
o N

e
W
©

1
'S
N

e
'
=)

TLF-Mnist
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Aggregation Rounds
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Part 4

Continuity of Learning



Type of Incremental learning

TASK-INCREMENTAL
LEARNING

4

Model A+B+C

Model learns distinct tasks sequentially,
often with task-specific outputs or heads,
without forgetting previous ones.

DOMAIN-INCREMENTAL
LEARNING

DOMAIN 1

(¢.9., Daytime Drivk_n?

By

DOMAIN 2 -
(e.g., Nighttime Driving) ADAPTED MODEL
_ -~
DOMAIN 3 (02)
(e.a, Snowy Driving)
e &
// L
ADAPTED MODEL
(D3)

Model adapts to changing data distributions
(domains) within the same task, maintaining
performance across all domains.

CLASS-INCREMENTAL
LEARNING

CLASSES 1-5
\ (.8, Animals: Cat, Dog...

sll'E [T

INITIAL MODEL
(5 Classes)

CLASSES 6-10
(eg,, Vehicles: Car, Bus...)

~ - e
Ny e r S

®

UPDATED MODEL
(10 Classes)

CLASSES 1115
(e, Fruits: Apple, Banana..)

90

@

FINAL MODEL
(15 Classes)

Model progressively learns new classes,
expanding its output capability without access
to previous class data and without forgetting.

70



Catastrophic Forgetting

Sequential training

0000001000000
0000001000000

Performance

Performance on new task e, @

Performance on old task

Time

CATASTROPHIC
FORGETTING N

N

OLD TASK @ NEW TASK

9., CATS 9.
(e ) FORGOTTEN \£9.4D065) LEARNED

71



Class incremental federated learning

Disentangled Features

Disentangled features refer to learning a data
representation where each distinct,
underlying factor of variation (like object
shape, color, or pose) is captured by a
separate, independent dimension inthe
latent space, making the representation more
interpretable, where individual components
(features) capture independent, interpretable
aspects of the data, rather than being
intertwined or correlated.

Condensed Exemplars

Condensed feature (meta
features sets) refers to a
transformed or derived
feature that represents a
subset of the original
features or a combination
of them

ExReplay (example replay)
eliminates the limitations of
exemplar selection in replay-
based approaches for
mitigating catastrophic
forgetting in federated
continual learning



Class incremental federated learning

Local Exemplar Condensation Local Exemplar Condensation

The 1-st local client

N Central Server
CurrentMemory SUMmMarizing | o i o o o 5 Current Memory Summarizing
R L e Ul T | (s TEE T e B v —_
I ! 3 I .
'?iiﬁ! c>-ii & | DO-0Dg 52.&3!.6E>..
.________________________: : IR R || sl sl o Sy
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— —QQ9 ==& 1 - LS / : - 1 - Ty e R 1 —> ) =
¥ ' il s N B i 3% |0 I
3 Q Avg. ‘ Avg. .. * | o
‘_'\_) § | R e L e e it a2 LU Rt A B el e ) = 4_';) i
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i Old Memory Set Feature Matching o)
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1 -
CAN o Il o T 1 | P | P + ||“H
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Lee = iy 10131619222528 = 036 9222528 3 add | Me— ':>Lce
® Lo L@

Ex Replay: Clients continuously learn from new class data sequences using a dual-distillation structure to
mitigate catastrophic forgetting.



Class incremental federated learning

LOCaAI ExXempiar Lonaensauon
d Central Sen.

---------------- oo The exemplar condensation process involves

g@ @2 | four key components:

--------- : a gradient matching loss (L_,,4) for meta- ]
information distillation,

+

a feature matching loss (L,..;) for consistency
between condensed samples and real images]
+

(a compensation loss (Ly k) to N
address meta-information heterogeneity
using disentangled features

Ihe 1-st local client

10131619222528

\_ LMemory Y,

(A knowledge distillation loss
(Lgp) helps retain prior knowledge.

Ex Replay: Clients continuously learn from new
class data sequences using a dual-distillation
structure to mitigate catastrophic forgetting.




Class incremental federated learning

Evaluation of multiple metrics (%) on CIFAR100 under a Non-1ID setting

ACCA

\ ACC drop as
70 model learn new
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2
Fedcil

Remembering

4

6 8
ExReplay(ours)

Accuracy (ACC): measures the
overall accuracy of the model.

Backward Transfer (BwT):
measures the influence of learning a
new task on the performance of
previously learned tasks.

Forward Transfer (FwT): assesses
the influence of learning a new task
on the performance of future tasks.

Remembering: calculates the
degree of retention for previous
tasks as part of the backward
transfer process.

Forgetting: measures the average
amount of forgetting across all tasks,
helping to quantify how much
information is lost as new tasks are
learned



Domain incremental federated learning

RefFiL: Rehearsal free federated domain-incremental learning framework

unseen domains are continually learned in domain-incremental learning

(a) :” | Others | ,”" | Ours | K“\ (k) i 0~ @ @ M cli‘:::ii:ttii':\t
. ' ) ) X0 -1 [ 4
Task |:|1 (|2 |[3 | |4 [ |1 2 3 4 l ‘ﬁy! 2E | o > ol u B
_______________________________________________________________________ I : o o
. p [
Participant 1 | . . . :. _____________
. » =0 5
. 1 ' 1 O 4 —
PartlclpantzE . . .. Ei ‘ér-)%lg — % 0
- - V! 5 SE | @D O
rariparss ) [ 0 @ i ls :
1 L =
Participant 4 - . . !
Participant 5 :\ . . . 4

0 @ B Domains | [#] Task ID

Key steps: the 15t participant processes new domain data using global prompts from
the 2nd to m-th participants and local prompts, enhancing robustness by aligning the
model’s predictions across diverse domain prompts as inputs. RefFiL, a rehearsal-
free federated domain-incremental learning framework designed to overcome



Domain incremental federated learning

RefFiL: Rehearsal free federated domain-incremental learning framework

RefFiL, a rehearsal-free federated domain-incremental
learning framework designed to overcome catastrophic
forgetting when clients encounter new domains over time.
Instead of storing past data, RefFiL uses a client-wise
domain-adaptive prompt generator to create
fine-grained, instance-level prompts that capture
domain-specific information, which are then shared
globally through a prompt clustering and global prompt
learning scheme. A domain-specific contrastive prompt
loss further helps models distinguish between prompts from
similar and different domains. Experiments across multiple
datasets show that RefFiL significantly improves
robustness, cross-domain generalisation, and resistance to
forgetting compared to existing rehearsal-free methods
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Domain incremental federated learning

RefFiL: Rehearsal free federated domain-incremental learning framework
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Each participant first encodes local prompts using the tokenized feature map and task ID embedding. These local prompts are
then concatenated with the feature map to compute the loss L. . Simultaneously, the feature map is combined with global
prompts to calculate the loss L;p;, and the loss Lyp; is determined between global and local prompts. Subsequently, all local
prompts, along with the updated local models, are transmitted to the central server.



Domain incremental federated learning

Comparison of RefFil’s performance with five baseline methods on four widely used datasets,
showcasing average accuracy (Avg %) and accuracy for each domain task (%)

Task 1 — 5 on Digit-Five I Task 1 — 4 on OfficeCaltech10
Methods MNIST MNIST-M  USPS SVHN SYN — Avg || Amazon Caltech  Webcam DSLR Avg
Finetune 99.68 97.75 63.87 75.84 49.80 - 77.39 76.56 57.79 24.58 19.29 44.56
FedLwF 99.68 92.80 69.16 69.39 56.86 - 77.58 76.56 53.24 28.57 28.74 46.78
FedEWC 99.68 97.48 74.63 73.32 45.89 - 78.20 76.56 56.59 29.83 15.55 44 38
FedL2P 99.66 98.06 80.01 81.89 57.65 - 83.45 76.56 51.80 31.09 26.57 46.51
FedL2Pt 99.64 97.65 85.18 81.65 60.17 - 84.86 71.35 55.88 29.20 25.20 4541
FedDual Prompt 99.67 97.96 86.88 81.95 59.30 - 85.15 74.48 50.36 31.93 23.82 45.15
FedDualPromptT 99.65 97.90 84.68 81.40 58.34 - 84.39 75.90 53.96 33.82 27.76 47.86
RefFiLL 99.68 98.25 90.96 83.70 62.11 - 86.94 ‘ | 78.65 61.15 40.76 33.66 53.56
Task 1 — 6 on FedDomainNet I Task 1 — 4 on PACS
Methods Clipart Infograph Painting  Quickdraw Real Sketch Avg H Photo Cartoon Sketch Art Painting Avg
Finetune 51.48 15.89 28.05 27.84 29.45 18.07 28.46 61.68 47.45 36.12 30.82 40.18
FedLwF 51.48 18.10 26.71 25.98 27.47 17.96 27.95 61.68 47.07 25.11 26.61 40.12
FedEWC 50.76 15.46 22.66 21.87 27.45 18.37 26.10 63.17 47.70 23.66 27.36 40.27
FedL2P 40.55 13.19 21.09 28.15 30.13 18.42 25.26 64.97 48.32 50.09 35.32 49.68
Fedl2Pt 37.63 9.29 16.79 27.09 26.68 15.59 22.18 65.57 54.67 45.25 34.52 50.00
FedDualPrompt 51.17 19.48 28.74 22.68 29.40 18.05 28.25 73.65 56.54 4493 41.07 54.05
FedDualPrornptT 51.14 20.20 28.91 23.09 30.07 17.76 28.53 75.75 54.55 4323 37.62 52.79

RefFiL 51.27 20.91 29.23 22.57 3062 1898 2893 || 73.95 59.90 43.17 44.27 55.32
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Spurious Correlation in Medical Training Data

Spurious correlation occur in medical training data where diagnosis results are affected by variables (e.g.,
Hospital tags, Strips, Medical devices) that are not related to the diagnostic information being predicted. This
phenomenon leads to misleading interpretations.
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