Sparse Neural Computation

Dr Varun Ojha

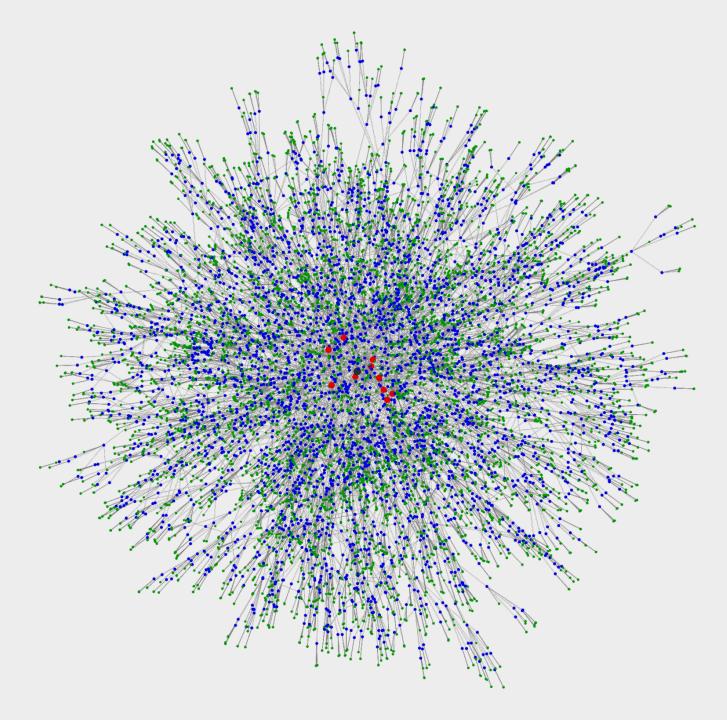
Department of Computer Science University of Reading

at

Centre for Computational Science and

Mathematical Modelling

Coventry University 10 June 2022



Intrinsic Intelligence of a child's mind

Slide inspiration: Josh Tenenbaum, Prof. MIT, USA Video Source: https://www.youtube.com/watch?v=dEnDjyWHN4A (Accessed on 21 Feb 2021)

Varun Ojha, University of Reading

100x

Learning

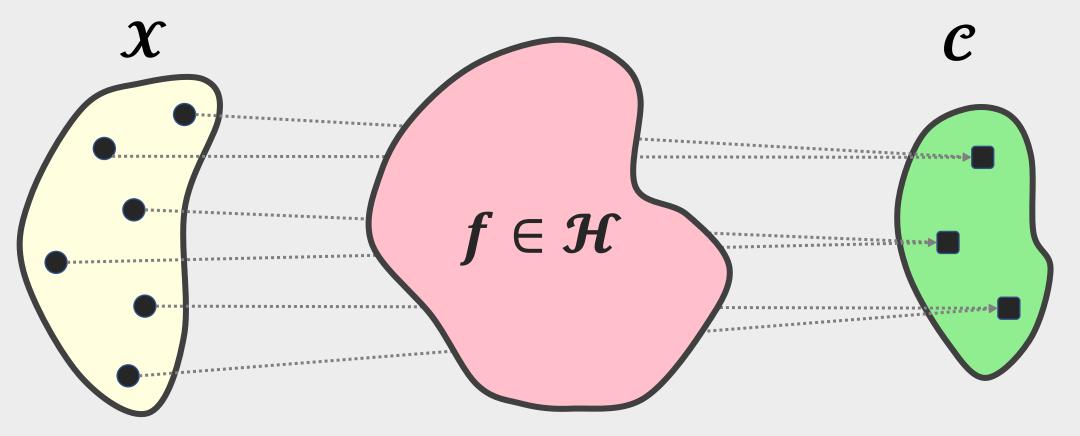
Training the *Mind* of Species

Video source: https://www.youtube.com/watch?v=nbrTOcUnjNY

(Accessed on 21 Feb 2021)

Learning $f: X \rightarrow y$

Find the <u>unknown</u> target function *f* that does the mapping



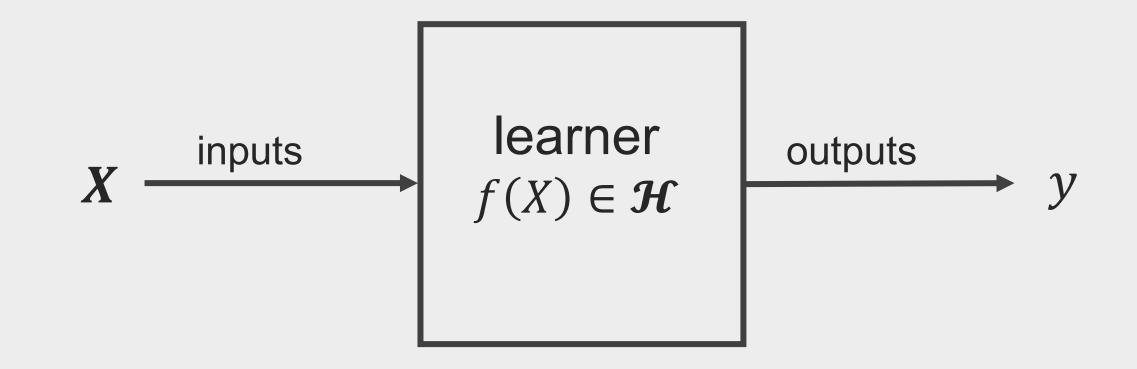
Inputs $\mathbf{X} \in$ Input space \mathcal{X}

hypothesis space \mathcal{H}

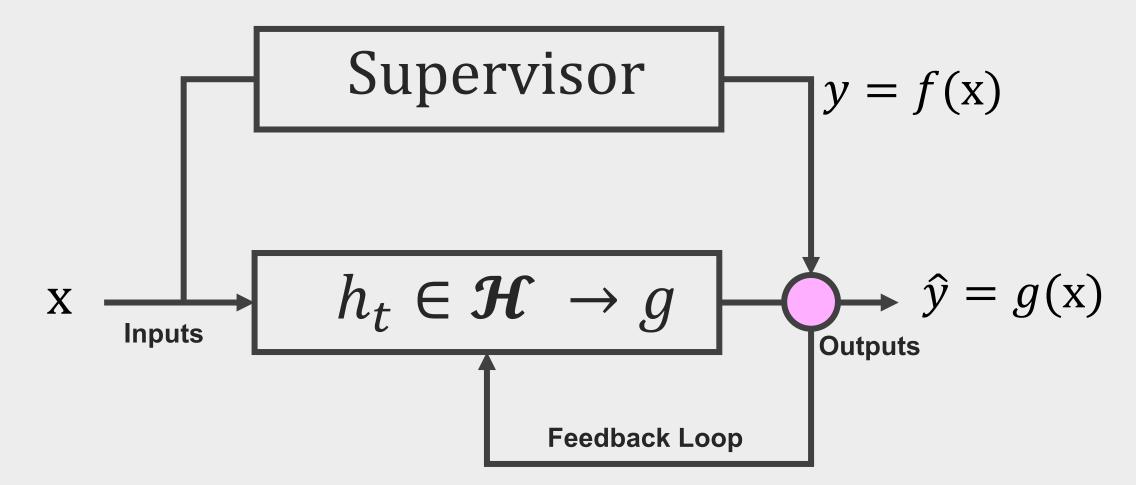
outputs $y \in$ concept space C

Learning $f: X \rightarrow y$

Supervised learning approximates a function $\mathbf{g} \sim \mathbf{f}$ for mapping inputs \mathbf{X} to outputs \mathbf{y}



How to Produces the Function $g: X \rightarrow y$



What Learning Needs

Learning needs the method(s) to

Represent

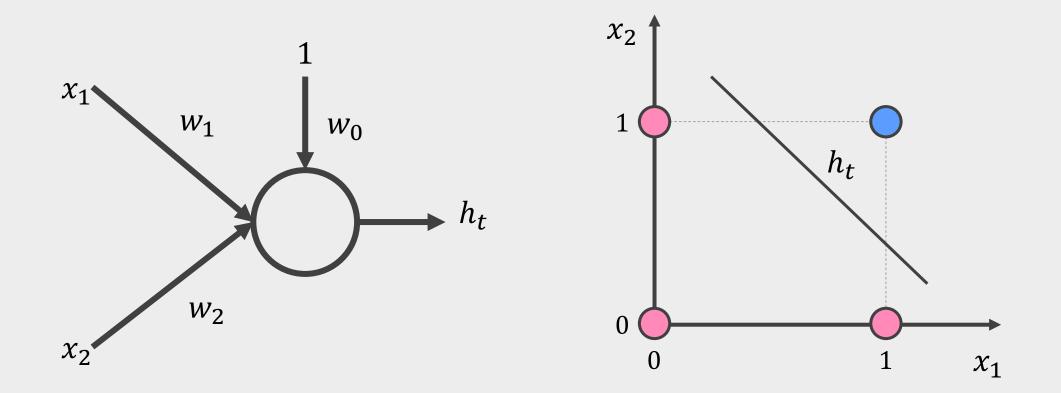
Evaluate

Optimize

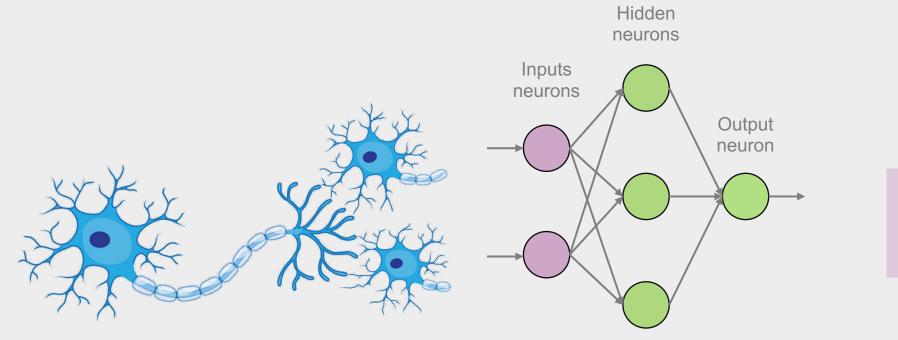
a hypothesis h_t

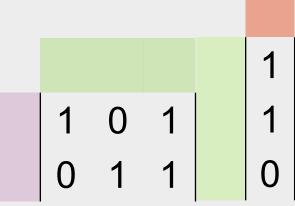
How to Represent a Hypothesis $h_t \in H$

A line separating data can be considered a hypothesis



Learning Systems: Neural Networks





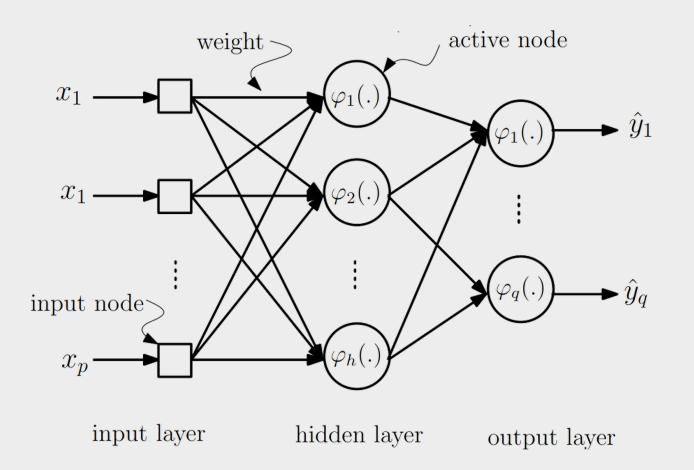
Biological networks of neurons in human brains Al representation of biological neural networks

Mathematical representation of the neural networks

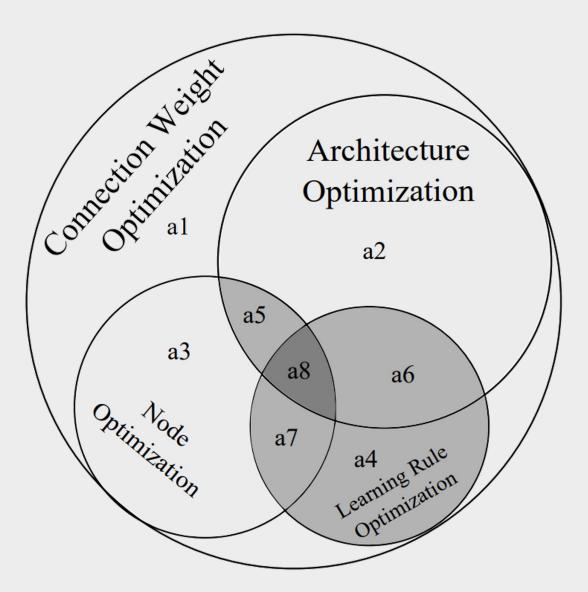
Neural Networks

NN components:

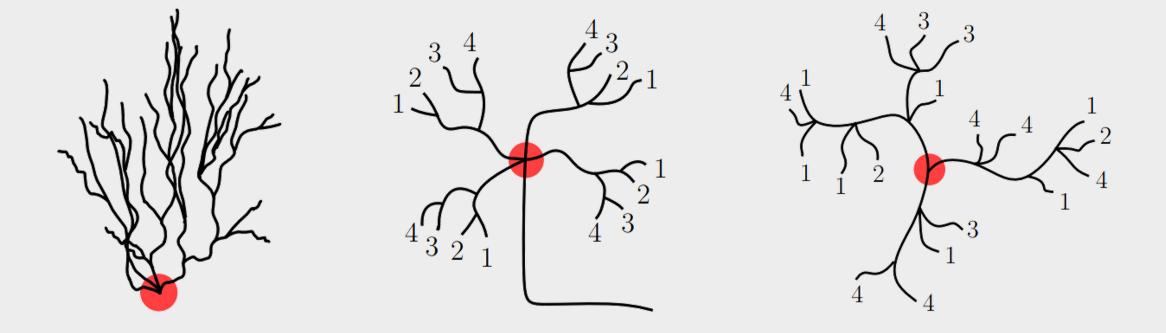
- Inputs
- Weights
- Architecture
- Activation functions
- Learning algorithms



What Could be optimized?



Plausible Biological Inspiration



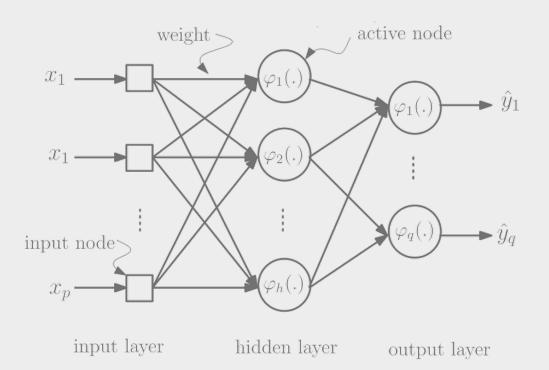
Travis et al. (2005)

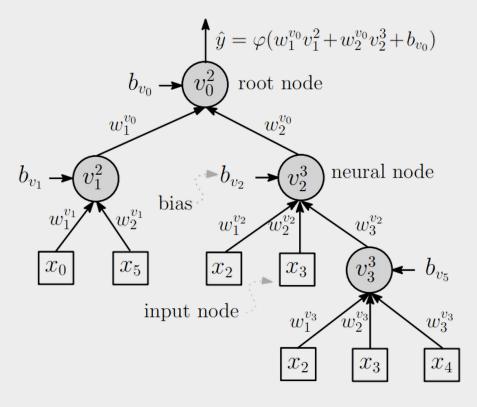
Jones and Kording (2021)

Ojha and Nicosia (2022)

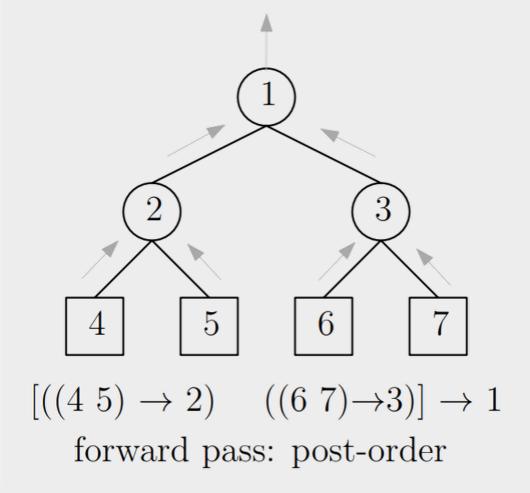
Neural Tree

Neural Networks Architecture Search



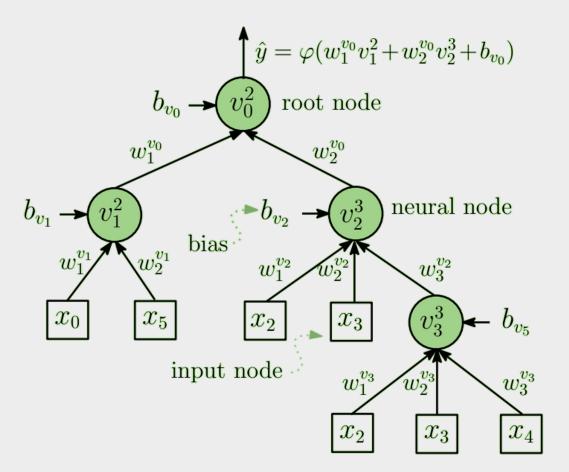


Neural Computation



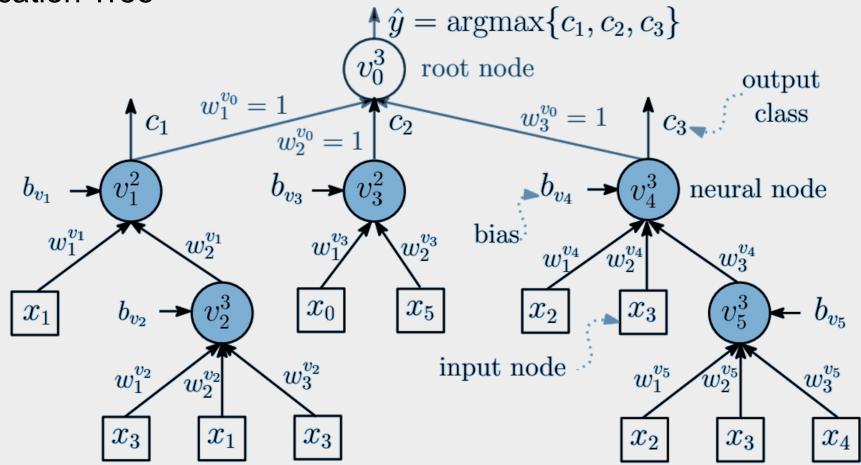
Types of Neural Tree

Regression Tree



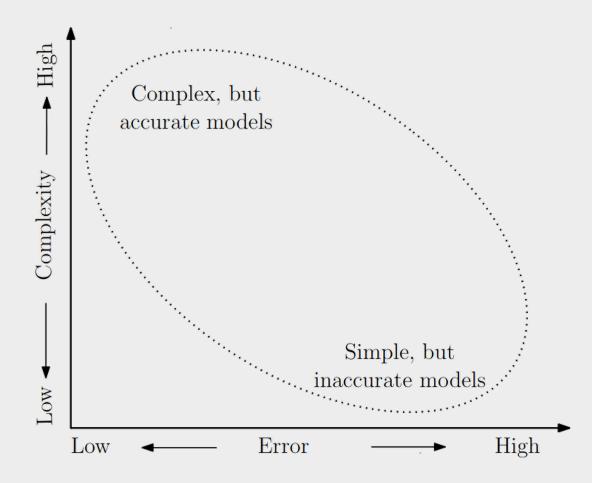
Types of Neural Tree

Classification Tree



Neural Architecture Search

Trade-offs

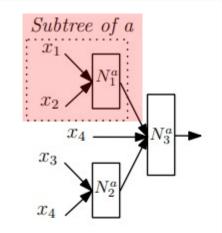


Neural Architecture Search

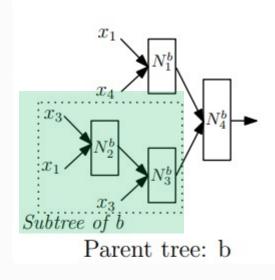
Trade-offs

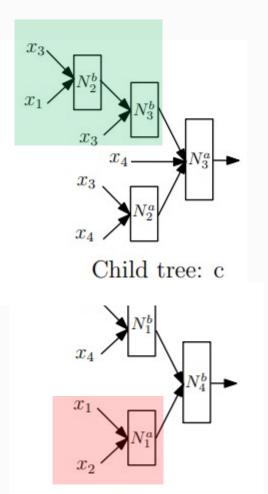
Multiobjective Genetic Programming Crossover

Ojha et al (2017), IEEE Trans. Fuzzy Systems



Parent tree: a





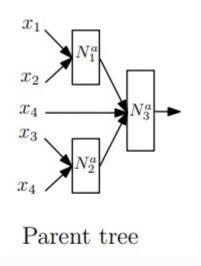
Child tree: d

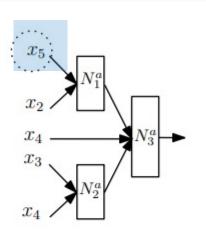
Neural Architecture Search

Trade-offs

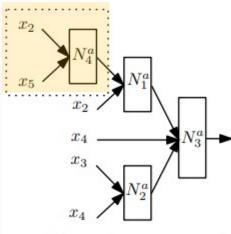
Multiobjective Genetic Programming Mutation

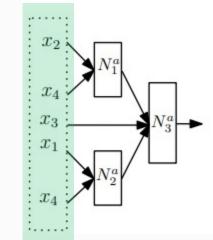
Ojha et al (2017), IEEE Trans. Fuzzy Systems



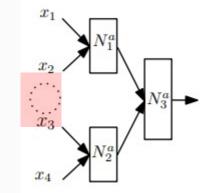


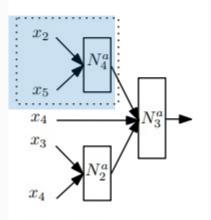
Single leaf mutation





All leaves mutation





A subtree replacement

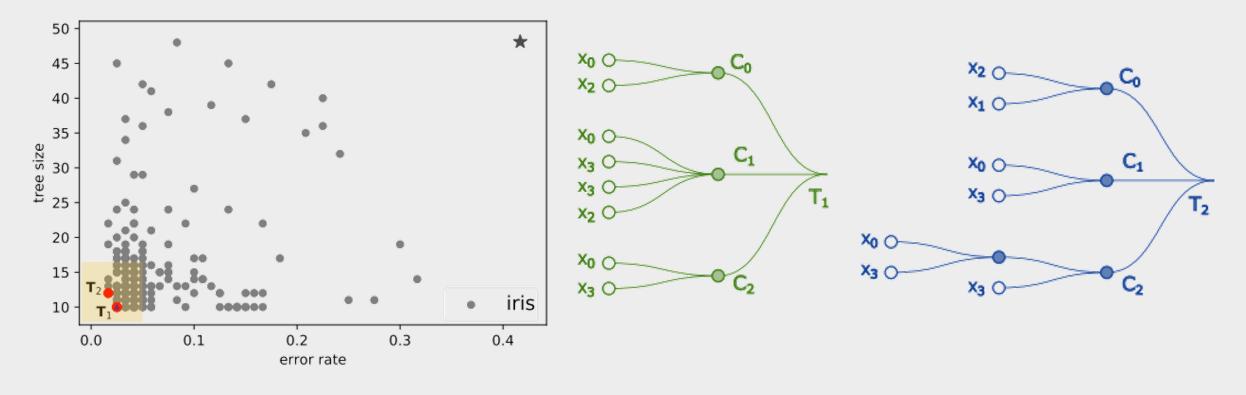
A subtree insertion

A subtree deletion

Architecture Search Trade-offs

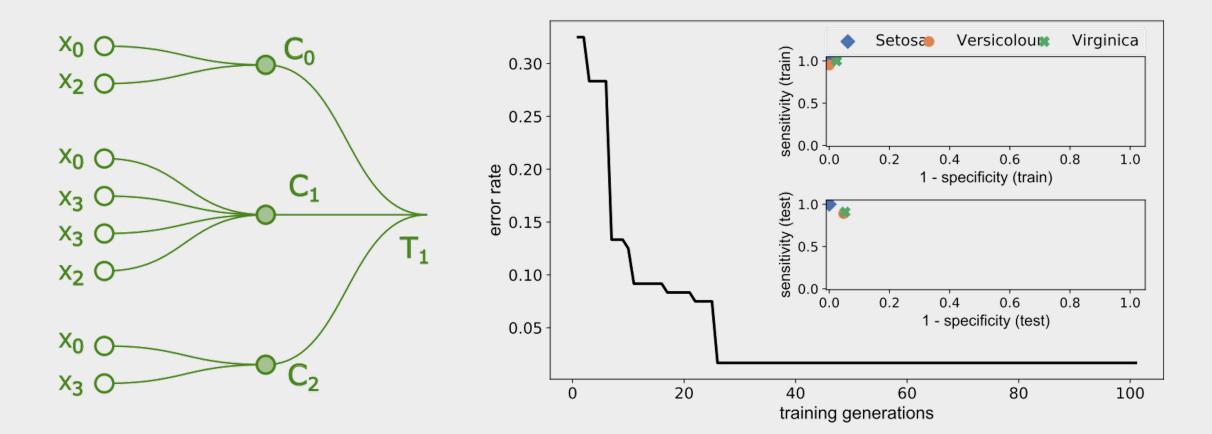
Multiobjective Genetic Programming

Selection of trees using Hypervolume indicator from a Pareto Front

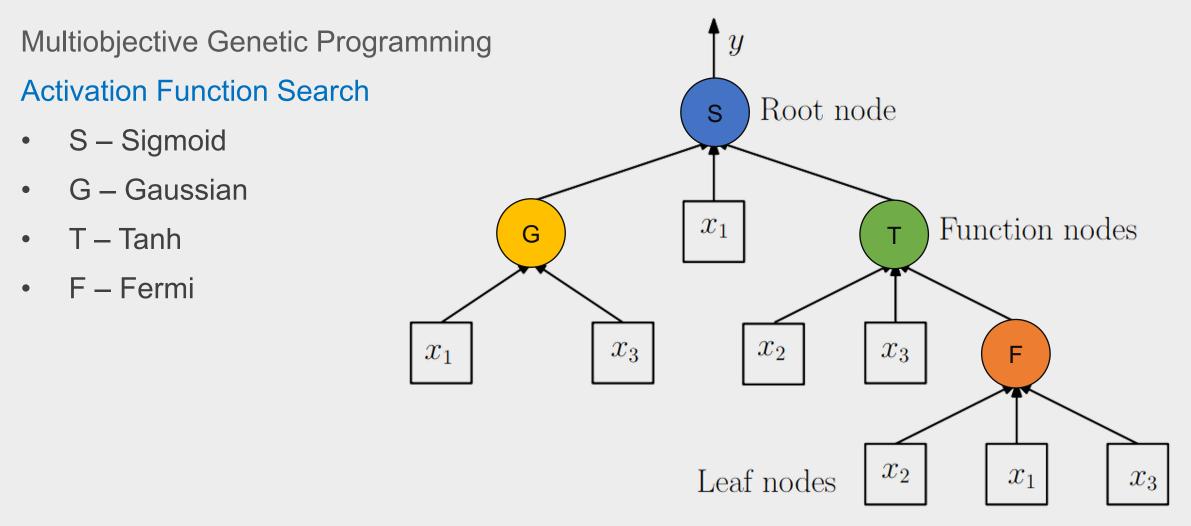


Learnability of Classes

Competition between classes: TPR/Recall/Sensitivity vs FPR/(1 - Specificity)

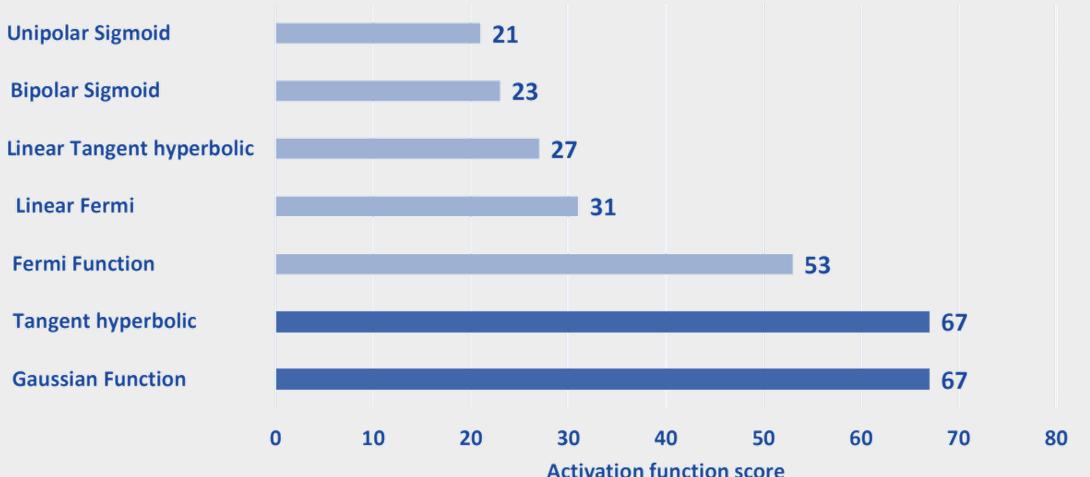


Heterogeneous Neural Tree

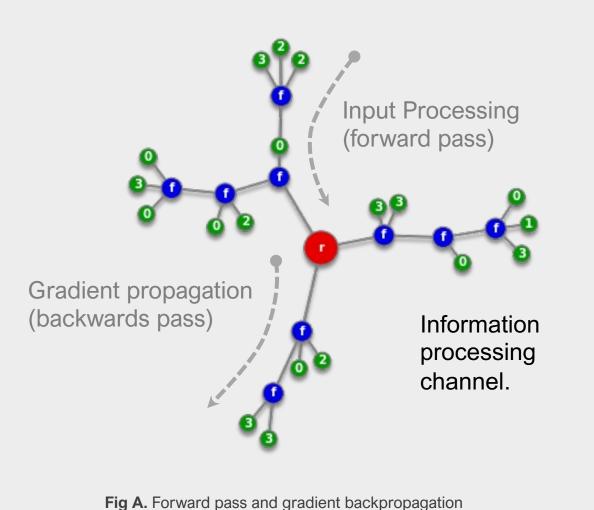


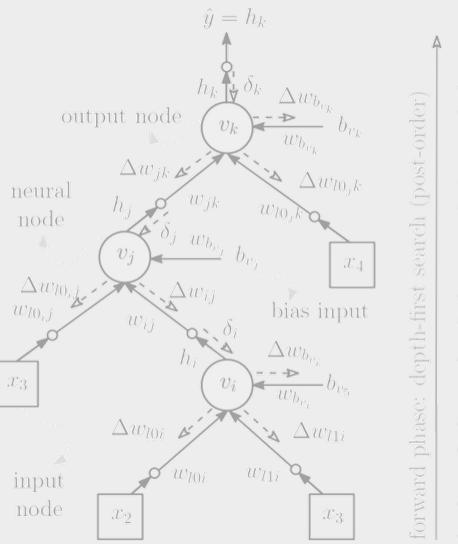
Activation Function Performance

Higher values are better

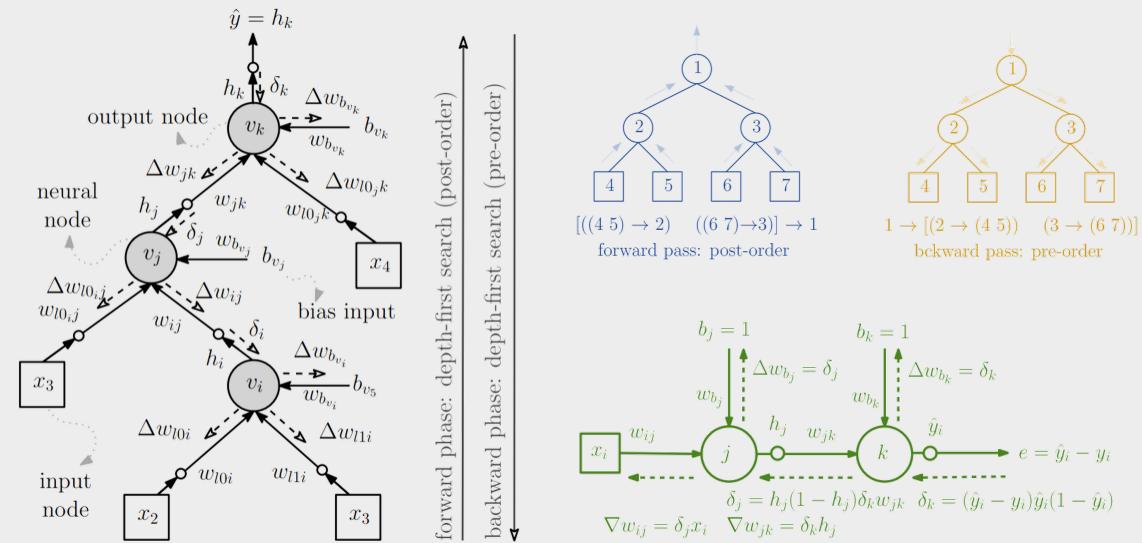


Ojha et al (2017), Applied Soft Computing

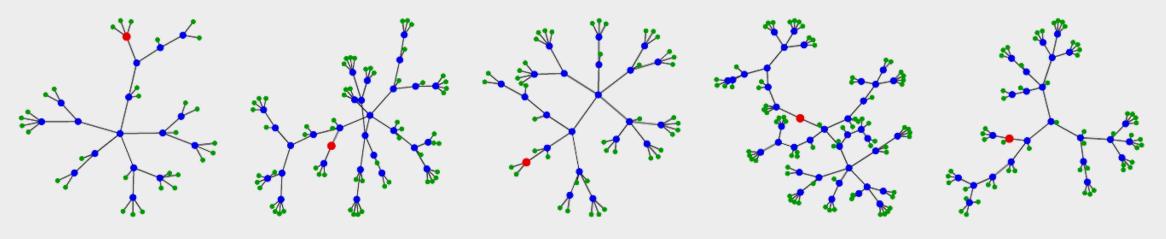




Ojha and Nicosia (2022), Neural Networks



Regression results



(a) baseball (.85, 48) (b) dee (.89, 89) (c) diabetese (.63, 67) (d) friedman (.95, 116) (e) mpg6 (.9, 82)

Algorithm	Bas	Dee	Dia	Frd	Мрд	Avg Acc	Avg Weights
BNeuralT	0.665	0.837	0.492	0.776	0.867	0.727	152
MLP	0.721	0.829	0.49	0.943	0.874	0.772	1041

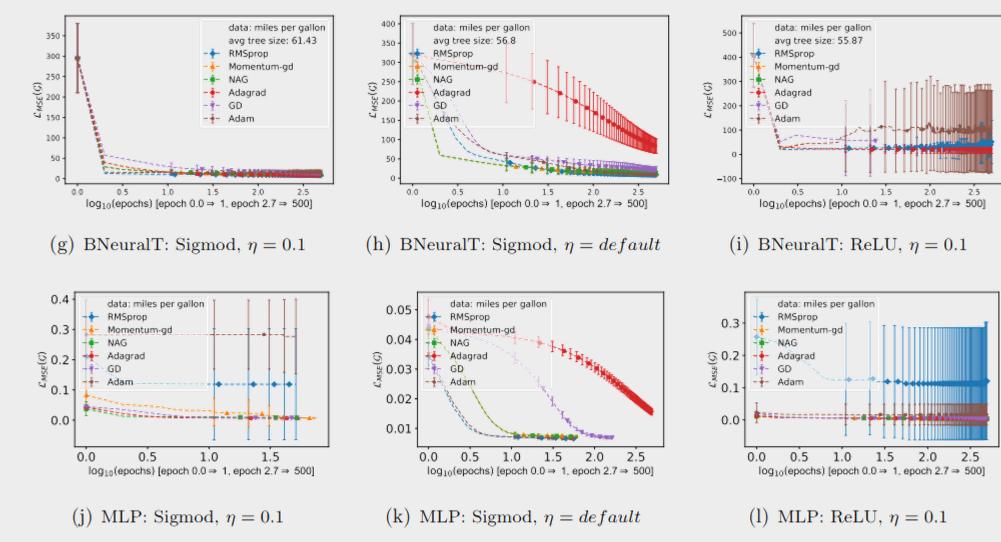
Ojha and Nicosia (2022), Neural Networks

Regression results

- BNeuralT used only 14.6% of MLP
- Accuracy differs only 5.8% lower than the best MLP result

Neural Tree vs Neural Networks

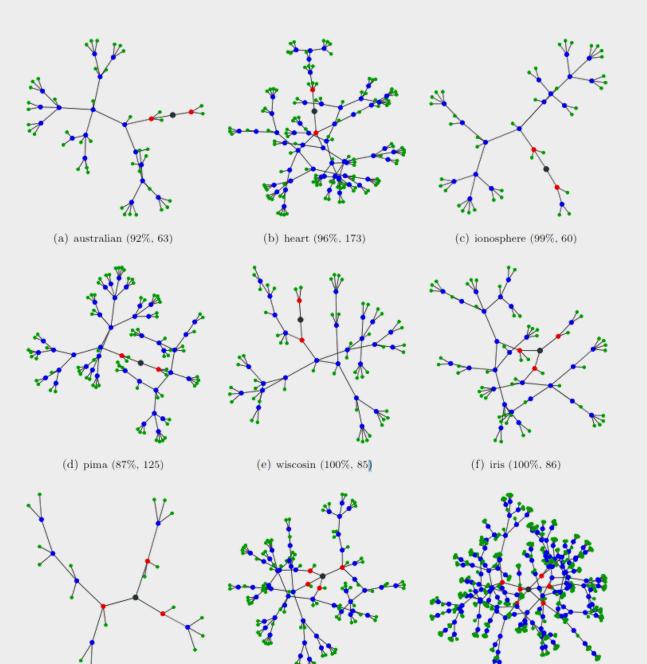
Regression Problems



Classification results.

Data	BNeuralT	MLP
Aus	0.895	0.876
Hrt	0.897	0.833
lon	0.952	0.882
Pma	0.822	0.774
Wis	0.986	0.984
Irs	0.992	0.972
Win	0.991	0.991
Vhl	0.75	0.826
Gls	0.732	0.635
Avg. Accuracy	0.891	0.863
Avg. Weights	261	1969

Ojha et al (2022), Neural Networks



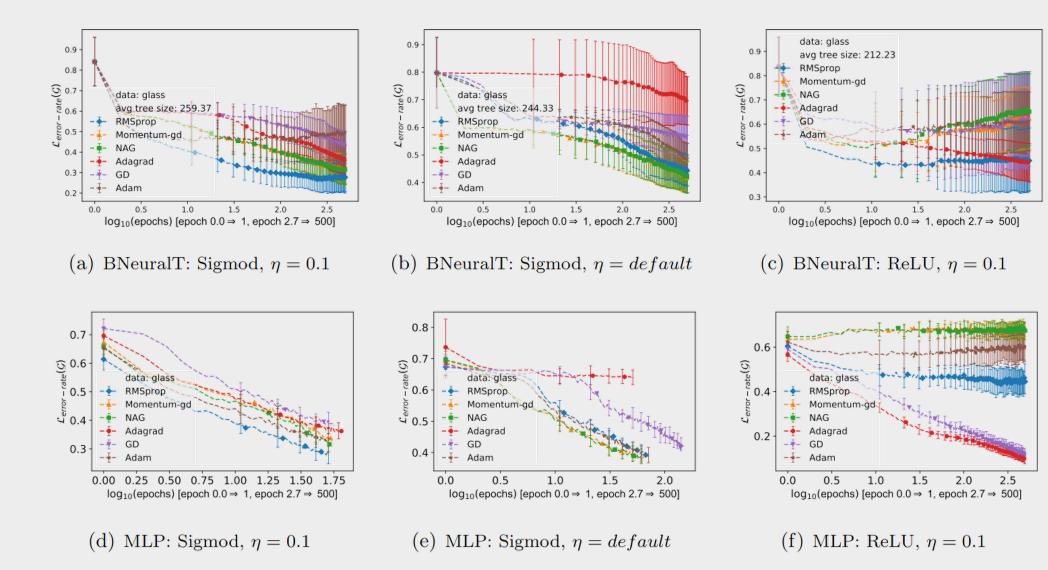
Dr Varun Ojha, University of Reading

Classification results

- BNeuralT used only 13.25% parameters of MLP
- Accuracy is **2.65% better than the best MLP** result

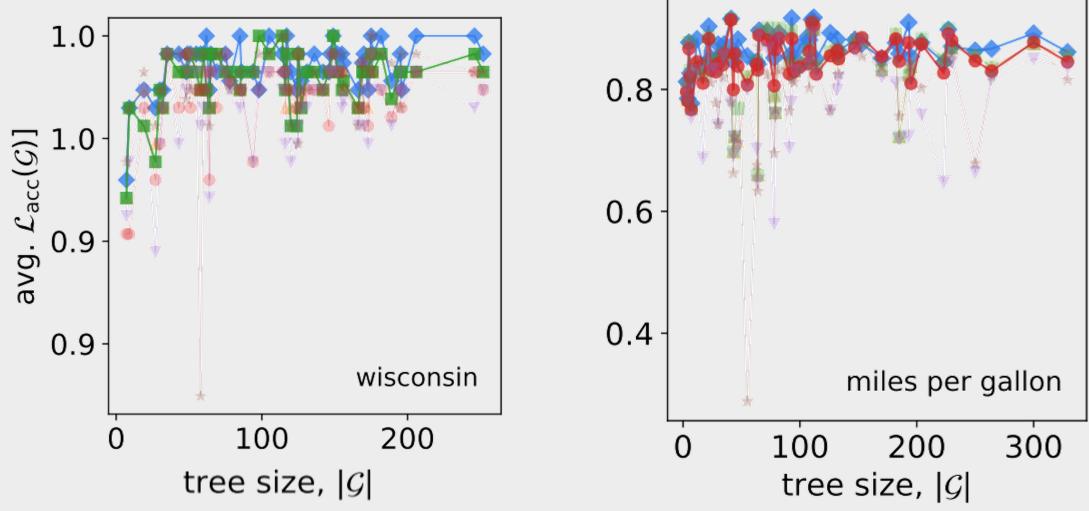
Neural Tree vs Neural Networks

Classification Problems



31

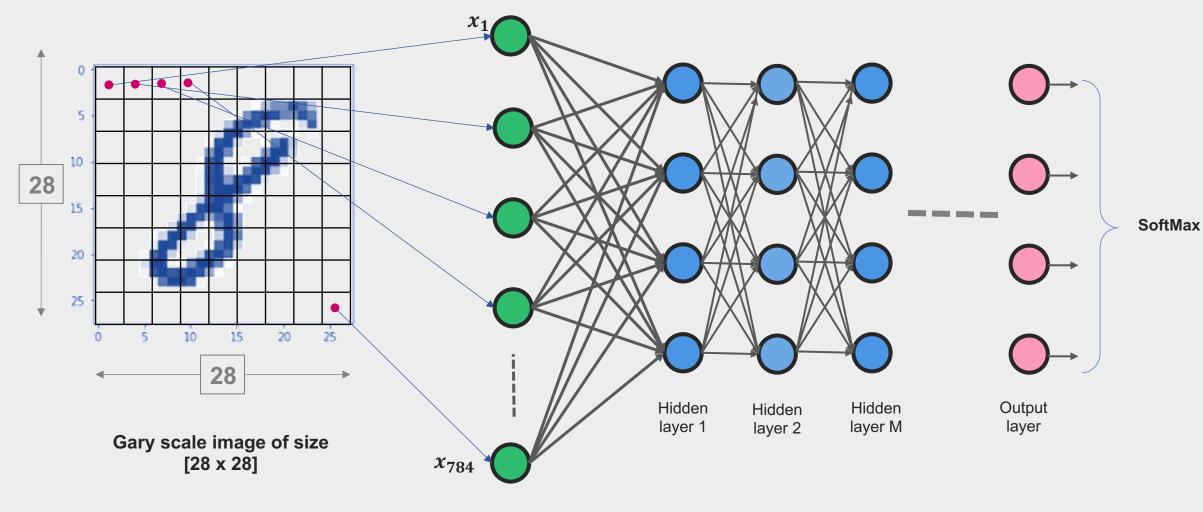
Architectural Stochasticity



Ojha et al (2022), Neural Networks

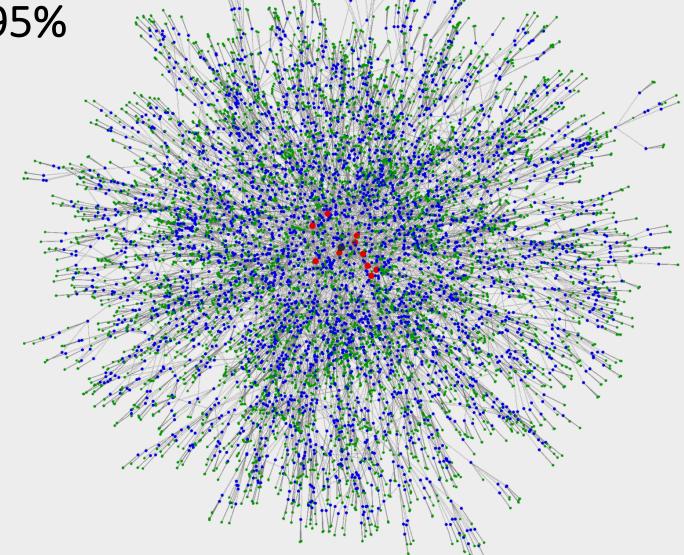
Dr Varun Ojha, University of Reading

Deep Neural Networks



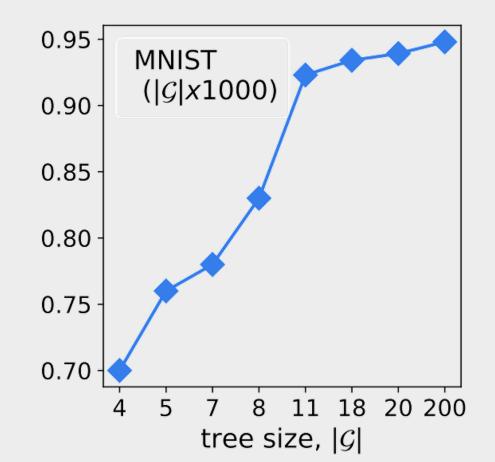
MNIST Model Accuracy ~95%

	Algorithms	$\operatorname{Error}(\%)$
$T_{\rm S}$	BNeuralT-10K (pixels)	7.74
ral	BNeuralT-18K (pixels)	6.58
eu	BNeuralT-20K (pixels)	6.08
BNeuralTs	BNeuralT-200 K^{\dagger} (pixels)	5.19
S	GUIDE (pixels, oblique split)	26.21
Classification Trees	OC1 (pixels, oblique split)	25.66
T	GUIDE (pixels)	21.48
ior	CART-R (pixels)	11.97
cat	CART-P (pixels)	11.95
sifi	C5.0 (pixels)	11.69
las	TAO (pixels)	11.48
O	TAO (pixels, oblique split)	5.26



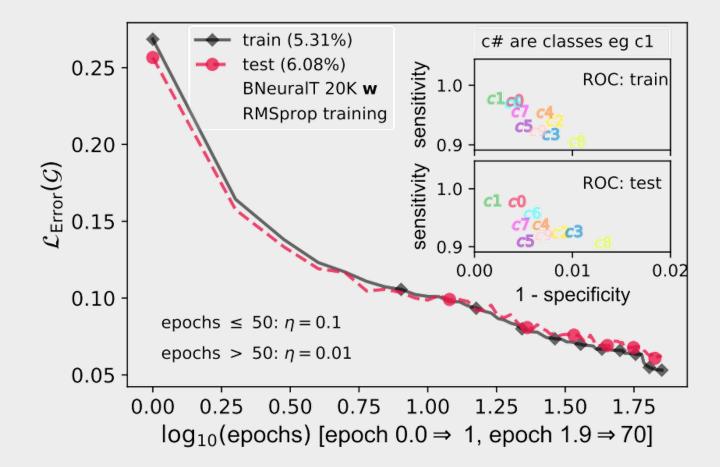
Model Size vs Accuracy

	Algorithms	$\operatorname{Error}(\%)$
alTs	BNeuralT-10K (pixels) BNeuralT-18K (pixels)	$7.74\\6.58$
BNeuralTs	BNeuralT-20K (pixels) BNeuralT-200K ^{\dagger} (pixels)	6.08 5.19
Classification Trees	GUIDE (pixels, oblique split) OC1 (pixels, oblique split) GUIDE (pixels) CART-R (pixels) CART-P (pixels) C5.0 (pixels) TAO (pixels) TAO (pixels, oblique split)	$26.21 \\ 25.66 \\ 21.48 \\ 11.97 \\ 11.95 \\ 11.69 \\ 11.48 \\ 5.26$



Learnability of Different Classes

Competition between classes: TPR/Recall/Sensitivity vs FPR/(1 - Specificity)



Summary

stochastic gradient descent training of any a priori arbitrarily "thinned" network has the potential to solve machine learning tasks with an equivalent or better degree of accuracy than a fully connected symmetric and systematic neural network architecture.

References

- Ojha, V., & Nicosia, G. (2022). Backpropagation neural tree. Neural Networks, 149, 66-83.
- Ojha, V., & Nicosia, G. (2020). Multi-objective optimisation of multi-output neural trees. In 2020 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE.
- Ojha, V. K., Abraham, A., & Snášel, V. (2017). Ensemble of heterogeneous flexible neural trees using multiobjective genetic programming. Applied Soft Computing, 52, 909-924.
- Ojha, V. K., Snášel, V., & Abraham, A. (2017). Multiobjective programming for type-2 hierarchical fuzzy inference trees. IEEE Transactions on Fuzzy Systems, 26(2), 915-936.