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Artificial Intelligence (Al)

* General-purpose Al like the robots of
science fiction is incredibly hard.

* Human brain appears to have lots of special and
general functions, integrated in some amazing
way that we really do not understand at all (yet)

 Special-purpose Al is more doable
(nontrivial)

* E.g., chess/poker playing programs, logistics
planning, automated translation, voice
recognition, web search, data mining, medical
diagnosis, keeping a car on the road
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Generative Al

Trained on AVA: A Large-Scale Database for Aesthetic Visual Analysis (255,000 images)

a propaganda poster depicting a cat dressed as french emperor
napoleon holding a piece of cheese

a dolphin in an astronaut suit on saturn, artstation a teddy bear on a skateboard in times square

DALL-E 2 Outputs



Al Arms Race DeepSeek-R1 Upsets Al Market
With Low Prices

£ <— usrank st Estimated price for processing one million input/output
tokens on different Al models
’ <— CNrank 2nd $15
Input
$12 B Output
$9 .J
$6
. il =
%0 . —
Grok ChatGPT-o1 Gemini Nova Pro R Llama 3.1
Mini 1.5 Pro (text only) Nemotron
(text only) 70B Instruct
(text only)
ﬂ (xAl) @Openm Go gle a@iﬁ““ (W decpseck <4 NVIDIA
A token is the smallest unit of Al model processing (~4 characters). 0O Meta

ol is ChatGPT's latest model. List includes most comparable model per company
* Uses Meta's open-source Llama Al

Source: DocsBot

https://www.tortoisemedia.com/intelligence/global-ai



Massive Al Model and Data Size

Parameters Count Training Data Size
$63 million
: -’It-ri_llion 1 PB-
petabyte %I;:II-:E?
1 B- 1 TB-
Sller terabyte GPT-2
GPT-1 068
. 117 M 1 GB- O

2018 2020 2022 2024

2018 2020 2022 2024

Source: Francesco Casalegno, ChatGPT Unveiled: What’s the ML Model Inside it, from GPT-1 to GPT-4




compute energy in J/year
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Altogether, data centers use more electricity than

most countries
Only 16 nations, including the US and China, consume more

Source: Bloomberg

350 TWh ALL DATA CENTERS
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Altogether, data centers use more electricity than

most countries Potential solutions to

Only 16 nations, including the US and China, consume more
energy problem:
Cloud Al » Edge Al

« Moving Al applications from the
cloud to the edge

« Al model simplification techniques to
reduce power consumption

- Al Model quantization, etc.
« On device (Edge) Al model training

e Federated Learning



Edge Al

Unlike Cloud Al (e.g., ChatGPT that runs in data centers), edge Al
runs at the edge computing devices such smartphones, cameras,
cars, medical devices, ensuring quality of data for inference

Reduces latency, cost, and power consumption

Protects data privacy and reduce improve data security and
cybersecurity

Reduces risk of inference failure in critical systems (e.g.,
autonomous vehicles, healthcare devices) that may endanger lives



Everyone is a walking Al computer

r— SN\

* Chip

* A18 Bionic chip

* 6-core CPU with 2 performance
* 4 efficiency cores

* 5-core GPU

* 16-core Neural Engine
* Capacity

* 512GB

* Multiple Sensors

* 48MPcamera

* Satellite and GPS




The Emergence of
Edge Al: agame
changer for

industries
(Gartner 2023)
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The Rise of Generative Al at the Edge

image source: Arrow Intelligent Solutions
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Small Language Models Could Redefine The Al Race,

Forbes Exponential growth of LLMs stopped
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We

are the _and_

=

Central W;ﬁ
ML Model AN
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Download Central
ML model

Google Cloud

Upload encrypted
local ML weights to
Central ML model
Decryption and
aggregation of local ML
weights to Central ML

Local copies of ML

Local private and
secure data

Local secure training




Nationa| Interaction with Data Sensitive
Edge Al Applications of Al (WS5)

b Hub

Al Model Quality
Quality of Trained
Al Systems
(Models) for Edge

Environment
Al Theme

Challenges
(WS4)

Interaction with
Edge Computing
Theme (WS3)

Interaction with
Cyber Security
Theme (WS2)

Edge Computing
Source of real data
and destination of

Al model
deployment
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(’\{{é‘,}/‘\ Newcastle University’s Urban Observatory
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>8 million pounds
(Capital investment)

CCTV: 500 views, 500m+
images, 24 real-time
feeds

10 billion city observations ‘
10,000 a minute Py 22

Source: Phil et al (Newcastle)




Edge Al Data Quality Challenges

* Data quality
* degradation of sensors over time

* data out of range, out distribution,
uncertainty

e Data stream issues
e dataretrieval - source APl failure
* network failure, network overload

* Cyber security
* adversarial attacks
* denial of services, spoofing

* Failure
e hardware failure at sensor

Source: Phil et al (Newcastle)



Edge Al Model Quality Challenges

Calculated using Deep Neural Networks (DNNs)
Perturbation weights (white-box attack)

magnitude

X 0 Xe

(a) Default image

-

S A

(b) FGM anack

Adversarial example
Predicted as
‘Speed limit change’

Input example
Predicted as ‘Pedestrian’

Adversarial perturbation
(‘Plane’ class)

One of objectives of the Al Model Quality analysis is to subject Al model to the ‘worst 43 PGD attack
case conditions’ (such as adversarial cyber/attacks) and evaluate the ability for a
model to remain invariant under such settings.

Source: Ojha et al (Newcastle)

(d) AP anack



Edge Al Powered Environment Monitoring

Example Flood Monitoring

T1 T2 T3 T4

Time-series sequence of images of river. Blue pixels are water segmentation by using deep learning models

Evesham Lock, 2030-01-07 10:00:00

Water-lovel indox (S0OFI)

Vandaele, Dance, and Qjha, (2021) Hydrofogy and Earth System Sciences



Edge Al Powered Infrastructure Monitoring

Example Structural Engineering
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Edge Al Powered

Manufacturing 17 Global
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Al Powered Medical Diagnhosis

RGB image Manual annotation 1

Automatic segmentation Manual segmentation

(b)
Cardiac Acquisitions for Multi-structure Ultrasound Segmentation Gland Segmentation in Colon Histology Images



MRI Scans: Multi-Modality Abdominal Multi-Organ Segmentation

AMOS2022
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https://amos22.grand-challenge.org/



Al Quality (Safety) Concern in Medical Image Analysis

Original
Image

Adversarially
Modified

e e
Ophthalmology Radiology Pathology

Unperceived changes in images make misclassification

Bortsova et al. (2021). Adversarial attack vulnerability of medical image analysis systems: Unexplored factors. Medical Image Analysis,



Al Quality (Safety) Concern in Medical Image Analysis

Original
Image

Adversarially
Modified

Ophthalmology Radiology Pathology

Accuracy of detection decreases even on an unperceived modification

Bortsova et al. (2021). Adversarial attack vulnerability of medical image analysis systems: Unexplored factors. Medical Image Analysis,



Edge Al €«>Agentic Al (Next Big Wave of Al)

Edge Al Enables Agentic Al, a complex Al system where
Al act autonomously, learn, and adapt to changing

situations with minimal human interventions ClOUd
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Medical
Patient home Reliability, Explainability,
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Edge Al

¥ 4 —/_'

Hospital / Clinic remote monitoring,
data processing, and Al powered
data analytics and prescription



UK Research
and Innovation

Engineering and
Physical Sciences
Research Council

Al SAFETY
INSTITUTE

National Al Strategy




Legend:

Al Model Quality .
O o Fundamental
f}. %\' *\J'LQ:I research
(ﬁ) Applications
Smart
Transport Manufacturing

Led by Newcastle University
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& National

National Edge Al Hub
Study PhD with us

https://edgeaihub.co.uk/phd-in-edge-ai/

Pathways to PhD. Send us you research proposal and plan; we will work with you refining your PhD agenda
and find suitable supervisor or institution for your PhD enrollment. We can help explore PhD funding
sources if you do not have your own Govt. or self funding provisions

Work with us

https://edgeaihub.co.uk/

Pathways to Industry engagement. \We have several pathways for engagement, for example, pump-
priming funding, 50-50 matching funding, and other. We will work with you and explore external industrial-
academic partnership funding sources with you.

Contact

varun.ojha@newcastle.ac.uk

ojhavk.github.io



https://edgeaihub.co.uk/phd-in-edge-ai/
https://edgeaihub.co.uk/
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