ensemble Xghoost

Varun Ojha
National Edge Al Hub

School of Computing, Newcastle University

-y
70N
Al

8-9 September 2025

https://doi.org/10.1016/j.inffus.2024.102746




Euclidean and Non-Euclidean data
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Non-Euclidean data i1s all around us

Bacteria Archaea Eucarya

Creen
Flamemous Nyzcaycota

Splrochetes bacteria

Tungl
Halephites

Mantae
Ciliates
Tlogelistes
Trichomonsds
Micresporatia
Diplemonods

Molecules
oo e
@)
e O
00 o 0 ©
o
@ o o
o o)
0
Networks Manifolds

Image Source: https://hackmd.io/@deep2233/BkeHKgcVd
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Statistics on non-Euclidian Spaces
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Three clusters of different RNA backbone geometries. They overlap in the classic pseudo-torsion

representation (left) but can easily be separated using non-Euclidean statistical methods (right).
http://www.statistics.uni-goettingen.de/index.php?id=20



Landscape of data points in both Euclidean and Hyperbolic space
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(a) t-SNE (data: breast-cancer-wisc-diag )
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(c) t-SNE (data: tic-tac-toe)
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(b) Sammon mapping (data: breast-cancer-wisc-diag )
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(d) Sammon mapping (data: tic-tac-toe)




Decision Tree

a model that predicts the value of a target variable by learning simple decision rules inferred from the data features

X (e.g. temperature)
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eXtrema Gradient Boost (XGBoost)

Random Forest is a collection of decision tree where each
tree is built from a random subset of the training set using
bootstrap sampling. When splitting a node during the
construction of the tree, normal bagging method would
choose the best split among all features
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XGBoost is an iterative decision tree algorithm with
multiple decision trees. Every tree is learning from the
residuals of all previous trees. Rather than adopting most
voting output results in Random Forest, the predicted
output of XGBoost is the sum of all the results
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Image source: Wang et al. Astrophys Space Sci 364, 139 (2019). https://doi.org/10.1007/s10509-019-3602-4



XGBoost In nutshell « ceste an iniial model £

(2) build a new model f, to fit the residuals from the previous

model
X,y (3) ensemble models at m-th step with a learning rate 1 as:
Tree 1 Tree 2 . Tree n _ aLOSS
' fm — fm—l + n * 0
h f2 fnx1 fm—l

We solve a loss at m-th step computed as follows:

N 1
Lo =) |oi * fmt5hi * £2] + O
i=

Basically, we compute

0°L(Yi —Vm-1)
0V im—1

Gradient g; = 9 and Hessianas h; =

0Ym-1



Hyperbolic Geometry: Poincaré disk model

The Poincaré hyperbolic disk is a two-dimensional space having hyperbolic geometry defined as the disk
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Hyperbolic Geometry: For any The Poincare ball model is a model of
given line R and point P not on n-dimensional hyperbolic geometry
R, in the plane containing both in which all points are embedded in
line R and point P there are at an n-dimensional sphere (orin a
least two distinct lines through P circle in the 2D case which is called
that do not intersect R. the Poincaré disk model)

We can represent common geometric
concepts by points on the unit circle.
Starting with a line, if we project the
geodesic line from the hyperboloid to
the unit circle, we get an arcs along the
unit circle with each one approaching
the circumference at a 90 degree angle.



Poincare XGBoost (PXGBoost) in nutshell
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We solve a loss at m-th step computed as follows:

N 1
Lo =) g * Stk * £2] + O
1=
Basically, we compute

0’L(Yi —Im-1)
0Pim-1

OL(Yi —Ym-1)
0Ym-1

Gradient g; = and Hessianas h; =

Replace Euclidean Gradient and Hessian with Hyperbolic ones

1
1 —|[x]]

Riemannian gradient g(x) = Vi f(x) = <Vf(x),x > x —Vf(x),

Riemannian Hessian h(x) = m (g(xX)V?f(x) + V,(x)Vfi(x)),



Results (F1 Score on classification)

Dataset Name (ID) classes () Space Features (m) Instance (n)
UCI 64 datasets [2 — 15] Euclidean [3 - 60] [24 — 4177]
H-UCI 64 datasets [2 — 15] Hyperbolic [3 — 60] (24 — 4177]
Dataset Accuracy Fl-macro

HLSVM  HoroRF  Xgboostt* PXgboost HLSVM  HoroRF  Xgboostt* PXgboost

H-abalone 0.6312 0.5172 0.6410 0.6377 0.6170 0.5152 0.6316 0.6307
H-acute-inflammation 1.0000 0.9500 0.9583 0.9750 1.0000 0.9492 0.9582 0.9749
H-vertebral-column-3clases 0.8052 0.5584 0.8214 0.8182 0.7253 0.4089 0.7510 0.7551
H-wine 0.9830 0.5284 0.9489 0.9489 0.9827 0.5027 0.9496 0.9471
H-wine-quality-red 0.5869 0.4669 0.6463 0.6619 0.2270 0.1814 0.3348 0.3445
H-zoo 0.9400 0.6800 0.8400 0.8200 0.8140 0.3844 0.5211 0.5572

Win-Tie-Lose of PXgboost 41-1-22 59-0-5 34-7-23 35-0-29 58-0-6 38-4-22
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(a) t-SNE (data: acute-nephritis)
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Results of Xgboost and PXgboost

0.9750 and 0.9950 by Pxgboost and 0.9583 and 0.9833 by Xgboost, where the data in classes have a clear boundary
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(b) Sammon mapping (data: acute-nephritis)
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(c) t-SNE (data: acute-inflammation)
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(d) Sammon mapping (data: acute-inflammation)
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