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Intrinsic 
Intelligence of a 

child’s mind
Slide inspiration: Josh Tenenbaum, Prof. MIT, USA

Video Source: 
https://www.youtube.com/watch?v=dEnDjyWHN4A

(Accessed on 21 Feb 2021)
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Learning
Training the Mind of Species

Video source: 

https://www.youtube.com/watch?v=nbrTOcUnjNY

(Accessed on 21 Feb 2021)
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https://www.youtube.com/watch?v=nbrTOcUnjNY


Learning 𝒇: 𝑿 → 𝒚
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𝓧
Find the unknown target function 𝒇 that does the mapping

𝒇 ∈ 𝓗

Inputs 𝐗 ∈ Input space 𝒳 outputs 𝒚 ∈ concept space 𝓒hypothesis space 𝓗

𝓒



Learning 𝒇: 𝑿 → 𝒚

inputs outputs
𝑿 𝑦

learner
𝑓 𝑋 ∈ 𝓗

Supervised learning approximates a function 𝐠 ~ 𝒇 for mapping inputs 𝑿 to outputs 𝒚
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ℎ! ∈ 𝓗 → 𝑔x %𝑦 = 𝑔(x)
OutputsInputs

Supervisor 𝑦 = 𝑓(x)

Feedback Loop

How to Produces the Function 𝒈:𝑿 → 𝒚
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What Learning Needs
Learning needs the method(s) to

Represent

Evaluate

Optimize

a hypothesis ℎ!
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How to Represent a Hypothesis 𝒉𝒕 ∈ 𝑯

𝑥!

𝑥"

ℎ#
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A line separating data can be considered a hypothesis
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Learning Systems: Neural Networks

Inputs
neurons

Hidden
neurons

Output
neuron

Biological networks of 
neurons in human brains

Mathematical representation 
of the neural networks

1 0 1
0 1 1

1
1
0

1 2 3AI representation 
of biological neural networks
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Neural Networks
NN components: 
• Inputs
• Weights 
• Architecture 
• Activation functions
• Learning algorithms 
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What Could be optimized?
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Plausible Biological Inspiration

Travis et al. (2005) Jones and Kording (2021) Ojha and Nicosia (2022) 

Ojha et al (2022), Neural Networks 12



Neural Tree
Neural Networks Architecture Search
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Neural Computation
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Types of Neural Tree
Regression Tree
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Types of Neural Tree
Classification Tree

Ojha et al (2020), CEC 16Dr Varun Ojha, University of Reading



Neural Architecture Search

Ojha et al (2017), Applied Soft Computing 17

Trade-offs
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Multiobjective 
Genetic Programming 
Crossover
Ojha et al (2017), IEEE Trans. Fuzzy Systems
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Neural Architecture Search
Trade-offs



Single leaf 
mutation

A subtree insertion

A subtree 
replacement

All leaves mutation

A subtree deletion

Multiobjective 
Genetic Programming 
Mutation
Ojha et al (2017), IEEE Trans. Fuzzy Systems
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Neural Architecture Search
Trade-offs



Architecture Search Trade-offs

Ojha and Nicosia (2020), CEC 20Dr Varun Ojha, University of Reading

Multiobjective Genetic Programming 
Selection of trees using Hypervolume indicator from a Pareto Front



Learnability of Classes

Ojha and Nicosia (2020), CEC 21Dr Varun Ojha, University of Reading

Competition between classes: TPR/Recall/Sensitivity vs FPR/(1 - Specificity)



Heterogeneous Neural Tree

S

G T

F

Multiobjective Genetic Programming 
Activation Function Search
• S – Sigmoid
• G – Gaussian  
• T – Tanh
• F – Fermi

Ojha et al (2017), Applied Soft Computing 22Dr Varun Ojha, University of Reading



Activation Function Performance
Higher values are better

Ojha et al (2017), Applied Soft Computing 23



Fig A. Forward pass and gradient backpropagation

Input Processing
(forward pass)

Gradient propagation 
(backwards pass)

Ojha and Nicosia (2022), Neural Networks 24

Backpropagation Neural Tree

Dr Varun Ojha, University of Reading

Information 
processing 
channel.



Backpropagation Neural Tree

Ojha and Nicosia (2022), Neural Networks 25Dr Varun Ojha, University of Reading



Regression results

Algorithm Bas Dee Dia Frd Mpg Avg Acc 
Avg 

Weights
BNeuralT 0.665 0.837 0.492 0.776 0.867 0.727 152 
MLP 0.721 0.829 0.49 0.943 0.874 0.772 1041

Ojha and Nicosia (2022), Neural Networks 26

Backpropagation Neural Tree

Dr Varun Ojha, University of Reading



• BNeuralT used only 14.6% of MLP

• Accuracy differs only 5.8% lower than the best MLP result

Regression results

Ojha and Nicosia (2022), Neural Networks 27

Backpropagation Neural Tree

Dr Varun Ojha, University of Reading



Neural Tree vs Neural Networks
Regression Problems
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Backpropagation 
Neural Tree
Classification results.  

Data BNeuralT MLP
Aus 0.895 0.876
Hrt 0.897 0.833
Ion 0.952 0.882

Pma 0.822 0.774
Wis 0.986 0.984
Irs 0.992 0.972

Win 0.991 0.991
Vhl 0.75 0.826
Gls 0.732 0.635

Avg. 
Accuracy 0.891 0.863

Avg. Weights 261 1969
29Dr Varun Ojha, University of ReadingOjha et al (2022), Neural Networks



• BNeuralT used only 13.25% parameters of MLP

• Accuracy is 2.65% better than the best MLP result

Classification results
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Backpropagation Neural Tree

Dr Varun Ojha, University of ReadingOjha et al (2022), Neural Networks



Classification Problems

Neural Tree vs Neural Networks
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Architectural Stochasticity 
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Deep Neural Networks
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Hidden 
layer 1

input layer

Hidden 
layer 2

Output 
layer

Hidden 
layer M

Gary scale image of size 
[28 x 28] 𝒙𝟕𝟖𝟒

𝒙𝟏

28

28

SoftMax
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MNIST Model  Accuracy ~95% 

Ojha and Nicosia (2022), Neural Networks 34

Backpropagation Neural Tree
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Model Size vs Accuracy

Ojha and Nicosia (2022), Neural Networks 35Dr Varun Ojha, University of Reading



Learnability of Different Classes
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Competition between classes: TPR/Recall/Sensitivity vs FPR/(1 - Specificity)



Summary

stochastic gradient descent training of any a priori 
arbitrarily “thinned” network has the potential to 
solve machine learning tasks with an equivalent or 
better degree of accuracy than a fully connected 
symmetric and systematic neural network 
architecture.
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