Deep Learning for Flood Monitoring

Dr Varun Ojha

School of Computing, Newcastle University varun.ojha@ncl.ac.uk ojhavk.github.io

and collaborators
Remy Vandaele and Sarah Dance, University of Reading

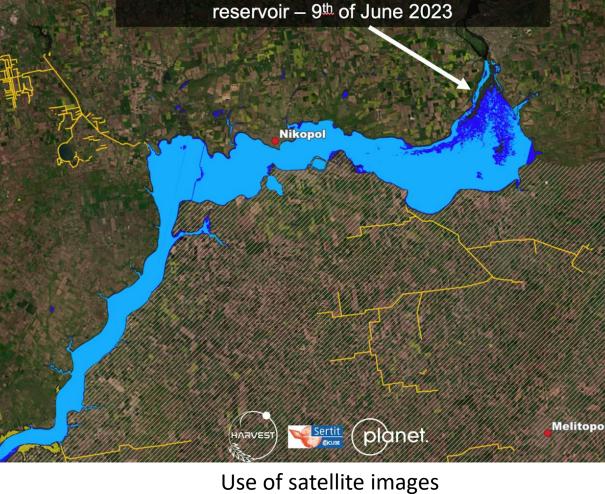
at School of Engineering, Newcastle University 20 May 2024

Part 1

Automated river water-level monitoring

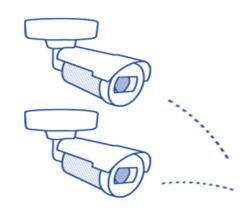
Traditional river water level monitoring

Use of river gauge



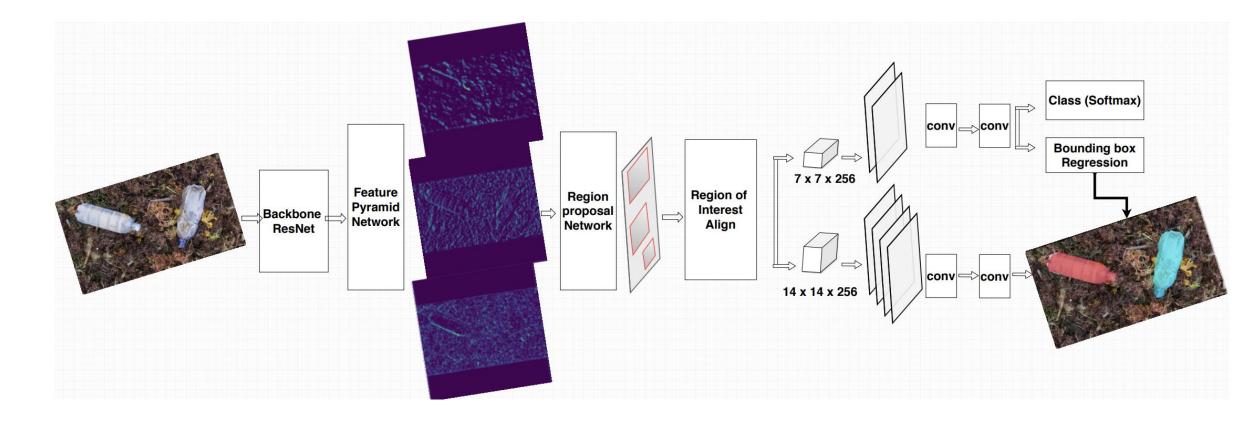
Water line receding at eastern end of the

Our approach: use of river cameras



We could use CCTV camera

Deep Leaning Models



Jaikumar P, Vandaele R, Ojha V (2020) Transfer learning for instance segmentation of waste bottles using Mask R-CNN algorithm 20th Int. Conf. on Intelligent Systems Design and Applications (pp 140–149) Springer (2020)

Deep Leaning Models: Segment Anything from Meta (2023)

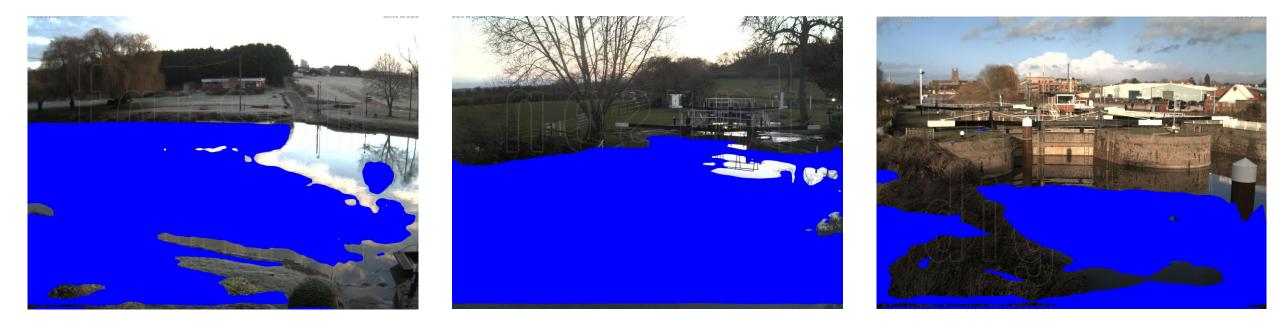
Deep learning for water level estimation



Pixel-wise water segmentation of RGB images for river water-level monitoring or flood monitoring

Water semantic segmentation

Challenges with current state of the art water segmentation networks



Water reflection

Varied weather and varied field of view

Shadows and vegetation

And very few to no labelled dataset

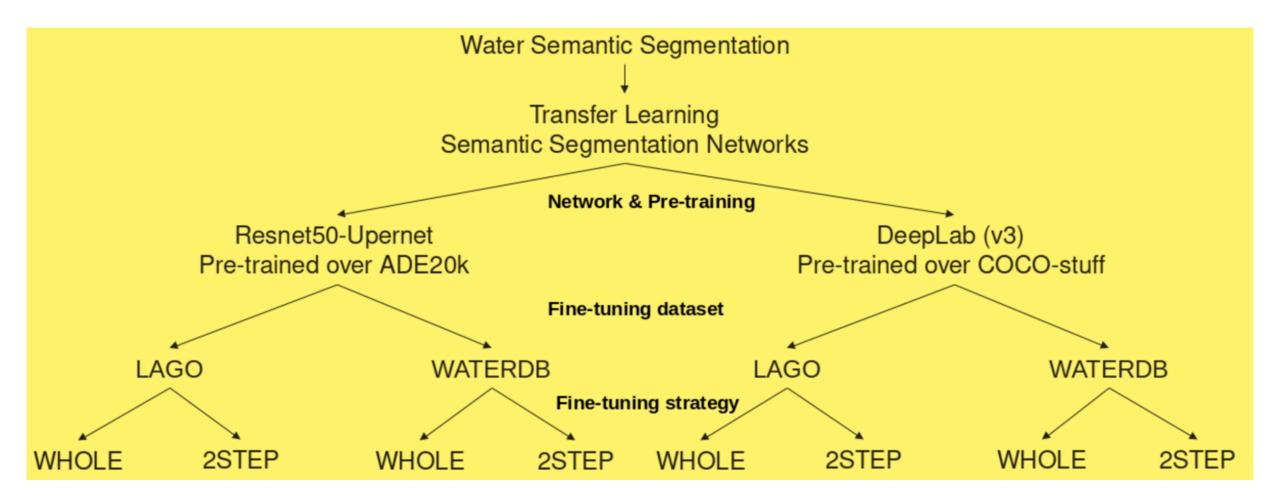
We used transfer leaning (2020)

ADE20k samples

COCO-stuff samples

Use transfer learning to harness the predictive power of segmentation networks trained on large databases of natural images

Deep Leaning Modelling



Automated water segmentation (initial results)

Fine-tuning over the smaller water segmentation datasets.

LAURA (1)

water

sea

river

waterfall

Training Test

709

651

320

80

INTCATCH (1)

INTCATCH (4)

521	Dataset 1: 75 water-
	segmented images
	dataset from Lopez-
	Fuentez et al., 2017
	Dataset 2: 39 water- segmented images dataset from
	Steccanella et al.,
	2018

Training Test

2113

6598

2453

90

292

79

	data	data
State of the art*	90.2%	97.5%
Pre-trained	95.5%	98.8%
Fine-tuning (External data)	96.5%	99.5%
Fine-tuning (COCO/ADE20k water data)	96.9%	99.5%

LAURA

11

INTCATCH

* ResNet50 with UpperNet decoder on COCO stuff and

DeepLab (V2 om ADE20k data)

LAURA (2)	LAURA (3)	LAURA (4)
and the second s		

ADE20k dataset

INTCATCH (2)

75

57

26

9

river

water-other

sea

COCO-stuff dataset

Flood monitoring (real world test bench)

Flood monitoring using deep convolutional neural network

DIGLIS LOCK

STRENSHAM LOCK

EVESHAM

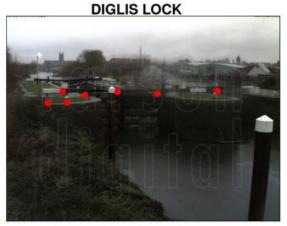
TEWKESBURY MARINA

Customized dataset: Landmark annotation of waterline

River water level detection

EVESHAM

(real world test results)



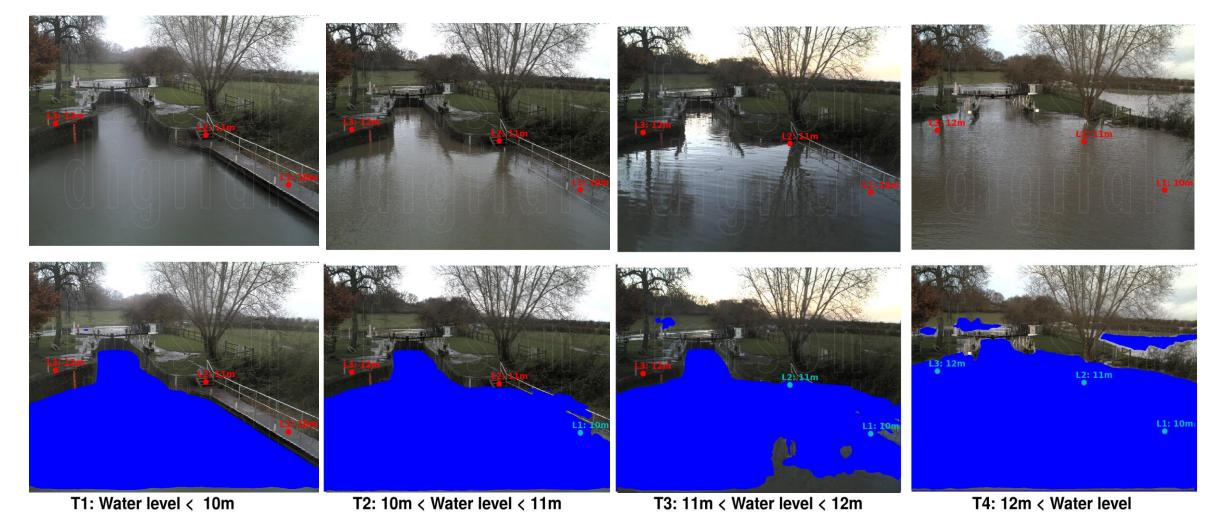


Flood Monitoring

U	
Method	Accuracy on River Camera data
Pre-trained	87.4%
Fine-tuning (COCO/ADE20k water data)	91.3%

Automated flood monitoring

(time-series sequence of images (video) of river.)



Flood monitoring using % pixels flooded

15

(towards generalisation for real world practical use: method 1)

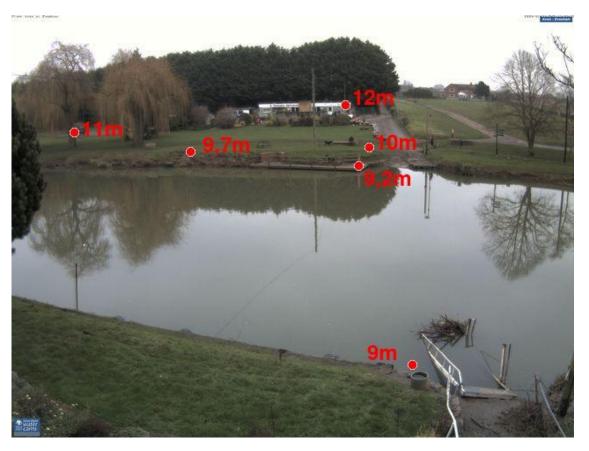
Static observer flooding index *(SOFI) index:* % of water pixels in a region of the image flooded

Vandaele, Dance, and Ojha, (2021), Deep learning for automated river-level monitoring through river camera images, Hydrology and Earth System Sciences

Flood monitoring using water level

(towards generalisation for real world practical use: method 2)

	Landmark index i	Landmark height h _i	Flood state F_i
	10	14.21 m	0
	9	13.22 m	0
(1+1)	8	13.01 m	0
Increasing height $(h_i < h_{i+1})$	7	12.91 m	0
ight (6	12.75m	1
ng he	5	12.65m	0
easir	4	12.13m	0
Incr	3	12.11 m	0 (unflooded)
	2	11.67 m	1
	1	11.24 m	1 (flooded)



Water level index: height of the highest landmark reached by water

Vandaele, Dance, and Ojha, (2021), Deep learning for automated river-level monitoring through river camera images, Hydrology and Earth System Sciences

Real world river level test data (of 2 weeks image streams)

Test set. 4 Cameras captured images during a 2-week flood event in 2012:

Camera name	# images	# landmarks	% flooded landmarks
Diglis Lock	141	7	24.11
Evesham Lock	134	13	30.94
Strensham Lock	144	24	37.15
Tewkesbury Marina	138	4	43.66

Vandaele, Dance, and Ojha, (2021), Deep learning for automated river-level monitoring through river camera images, Hydrology and Earth System Sciences

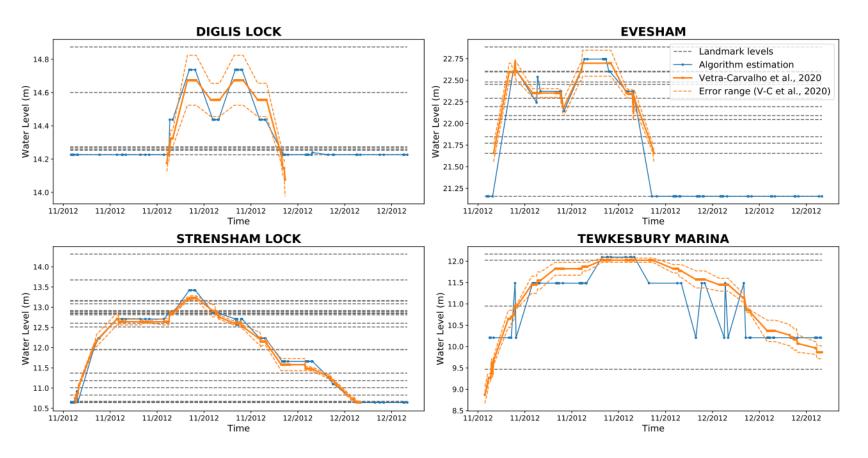
River level test data (of 2 weeks) results

 $Blanace Accuracy = 0.5 \frac{TP}{TP + TN} + 0.5 \frac{FP}{FP + FN}$

where

TP pixels flooded predicted as flooded*TN* pixels unflooded predicted as unflooded*FP* pixels unflooded predicted as flooded*FN* pixels flooded predicted as unflooded

The **Balanced Accuracy** criterion is computed as **the average of the true positive rates and the true negative rates**



18

	Diglis	Evesham	Strensham	Tewkesbury
	Lock	Lock	Lock	Marina
Blance Accuracy	0.94	0.98	0.94	0.97

Real world river level test data (of 1 year image streams)

Test set. 4 Cameras captured images between 01/06/2019 and 31/05/2020, annotated with gauge data:

Camera name	# images	Distance to gauge station (m)
Diglis Lock	3081	94
Evesham Lock	3012	120
Strensham Lock	3067	820
Tewkesbury Marina	3147	1112

Optimization of best image window for river level information extraction

SOFI index/Water level estimation from the window selected by majority voting from 8 trained nets that offers best correlation

Correaltion

$$=\frac{\sum_{i}^{N}(w_{i}-\bar{w})(g_{i}-\bar{g})}{\sqrt{\sum_{i}^{N}(w_{i}-\bar{w})^{2}(g_{i}-\bar{g})^{2}}}$$

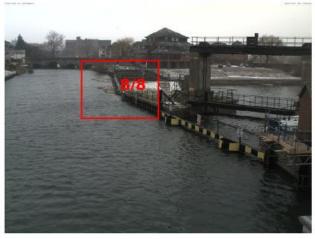
where w_i is the gauge water level, g_i the estimated water level.

<section-header>

STRENSHAM LOCK

EVESHAM

TEWKESBURY MARINA

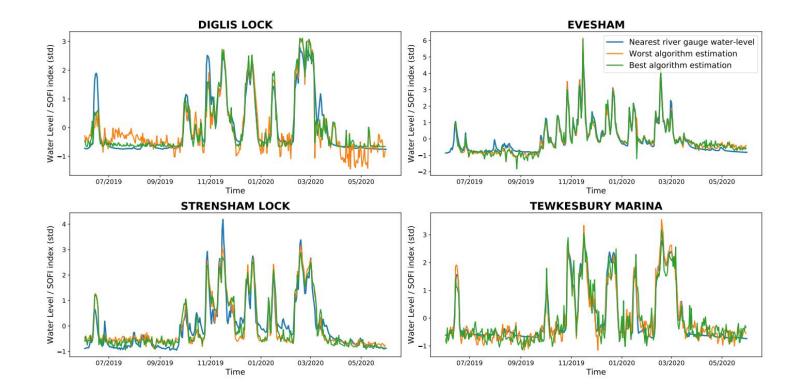


River level test data (1 Year) results

Correaltion

$$=\frac{\sum_{i}^{N}(w_{i}-\bar{w})(g_{i}-\bar{g})}{\sqrt{\sum_{i}^{N}(w_{i}-\bar{w})^{2}(g_{i}-\bar{g})^{2}}}$$

where w_i is the gauge water level, g_i the estimated water level.



	Diglis	Evesham	Strensham	Tewkesbury
	Lock	Lock	Lock	Marina
Correlation	0.94	0.98	0.94	0.97

and n? Extrapolation Gneralisatio atio

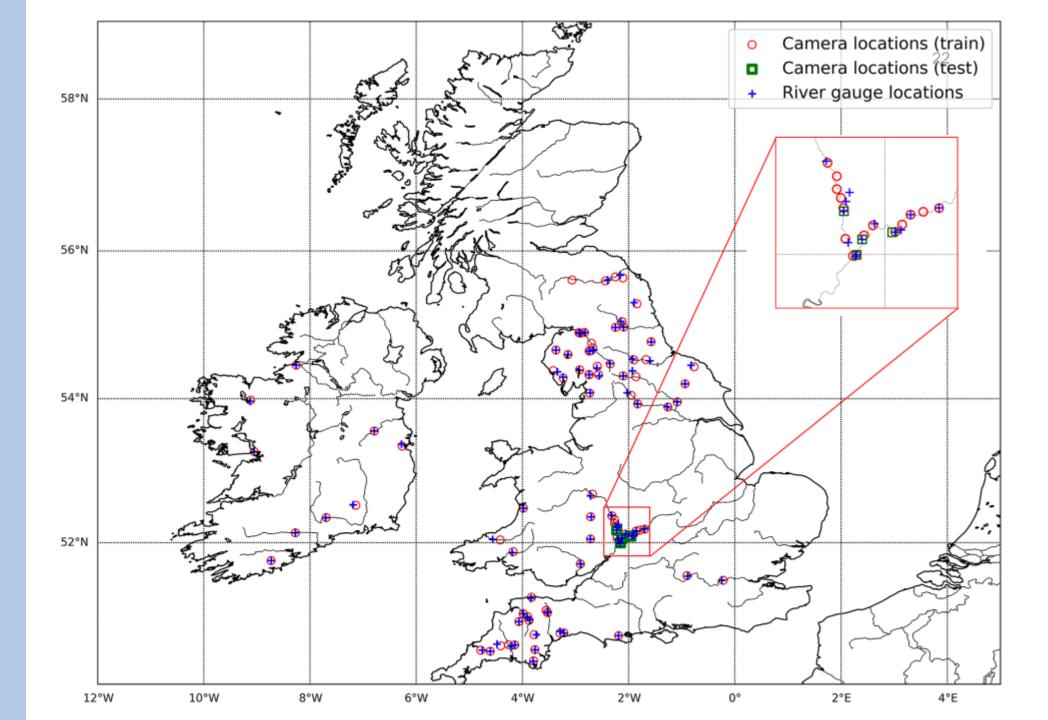
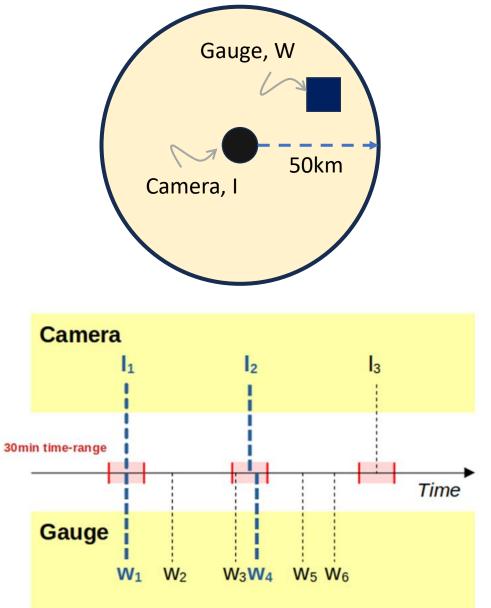


Image Regression

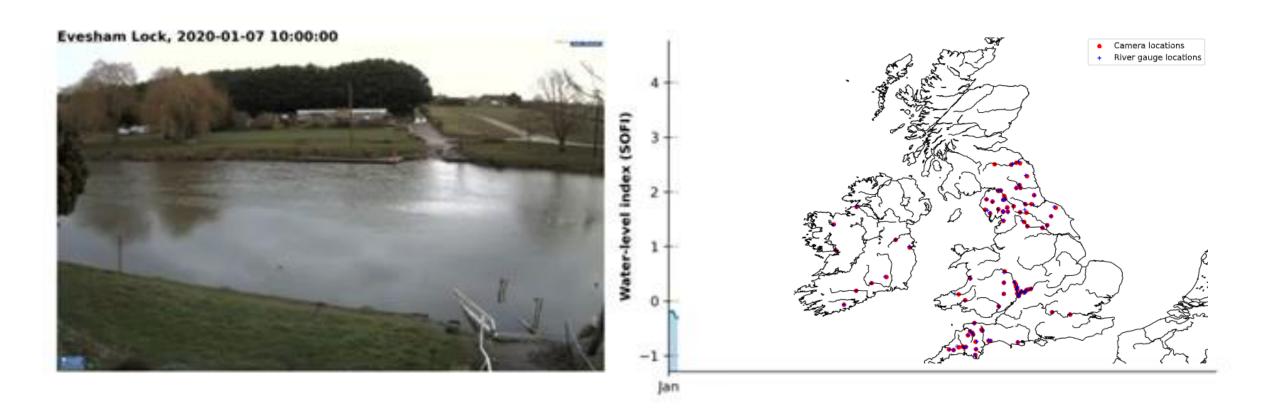
- Creation of a large dataset of 32,715 images annotated with river levels:
 - Matching of a camera with a river gauge (closest gauge > 50km)
 - Matching of an image with a gauge measurement
 - 95 camera locations across UK and Northern Ireland consist of 32,715 images



23

Flood tracking

Vandaele, Dance, and Ojha, (2021) Hydrology and Earth System Sciences



24

Regression-Water Net: Estimation

Training of a deep regression network on this dataset to estimate the calibrated river level

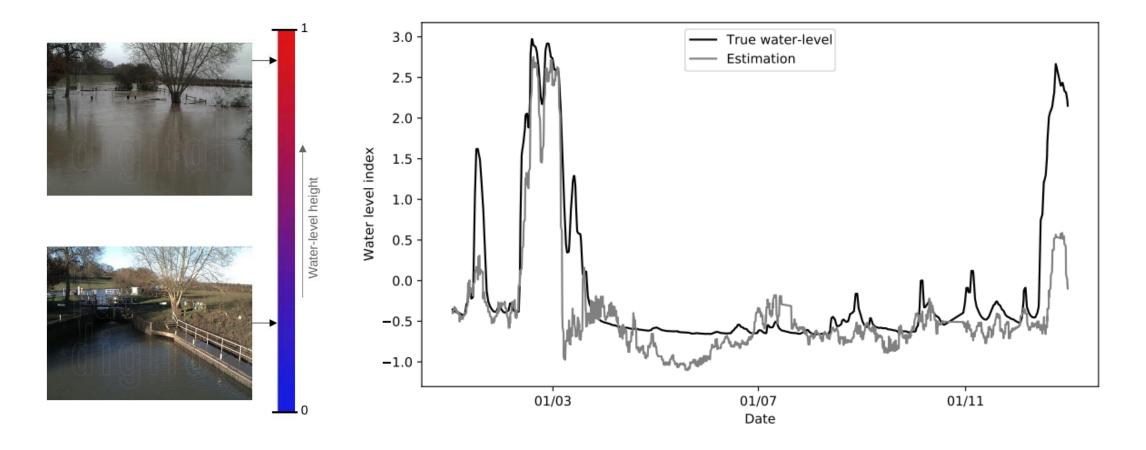
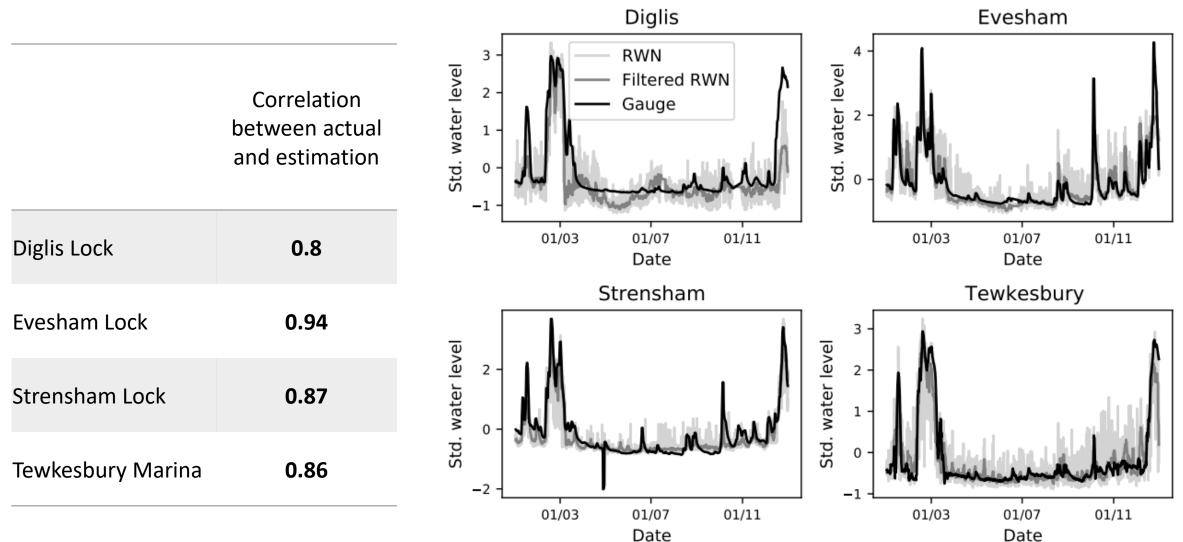


Image regression



Part 2

<u>Automated Trash Screen Blockage</u> <u>Detection: Actional Flood Risk</u> <u>Management</u>

Trash screen monitoring

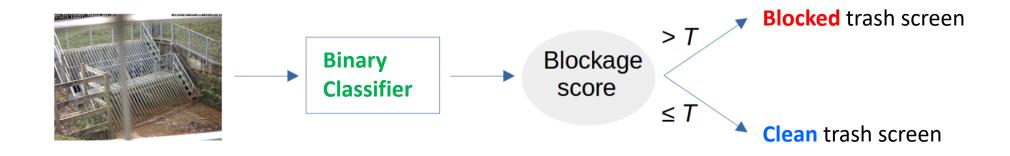
Trash screens prevent debris from entering critical parts of river networks but debris buildup can lead to floods Clean trash screen Blocked trash screen

Clean trash screen

Blocked trash screen

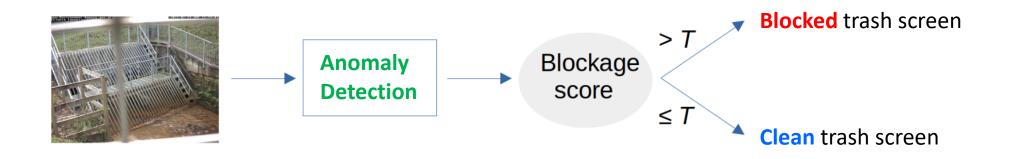
54 trash screens with CCTV camera feed: 80,452 images downloaded over 10 months

Trash screen monitoring: Binary classifier



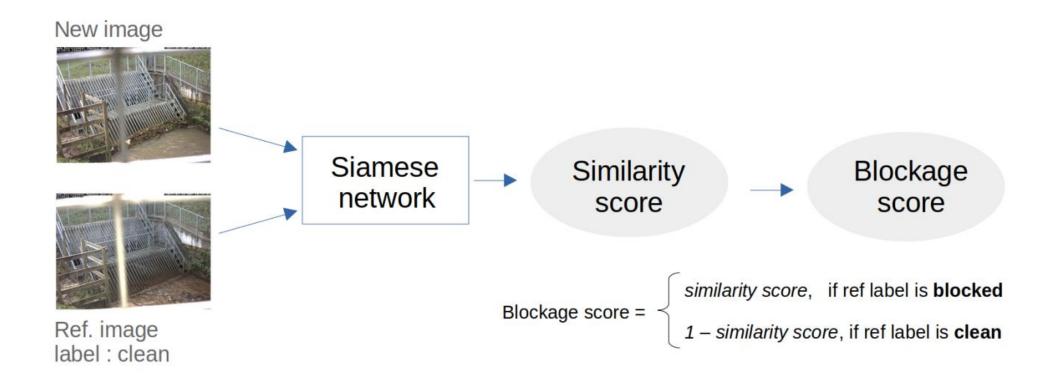
- Advantage Could give high accuracy
- Disadvantage Manual data labelling is required
- ResNet-50 backbone
- Blockage score (softMax)

Trash screen monitoring: Anomaly Detection



- Advantage No manual data labelling is required
- Constraint Trash should be an anomaly
- Images are represented by a vector of features extracted from a pre-trained network
- A multivariate Gaussian fits the training vectors with parameters
- Anomaly score is the Mahalanobis distance between a multivariate gaussian and a new data

Trash screen monitoring: Image similarity



• The similarity score (softMax) can be transformed in a blockage score

Evaluation

46 training cameras, 4 validation cameras, 4 test cameras -> 80K images

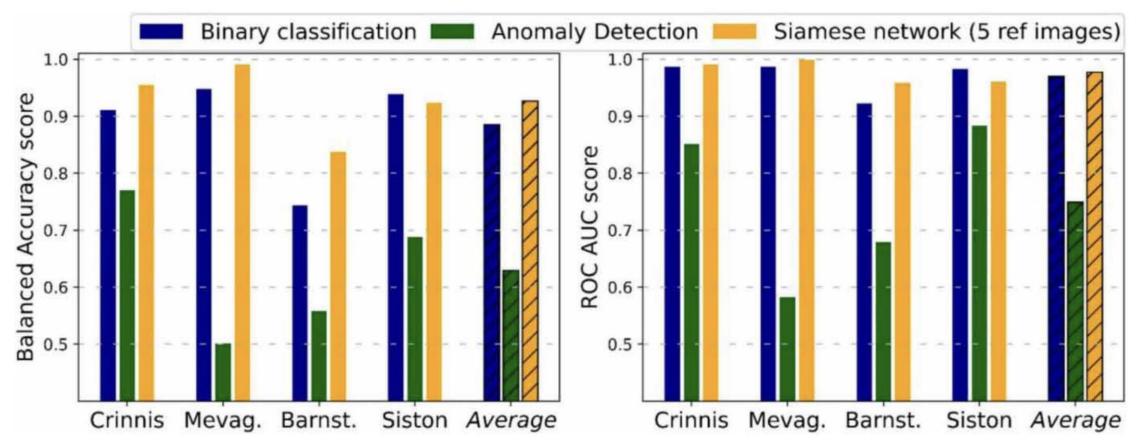
Crinnis

Mevagissey

Barnstaple

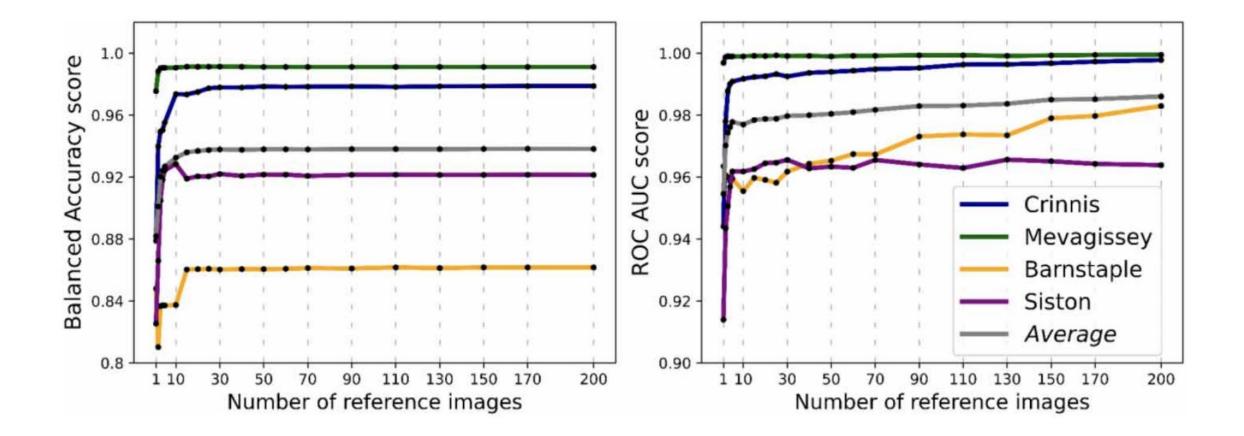
Siston

Blockage detection results



- Binary classifier and image similarity have Balanced Accuracy and ROC AUC scores > 0.9 for 3 of the 4 locations
- Anomaly Detection has the worst results
- The Siamese network (image similarity) obtains the best results with only 5 reference images

Influence of the number of reference images ³⁴ on the performance of the Siamese network



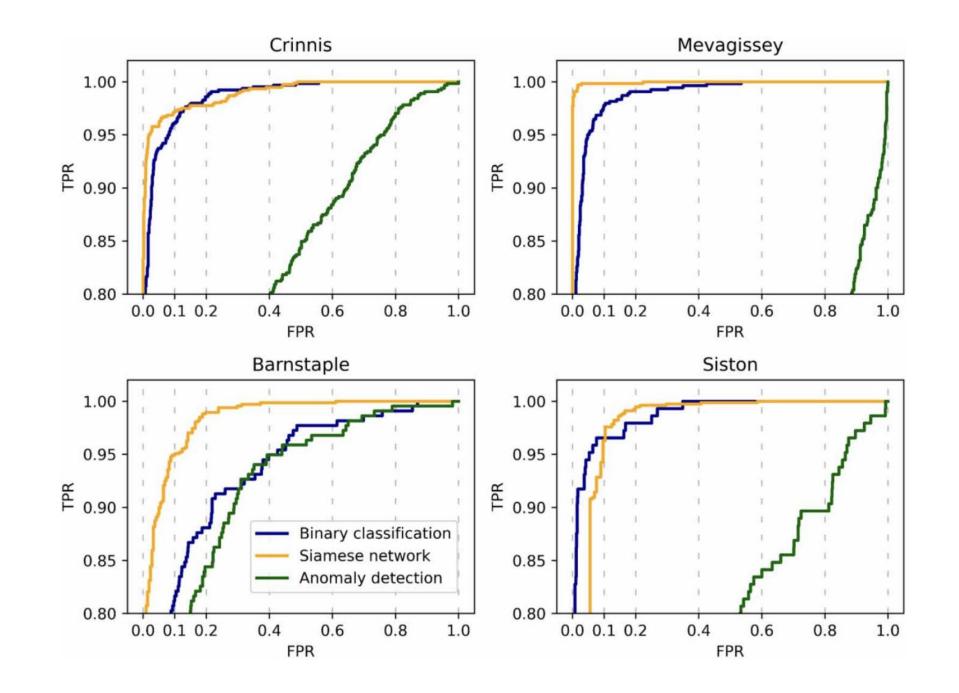
ROC

=>

Maximise the true positive rates (TPR)

Minimise the false positive rates (FPR)

ROC is TPR vs FPR



...in detail...

 <u>Calibrated river-level estimation from river cameras using convolutional neural networks</u> *Environmental Data Science*, Cambridge University Press (2023)
 Vandaele, R., Dance, S. L., & Ojha, V.

 Deep learning for automated river-level monitoring through river camera images: an approach based on water segmentation and transfer learning Hydrology and Earth System Sciences 25(8) 4435–4453 (2021) Vandaele R, Dance SL, Ojha V

 <u>Automated water segmentation and river level detection on images using transfer learning</u> 42nd DAGM German Conference on Pattern Recognition, DAGM GCPR, Tubingen, Germany, Proceedings 42 (pp 232–245) Springer, LNCS (2020) Vandaele R, Dance SL, Ojha V

 Deep Learning for Automated Trash Screen Blockage Detection Using Cameras: Actionable Information for Flood Risk Management Journal of Hydroinformatics, (2024) Vandaele, R., Dance, S L, & Ojha, V