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Abstract

Several critical biological and chemical processes are regulated by the molecular diffusion of
NPs through a polymer or a carrier fluid. In order to control diffusion, it is imperative to
understand the properties of such inhomogeneous networks which influence diffusion. Studies
show that various factors such as electrostatic interaction, steric interaction, network porosity
and so on affect diffusion. However, the use of machine learning (ML) algorithms in this
field seems to be restricted. In this thesis, the molecular diffusion of NP is studied in polymer
matrix and ferrofluids is studied using ML. Two data sets are generated by molecular dynamics
and Brownian dynamics computer simulations of molecular diffusion of NP in polymer matrix
and ferrofluids. Predictive and descriptive ML algorithms are applied on the data sets. In case
of polymer, it is found that electrostatic potential (U0), mesh size (a) and screening length
(k) are the important features that affect diffusion. Random forest is the best predictive and
classification model to predict and classify diffusion respectively. In case of ferrofluids, the
critical feature subsets are unclear. It is observed that extreme gradient boosting is the best
predictive model and random forest is the best classification model for ferrofluids.
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Chapter 1

Introduction

1.1 Background

With the advent of nano-technology, it is possible to study and create custom materials
with desired mechanical, chemical, electrical, magnetic and other properties giving rise to a
new class of biomaterials (Callister and Rethwisch, 2020). Usually, they are synthesized by
reinforcing polymers with nano particles (NP) known as nano-composites (Young and Lovell,
2011). This technique is used to engineer materials with amenable features that can respond
to external stimulus such as temperature, electrical field, magnetic field and so on. Hence,
they are also known as smart materials. They are used to manipulate processes such as
molecular diffusion. The central idea of diffusion is transport of mass from one region to
another (Callister and Rethwisch, 2020). It which serves critical applications in drug delivery,
biomedical science (Kalia, Kango, Kumar, Haldorai, Kumari and Kumar, 2014, Liu, Liu, Cui,
Wang, Zhang and Tang, 2020, Meyer and Green, 2015), medicine, industrial (Lopez-Lopez,
Durán, Iskakova and Zubarev, 2016), environmental remedies (Kalia, Kango, Kumar, Haldorai,
Kumari and Kumar, 2014, Zhu, Wei, Chen, Gu, Rapole, Pallavkar, Ho, Hopper and Guo, 2013)
and other industries.

Diffusion is studied either by conducting actual experiments or by performing molecular
dynamics computer simulations. However, computer simulations prove to be more convenient
to obtain data and perform analysis. Inspite of several studies conducted in this area using
computer simulations, the capabilities of machine learning are rarely utilised. It is necessary
to understand the nature of the interaction between nano-particles and the polymer matrix
or carrier fluid as well as its effects on molecular diffusion. This thesis proposes to fill these
existing gaps by producing descriptive and predictive models ML to gain an in-depth under-
standing of the factors affecting diffusion. This will guide the scientists towards a focused
approach to engineer biomaterials with desired characteristics.

1.2 Aims and Objectives

The aim of this thesis is to study diffusion in inhomogeneous networks consisting of NPs,
MNPs and polymers by using ML. ML will help in identifying how the behaviour of NPs and
MNPs as well as the properties of polymer affect the diffusion process. This understanding
can be extrapolated to engineer effective biomaterials. The aim is broken down into several
objectives to answer the prominent research questions as shown in the Table 1.1.

1



CHAPTER 1. INTRODUCTION 2

Table 1.1: List of research questions and objectives of the thesis

No. Research Questions Objectives

1 How diffusion depends on the factors? Identify comparative strength of influ-
ence of the factors on tracer particle
diffusion

2 Can we identify the critical factors
that influence diffusion?

To conduct focused study on the crit-
ical factors

3 Can we predict diffusion based on the
values of the factors?

To avoid simulations and save time

4 Can we categorise diffusion? To detect any similarities or patterns
in the data and label them

5 Can we classify diffusion based on the
categories?

To understand the diversity in diffu-
sion with respect to the feature val-
ues, similarities and differences

1.3 Solution approach

The methodology adopted in this thesis begins with data collection phase using computer
simulations. Simulations of self diffusion of MNP in ferrofluids generate data set containing
mesh size (a), electrostatic potential (U0), screening length (k), strength of LJ repulsion (ε)
and diffusion (D). The data set of self diffusion of NP in polymer matrix consists of particle
volume fraction (φ), dipolar coupling constant (λ), Langevin parameter (α), diffusion (D),
average cluster size (savg1) and magnetization (M). Next, we apply predictive and descriptive
machine learning algorithms to both the data sets to answer the research questions in Table
1.1.

1.4 Summary of contributions and achievements

Predictive (regression and classification) models with high accuracy are obtained to predict
diffusion based on the feature values. Random forest is the best predictive and classification
model to predict and classify diffusion respectively. It is observed that extreme gradient
boosting is the best predictive model and random forest is the best classification model for
ferrofluids. In case of polymer, it is found that electrostatic potential (U0), mesh size (a) and
screening length (k) are the important features that affect diffusion. In case of ferrofluids, the
critical feature subsets cannot be clearly identified.

1.5 Organization of the report

The thesis is outlined as follows:

• Chapter 2 - Literature Review
In this section, the study provides a basic context of nano particles, nano materials
and magnetic nano particles. Using it as a basis, it further explains the central idea of
diffusion and the studies present in the literature. It mentions the factors influencing
diffusion, process of computer simulations and exposes the gaps related to use of ML
to study diffusion in the existing literature.
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• Chapter 3 - Machine learning techniques
A brief description of machine learning algorithms is given along with their advantages
and working.

• Chapter 4 - Methodology
This chapter explains the detailed process of data collection using computer simulations
along with the application of ML techniques on the data sets.

• Chapter 5 - Results and discussion : Diffusion ofNP in polymer
The results of ML are analysed and their implications are discussed in depth.

• Chapter 6 - Results and Discussion : Diffusion in ferrofluids
The results of ML are analysed and their implications are discussed in depth.

• Chapter 7 - Conclusion and future work
The results are summarised and future work is suggested.

• Chapter 8 - Reflection
This section describes individual learning experience gained throughout the research and
implementation of thesis.



Chapter 2

Literature Review

With the advent of technological advancements such as microscopes, the scientists are able
to study the complex structures on an atomic (microscopic) level (Callister and Rethwisch,
2020). Observation of physics and chemistry of atoms (also known as the ”building blocks
of matter”), has lead to the discovery of nano-particles (NP) whose size is of the order of
nanometer (10−9m) (Callister and Rethwisch, 2020). Nano-materials (NM) are materials
whose internal structure is made up of several NPs. Further investigations reveal that NMs of
type metals, semi-conductors, ceramics, polymer and composites exhibit drastically different
physical and chemical properties at an atomic level as opposed to the macroscopic level
(Callister and Rethwisch, 2020). Using NMs, it is feasible to design and create new materials
with custom mechanical, electrical, magnetic and other properties, thus, giving rise to the age
of ”materials by design” (Callister and Rethwisch, 2020). Exploiting this concept, materials
with tractable features are engineered that can be manipulated using an external stimulus such
as pH, temperature, chemical, electrostatic field, light, magnetic field, shear-sensitive and so
on (Wang, Li, Ouyang and Karniadakis, 2020). These materials are used to regulate the
process of molecular diffusion which find several critical applications. Thus, it is imperative
to study the process of diffusion to engineer smart materials.

2.1 Diffusion

Historically, the term diffusion has been extensively used in physics, biology, chemistry, soci-
ology, economics and finance. However, this literature review focuses on the definition and
applications of molecular diffusion corresponding to physics, chemistry and biology. To begin
with, the process of diffusion is a natural phenomenon and can be observed in everyday life.
There are many common place examples of diffusion in solid, liquid and gas. One such exam-
ple is that of a perfume bottle. When it is opened, the fragrance spreads in the air since the
atoms of the perfume liquid diffuse in the air. Intuitively, this leads to the basic definition of
diffusion as transport of mass by atomic movement (Callister and Rethwisch, 2020).

Diffusion was first mathematically described by Fick’s Laws derived by Adolf Fick in 1855
(Callister and Rethwisch, 2020). Considering a linear concentration profile of diffusion of
gaseous species (Figure 2.1), the concentration gradient is given by Equation 2.1 (Callister
and Rethwisch, 2020).

concentration gradient =
∆C

∆x
=
CA − CB
xA − xB

(2.1)

Fick’s first law for steady-state diffusion in a direction x states that the flux (J) is proportional
to the concentration gradient given by the Equation 2.2 followed by the second law for non-

4



CHAPTER 2. LITERATURE REVIEW 5

steady state diffusion (Callister and Rethwisch, 2020) .

J = −DdC
dx

(2.2)

Figure 2.1: (a) Steady-state diffusion across a thin plate. (b) A linear concentra-
tion profile for the diffusion situation in (a) (Callister and Rethwisch, 2020).

On the other hand, Brown (1828) defines diffusion as a random walk of particles suspended
in fluid, later developed by Einstein (1905) as Brownian motion. It is given by the first-
order differential equation (Equation 2.3) where, Fi = −∇iU are potential forces, ξ is the
friction coefficient, FBi represents Gaussian white noise and ri is the displacement of the NP
i (Einstein, 1905). For spherical particles, ξ = 3πησ where η is the viscosity of the solvent
and σ is the hydrodynamic diameter (Einstein, 1905).

d

dt
ri =

1

ξ
Fi +

1

ξ
FBi (2.3)

2.1.1 Diffusion of nano-particles in polymer

Polymer is a substance composed of molecules that have lengthy sequences of one or more
species of atoms connected to each other covalently (Young and Lovell, 2011). They pos-
sess peculiar chemical and physical properties such as high impact tolerance and elasticity as
compared to other metals or semi-conductors (Pethrick, Amornsakchai and North, 2014). As
a result, there are numerous applications of polymers alone as well as their enhanced vari-
ations. Generally, polymers are reinforced by nanoparticles forming nanocomposites (Young
and Lovell, 2011). Due to miniscule size of the nano particles, the surface-to-volume ratio
of nanocomposites increases. Thus, they offer better stress support and are strong as com-
pared to a single polymer matrix (Young and Lovell, 2011). Therefore, extensive research is
conducted to study the properties of polymers and utilize them.

The process of diffusion of nano-particles in base polymer or polymer nano-composites
finds critical applications in several areas such as chemical engineering, biological processes,
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pharmaceutical industries and so on. One of the important applications of this process is in
controlled drug delivery (Zhao, Kim, Cezar, Huebsch, Lee and Mooney, 2011). When a drug
is administered orally or through injection, the concentration of the drug in the body begins to
surge to a high value and then decreases in an exponential manner. It is necessary to maintain
an initial concentration over a reasonable time period to attain the desired effect. The solution
to this problem is to incorporate the drug into a polymer from which it can diffuse inside the
body at a planned rate. A study (Wang, Li, Ouyang and Karniadakis, 2020) exploits this
mechanism to control the diffusion of NP (drug) in thermo-responsive (temperature sensitive)
hydrogel polymer network by changing the temperature. Thus, the drug release kinetics
(diffusion) can be controlled to design smart drug delivery system. Another useful application
(Lieleg, Baumgärtel and Bausch, 2009) of this mechanism is to use partially swollen hydrogels
formed from cross- linked hydrophilic polymers (Pethrick, Amornsakchai and North, 2014) as
film to cover injuries such as burns. The film allows controlled transit of water along with
antibiotic substances while blocking the bacteria to prevent infections. Similarly, hydrophilic
polymers are used in the treatment of waste water by allowing water molecules to diffuse freely
while blocking the large harmful bacteria. In industries, it is common to form bicomponent gels
by mixing 2 immiscible polymer gels using nano particles as catalyst (Chen and Yong, 2019).
The NP increase the entropy and make the reaction more spontaneous facilitating their mixing
(Chen and Yong, 2019). When the NPs interact with the polymer matrix (polymer gel), the
diffusion of NP is affected by many factors such as steric effects (Fatin-Rouge, Starchev and
Buffle, 2004), network porosity, flexibility, degree of cross linking, temperature, electrostatic
interaction (Zhang, Hansing, Netz and Derouchey, 2015) and so on (Zhou and Chen, 2009).

2.1.2 Diffusion of ferrofluids

Magnetism is a well-known phenomenon where certain materials possess an attractive or re-
pulsive force or influence on other materials (Callister and Rethwisch, 2020). Some substances
such as lodestone, naturally possess magnetism whereas, in case of other substances such as
iron which are sensitive to magnetic field, magnetism can be induced by using an external
magnetic field (Callister and Rethwisch, 2020). With the advent of nano-technology, exten-
sive research is being conducted in developing, studying and adopting magnetic nano-materials
and their corresponding magnetic polymer nanocomposites. Due to their sensitivity towards
magnetic field, their physical, mechanical and chemical properties can be remotely controlled
by externally manipulating the strength of the magnetic field. This special feature gives rise
to numerous biomedical (Kalia, Kango, Kumar, Haldorai, Kumari and Kumar, 2014, Liu, Liu,
Cui, Wang, Zhang and Tang, 2020, Meyer and Green, 2015), industrial (Lopez-Lopez, Durán,
Iskakova and Zubarev, 2016), optical (Li, Meng Lin, Toprak, Kim and Muhammed, 2010) and
environmental (Kalia, Kango, Kumar, Haldorai, Kumari and Kumar, 2014, Zhu, Wei, Chen,
Gu, Rapole, Pallavkar, Ho, Hopper and Guo, 2013) applications.

Ferrofluids are magnetic nano-materials who have gained a lot of attention in the recent
years because their physical properties can be controller by an external magnetic field. They
are colloidal liquid in which magnetic nano particles are suspended (Ilg and Kröger, 2005).
Though their gradient diffusion in ferrofluids is studied experimentally and theoretically, self-
diffusion or tracer-diffusion in ferrofluids has rarely been explored (Ilg and Kröger, 2005). Some
studies (Ilg and Kröger, 2005, Wang, Holm and Müller, 2002) show that in the presence of an
external magnetic field, the anisotropic self diffusion depends on the strength of the dipolar
interaction between the particles, concentration of the number of particles, susceptibility and
the magnetic field strength. It also found that the formation of clusters amongst the magnetic
nano particles enhances the magnetization in the ferrofluids.
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2.2 Probe diffusion using molecular dynamics simulations

Probe diffusion also called as microrheology in the literature, is used to study the rheology of
polymer solutions, colloidal gels and hydrogels (Zhou and Chen, 2009). At the very beginning,
scientists experimented with physical objects such as gelatine balls or hard spheres to represent
the molecular structure to study the rheology of liquids (Allen and Tildesley, 1989). However,
such methods are extremely time consuming especially when the number of particles increase
and each of their interactions need to be calculated manually. Allen and Tildesley (1989)
propose computer simulations which are fast, reliable and convenient to test the existing
approximation methods and shed light on the new approaches. Further, they illustrate the
connection between the experiment, theory and computer simulation as shown in Figure 2.2.
They propose that the results of simulations can be compared with the results derived from
real experiments and theoretic predictions ensuring the testing of the underlying model to
perform necessary corrections in the model.

Figure 2.2: The connection between the experiment, theory and computer simu-
lation (Allen and Tildesley, 1989).

Probe diffusion requires a structural and mathematical framework for performing computa-
tions. The structural framework defines the molecular arrangement by specifying the number
of dimensions, type of lattice, degree of cross-linking of the atoms and molecules, charged or
uncharged matrix and so on. Different 3-dimensional lattice models such as coarse-grained
bead-spring (Figure 2.3) and bead-rod are used to represent the polymer architectures (Zhou
and Chen, 2009, Cruz, Chinesta and Régnier, 2012). Usually, a cubic lattice is constructed
where each bead is positioned on a cross-link point to 6 other adjacent points with the help
of hookean springs (Cruz, Chinesta and Régnier, 2012). The degree of cross-linking can be
manipulated as per research requirement (Cruz, Chinesta and Régnier, 2012).

Computer simulations use statistical mechanics as mathematical framework to compute
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Figure 2.3: Schematic of a bead-spring cross-linked network. Each stick connector
represents a spring (Zhou and Chen, 2009).

exact results. Statistical mechanics establishes a theoretical link between the microscopic
and macroscopic descriptions (Allen and Tildesley, 1989). Microscopic description of matter
involves masses of atoms, interaction between the atoms, molecular geometry, positions and
velocities of molecules and atoms. On the other hand, macroscopic description of matter
uses observables like diffusion, temperature, pressure, density and so on. Thus, statistical
mechanics encapsulates the molecular dynamics at a finer scale. In case of diffusion, Fick’s laws
provide a macroscopic definition of diffusion resonating with thermodynamics whereas Brown
(1828) presents a microscopic definition of diffusion. Molecular dynamics (MD), Langevin
dynamics (LD), Brownian dynamics (BD) and Monte-Carlo (MC) simulations are some of the
common techniques of statistical mechanics used to model diffusion. Chen and Kim (2004)
review the methods, their comparative strengths and weaknesses along with their applications.
Brownian equation is derived from Langevin equation which is in-turn derived from the basic
definition of molecular dynamics. The details of the mathematical derivations are provided
in Appendix A. BD addresses the problem of timescale separation when one form of motion
in a system is much faster than the other (Allen and Tildesley, 1989). Shorter times-steps
and long runs of simulations are required to allow the progression of the slower motions
(Allen and Tildesley, 1989). For example, while simulating a large number of molecules
in a solvent, the fast motions of the solvent molecules are not of interest and need to be
ignored in order to make the simulations less expensive (Allen and Tildesley, 1989). Langevin
equation solves this problem by omitting them from the simulation and representing their
effects on the solute particles as a combination of random forces and frictions (Allen and
Tildesley, 1989). Ensemble is a collection of a large number of identical systems (M) evolving
in time under the same macroscopic conditions but different microscopic initial conditions
(Allen and Tildesley, 1989). Macroscopic properties (observables) are then calculated as
weighted averages. Molecular methods are similar to experiments where weighted averages
are computed (Allen and Tildesley, 1989). This process of ensemble average is a part of the
statistical mechanics which is used to calculate the diffusion (macroscopic property) of NPs
in polymer. Nontheless, Brownian dynamics and Langevin dynamics computer simulations are
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some of the popular methods employed to study diffusion (Zhou and Chen, 2009, Ryzhkov,
Melenev, Holm and Raikher, 2015, Megariotis, Vogiatzis, Schneider, Müller and Theodorou,
2016, Zhang, Hansing, Netz and Derouchey, 2015, Ilg and Kröger, 2005, Wang, Holm and
Müller, 2002).

2.3 Use of Machine learning to study diffusion

Substantial research (Zhou and Chen, 2009, Ryzhkov, Melenev, Holm and Raikher, 2015,
Megariotis, Vogiatzis, Schneider, Müller and Theodorou, 2016, Zhang, Hansing, Netz and
Derouchey, 2015, Ilg and Kröger, 2005, Wang, Holm and Müller, 2002) have been conducted
to observe factors that influence diffusion by performing MD/BD computer simulations of
NP and MNP. However, it is difficult to calculate the statistically relevant translational diffu-
sion coefficients on shorter time scales. Therefore, longer simulations are required to obtain
the necessary values/information which are critical to the study. Furthermore, these stud-
ies conduct computer-based simulations or actual experiments which is time consuming and
computationally costly to perform repeatedly for many polymers.

On the other hand, several studies use machine learning to study and characterize diffu-
sion. Chen and Yong (2019) apply artificial neural network supervised machine learning (ML)
algorithm to predict the polymer phase of bicomponent hydrogels, by training model with some
initial experimental data containing radii and volume of Janus nanoparticles which facilitate
the formation of hydrogels. They use the k - nearest neighbours (k-NN) unsupervised (ML)
algorithm to classify the predicted phase. Muñoz-Gil, Garcia-March, Manzo, Mart́ın-Guerrero
and Lewenstein (2019), Granik, Weiss, Nehme, Levin, Chein, Perlson, Roichman and Shecht-
man (2019) use artificial neural network (ANN) and deep learning respectively to detect the
anomalous diffusion based on mean square displacement (MSD).

Inspite of adopting machine learning techniques to study diffusion, they fail to build pre-
dictive models to predict diffusion based on the values of parameters affecting it. In order
to effectively control diffusion, it is required to understand the magnitude of their influence
on the diffusion process and isolate the most important parameters. Therefore, this thesis
proposes to fill the existing gaps and leverage the capabilities of ML by producing predictive
models with high accuracy. The ML models can be reused in the future to predict diffusion
without performing any computer simulation or actual experiments thus expediting research.
Using feature analysis, we can identify the critical parameters that influence diffusion. This will
further guide the researchers towards a focused study to design biomaterials which specifically
incorporate the important parameters to regulate diffusion. Moreover, ML clustering algo-
rithms can be used to label similar data points with respect to diffusion. The classifier models
can be trained to classify the labelled data points into meaningful categories. Exploratory data
analysis can help to visualise the dependence of diffusion on the given parameters. Thus, this
thesis aims to employ the capabilities of ML to extract a detailed schematic of the diffusion
process which will serve as a guide towards future study.



Chapter 3

Machine learning algorithms

Figure 3.1: Hierarchy of ML algorithms

Machine Learning (ML) is a powerful tool to extract patterns from the given data. Given
a set of inputs x = x1, x2, x3 . . . xN and their corresponding set of target values ŷ =
y1, y2, y3 . . . yN , ML establishes a mathematical relationship between them in the form of
ŷ = f(x) (Bishop, 2006). Usually, the data set is divided into the training set and test set.
Training set is used to train the models to identify the relationship between the input and
the target values (Bishop, 2006). The trained model is validated using the test set and per-
formance measures. Referring to Figure 3.1, in supervised learning past data is used to train
the model (Bishop, 2006). On the contrary, unsupervised learning (clustering) tries to find
patterns without any historical data (Bishop, 2006). When the target values ŷ are continu-
ous, it is treated as a regression problem else if they are discrete (labels) then it becomes a
classification problem. Thus, these methods collectively form the predictive analysis. On the
other hand, descriptive analysis tries to find patterns using correlations, principal component
analysis, feature analysis, exploratory data analysis and so on (Tan, Steinbach and Kumar,
2016). It is primal in nature and sums up the concealed data associations (Tan, Steinbach
and Kumar, 2016).

10
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3.1 Descriptive analysis

3.1.1 Exploratory data analysis (EDA)

Cakmak and Cuhadaroglu (2018) describe EDA as one of the critical processes before apply-
ing machine learning algorithms and other statistical analysis. It helps to visualize the data
without any underlying assumption and identify patterns, data characteristics (Cakmak and
Cuhadaroglu, 2018). It paves the way for formulating an appropriate premise and provides
an initial headstart to further analysis (Cakmak and Cuhadaroglu, 2018). The process in-
cludes plotting coloured histograms, pairplots, scatter plots to understand the general trends
and relationships between the variables. (McKinney, 2018). They can be further quantified
by computing correlation, averages, variances, principal component analysis. Adopting this
process, one can understand the data at a higher level of abstraction.

3.1.2 Principal component analysis (PCA)

PCA was first introduced by Karhunen (1946) and Loève (1948). It decomposes the input
data set into most and least significant features affecting the target variable called as principal
components (Tan, Steinbach and Kumar, 2016). It computes the most important features
so that ML algorithms can be applied to the reduced data set. A reduction in the feature
space can significantly impact the performance of the ML models (Tan, Steinbach and Kumar,
2016). PCA helps to identify the set of features which account for the highest variation in the
data set (Tan, Steinbach and Kumar, 2016). Even though discarding few features can lead to
loss of information, the actual data can be reconstructed with high accuracy using the strong
features (Tan, Steinbach and Kumar, 2016).

3.1.3 Pearson correlation coefficient

Correlation mathematically quantifies the magnitude and direction of the relationship between
two variables. Pearson correlation coefficient was first introduced by Pearson (1895). The
coefficient rA,B is given by Equation 3.1. Here, n is the number of tuples, ai and bi are the
respective values of A and B in tuple i , Ā and B̄ are the respective mean values of A and B
, σA and σB are the respective standard deviations of A and B and

∑
aibi is the sum of the

AB cross-product (Han, Kamber and Pei, 2012, Chapter 3).

rA,B =

∑n
i=1(aibi)− nĀB̄

nσAσB
(3.1)

The value of rA,B ranges from +1 (positive correlation) to -1 (negative correlation). If
two variables are positively correlated then the increase in value of one implies an increase in
value of the other (Han, Kamber and Pei, 2012, Chapter 3). If two variables are negatively
correlated then the decrease of one variable implies an increase in the other (Han, Kamber
and Pei, 2012, Chapter 3). 0 means no correlation between the two variables. The correlation
can be visualized by using a simple scatter-plot. All the related theory can be found in (Han,
Kamber and Pei, 2012, Chapter 3).

3.1.4 t-Test

The t-test was first introduced by William Sealy Gosset as a Student (Student, 1908). It is used
to test the null hypothesis that the means of two groups A and B are equal H0 : µA = µB
(Iversen and Gergen, 1997). Using distribution theory results for two independent normal
variables, the two-sample t test statistic is given by Equation 3.2 which follows the student’s
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distribution with nA+nB−2 degrees of freedom (Iversen and Gergen, 1997). Here nA and nB
are the size of the two samples A and B respectively. n is the average size of the two samples,
s is the standard deviation, x̄A and x̄B are the means of the two samples A and B respectively.
If the p-value (probability) calculated is less than 0.05 then there exists statistically significant
evidence to reject the null hypothesis H0, otherwise H0 is true (Iversen and Gergen, 1997).
A large t score indicates that A and B are different and similar otherwise.

t =

√
n(x̄A − x̄B)

s( 1
nA

+ 1
nB

)
(3.2)

3.1.5 Feature selection

Feature selection is used to evaluate the importance of features in the dataset. It reveals the
data features which critically impact the prediction of a target value by a machine learning
model (Tan, Steinbach and Kumar, 2016). These features are used to train the machine
learning models and their performance is compared to that of models trained with all the
data features (Tan, Steinbach and Kumar, 2016). In this thesis, FNT is used perform feature
subset selection. Using the parameter settings in Table 3.4 and the FNT tool provided by
Ojha (2016), 10-Fold cross validation is performed on the data sets by randomly splitting
the datasets into training and test set into ten parts. This experiment is repeated 30 times.
In each iteration, selection rates of all the features and all possible combinations of feature
subsets are calculated.

3.2 Predictive analysis

3.2.1 Decision tree

The classification and regression trees (CART) was first introduced by Gordon, Breiman,
Friedman, Olshen and Stone (1984). It is a very popular algorithm which recursively divides the
given input feature space into regions based on different conditions (Bishop, 2006, Chapter 14).
A condition is derived based on the splitting attribute which is in turn determined by using
different measures such as gini index, information gain and so on (Bishop, 2006, Chapter 14).
A label (in case of classification) or a number (in case of regression) is assigned to each
constructed region using the input features. In order to predict a target value, the constructed
tree is traversed from root node to the appropriate region (leaf node) based on its feature values
(Bishop, 2006, Chapter 14). Once the region of the target (predictive) value is identified,
its value is predicted by averaging the input data points belonging to that identified region
(Bishop, 2006, Chapter 14). The decision tree falls under the umbrella of interpretable machine
learning algorithms (Bishop, 2006, Chapter 14) since the reason behind the predicted value
can be easily understood by looking at the generated tree as shown in Figure 3.2.

According to Figure 3.2, Uzero and mesh denote the splitting attributes U0 and a re-
spectively. Each rectangle refers to a region and the samples indicate the number of data
samples belonging to that particular region based on the condition. The value is the average
diffusion of the data samples in the region. The values of hyper-parameters are adjusted to
create a tree with high accuracy in a process called the hyper-parameter tuning. Some of the
hyper-parameters are minimum number of samples required to split, maximum depth of the
decision tree, maximum leaf nodes and so on. Further details on decision tree can be found in
Bishop (2006, Chapter 14). The hyper-parameters used in this thesis are given in Table 3.1.
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Figure 3.2: Snippet of decision tree created using diffusion data set

Table 3.1: Parameter settings for decision tree

Parameter Significance Values

max depth Maximum tree depth 10
min samples leaf The minimum number of samples required

to be at a leaf node
1

min samples split The minimum number of samples required
to split an internal node

2

3.2.2 Random forest

It was first introduced by Gordon, Breiman, Friedman, Olshen and Stone (1984). RF is an
ensemble classifier which consists of many decision trees (DT) (Bishop, 2006, Uddin, Khan,
Hossain and Moni, 2019). It is analogous to several trees present in a forest. Random forests
is defined as an ensemble of decision tree classifiers {h(x,Θk), k = 1, .....} where Θk is a
random vector and each tree votes for the popular class at input x (Pavlov, 2019). During
training, a random subset of the training data is selected. Random features of the subset
are selected based on node impurity. Then a node in the decision tree is created by using
the feature which gives the maximum classification. This process is repeated for n estimators
(Kelkar and Bakal, 2020). The performance of RF depends on the hyper-parameters such as
the number of decision trees (n estimators), maximum depth of each decision tree in a forest
(max depth), minimum number of tuples required to split each node (min samples split) and
minimum number of samples for each leaf node (min samples leaf) (Kelkar and Bakal, 2020).
It also depends the number of input features, feature selection, sample size and many other
factors as pointed out by (Kelkar and Bakal, 2020). In order to classify a new input tuple,
it is passed down to each decision tree (Pavlov, 2019). Each decision tree considers different
features of the input tuple and predicts a class label (Pavlov, 2019). Similarly, this process is
performed by all the other DTs in the ensemble. Finally, RF assigns the class label with the
highest votes from all the DTs to the input tuple (Pavlov, 2019). Since it considers outcomes
from several DTs it can be used to reduce the amount of caused variance of a single DT
(Pavlov, 2019). Over-fitting to the training data is one of the disadvantages of RF (Pavlov,
2019). The hyper-parameters used in this thesis are given in Table 3.2.
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Table 3.2: Parameter settings for random forest

Parameter Significance Values

min samples leaf The minimum number of samples required
to be at a leaf node

1

min samples split The minimum number of samples required
to split an internal node

2

n estimators The number of trees in the forest 100

3.2.3 Extreme gradient boosting

Boosting is a very popular type of ensemble methods which use multiple ”base” ML models to
predict the target variable. It was first introduced as ”Adaptive Boosting” by Schapire (2013).
The prediction is performed by computing the average result of a set of base classifiers such
as decision tree Schapire (2013). Each base classifier is trained using the weighted form of the
data set. The weight is decided based on the performance of the previous classifiers Schapire
(2013). If the previous classifiers made an error in prediction for some data points, then their
weightage is increased in the subsequent classifiers to ensure that they learn data points well
and the error is minimized Schapire (2013). Hence, they are known to yield better results than
a single base ML model by significantly reducing the overall variance of the model Schapire
(2013). Basically, for a given unseen data point, a set of classifiers are built and the average
of their predicted values is considered as the value of target variable for the given input data
point Schapire (2013). Extreme gradient boosting (EGB) was first introduced by Chen and
Guestrin (2016) and is a variant of the gradient boosting (Friedman, 2001) using decision
trees. EGB uses a regularization function to retain the generalization ability of the model and
avoids over-fitting to the training data set (Friedman, 2001). The hyper parameters such as
γ (minimum loss allowed for split), regularization weights (α and λ and so are used to tune
the performance of EGB for a given data set (Friedman, 2001). The hyper-parameters used
in this thesis are given in Table 3.3.

Table 3.3: Parameter settings for extreme gradient boosting

Parameter Significance Values

base score The initial prediction score of all instances 0.5
learning rate Boosting learning rate 0.1
max depth Maximum tree depth for base learners 3
gamma Minimum loss reduction required for split-

ting leaf node of a tree
0

n estimators Number of boosting rounds 100

3.2.4 Flexible neural trees

Flexible neural tree (FNT) was first introduced by Chen, Yang, Dong and Abraham (2005)
used for time series forecasting. It is one of the developments of the artificial neural network
(ANN) where a NN takes the form a tree-like structure. All the nodes in a single layer of
ANN are use the same activation function, contrary to FNT where it can be different. FNT
consists of 3 components: internal nodes, branches and leaf nodes (Ojha, Schiano, Wu, Snasel
and Abraham, 2018). The branches are similar to the weighted connections in an ANN. The
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internal nodes behave as computational nodes which are nothing but activation functions and
the leaf nodes, also referred to as terminal nodes are inputs (Ojha, Schiano, Wu, Snasel and
Abraham, 2018). The root node of the tree represents the predicted output of the model
which in our case is diffusion. The leaf nodes in FNT indicate the selected features: U0, a, ε
and k. Figure 3.3 illustrates the structure of a FNT generated from the input data set using
the tool provided by (Ojha, 2016). The root node 2 represents the output diffusion value.
Terminal nodes 0 and 1 represent features a and U0 are selected. The parameter settings
are given in Table 3.4. The tree structure is optimized using genetic programming (Ojha,
Abraham and Snášel, 2017) which is a evolutionary algorithm based on population (Ojha,
Schiano, Wu, Snasel and Abraham, 2018). The parameter optimization is performed using
differential evolution (Ojha, Schiano, Wu, Snasel and Abraham, 2018). Further explanation

Figure 3.3: Simple structure of FNT

on elitism, mutation, crossover and tournament can be found in Goldberg (1989).

3.2.5 Clustering : K-means

K-means (Tan, Steinbach and Kumar, 2016, Chapter 5) is an unsupervised algorithm which
was first introduced by Lloyd (1982) and MacQueen et al. (1967). It is a very popular algorithm
to cluster the data sets and find meaningful relationships within the given data. Tan, Steinbach
and Kumar (2016, Chapter 5) describe the k-means algorithm in detail. k-means randomly
selects k data points as centroids where k is the number of clusters. It assigns all other data
points to the clusters based on their minimum eucledian distance from the centroids. This is
performed for multiple iterations until there is no or minimal difference in the centroid values.
Therefore, each group of similar data points are assigned to a single cluster. This form of
labelling helps identify the hidden patterns in the data providing useful information. K needs
to be selected very carefully so as to obtain good quality of clusters. Silhouette coefficient
(Tan, Steinbach and Kumar, 2016, Chapter 5) is one of the methods for selecting optimal
K. The lower the coefficient value, higher the quality of clusters (Tan, Steinbach and Kumar,
2016, Chapter 5).
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Table 3.4: Parameter settings for FNT

Parameter Significance Values

Max tree depth Maximum height of the tree 5
Max tree arity Maximum children nodes can

have
4

Function node type Type of activation function Gaussian
Genetic programming popula-
tion

Population size used in opti-
mization of FNT

20

Elitism Number of best individuals of
current population carried for-
ward to next generation

2

Mutation rate Mutation Frequency 0.2
Crossover rate Crossover frequency 0.8
Tournament size Number of individuals part of

next generation
2

Meta heuristic algorithm Parameter optimization
method

Differential Evolution

Cross-validation Type of model validation
method

k-fold

Number of Folds Number of folds of cross valida-
tion

10

3.2.6 K-nearest neighbour (KNN)

KNN (Tan, Steinbach and Kumar, 2016) is a non-parametric method which was first intro-
duced by Cover and Hart (1967). According to Tan, Steinbach and Kumar (2016), it is a
type of supervised learning used to classify the data points into relevant labels. Given a new
data point, its distance from each training data point is calculated. K nearest neighbours
are selected based on the minimum distance. The label of the majority of the neighbours is
assigned to the new data point. It is a very simple algorithm but provides high performance.
The optimal K can be obtained by performing some trials on the data set. KNN is also
sensitive to the choice of the distance measure used to calculate the nearest neighbours. In
this thesis, k = 5 is used to configure the model.

3.3 Performance Measures

The performance indices are used to compute and compare the performances of the ML mod-
els. They serve as quantifiable measure of the performance. In this section, the performance
indices related to regression and classification ML algorithms are discussed.

3.3.1 Coefficient of determination (R2)

It was first introduced by Sewall (1921). It is one of the most common methods to determine
the accuracy of the predictive ML models for regression problem. It is given by Equation 3.3.

R2 =

 ∑N
i=1(oi − ō) · (yi − ȳ)√∑N

i=1(oi − ō)2
√∑N

i=1(yi − ȳ)2

2

(3.3)
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Where oi is the predicted output, ō is the mean of predicted output, yi is the actual target
value and ȳ is the mean of the actual target value in the test set (Sewall, 1921). R2 value
ranges from -1 to +1. If R2 = −1 or closer to -1 means that the ML model is not a good
fit for the data set whereas R2 = +1 or closer to +1 indicates the best performance of the
model (Sewall, 1921). Hence, we try to tune the machine learning models to obtain a higher
value of R2.

3.3.2 Precision and recall

In classification problem, the models are usually trained with samples of same size from each
category. However, it is not always the case. In this thesis, the dataset is manually labelled
with two classes and the dataset becomes highly unbalanced. While dealing with unbalanced
dataset, accuracy using confusion matrix (Figure 3.4) alone does not serve as an appropriate
measure of the classifier’s performance. For example, if 90 data points belong to class 1 and
only 10 data points belong to class 2. If the classifier is able to classify all the class 1 and not
class2 then the accuracy using confusion matrix will be 90% which is not correct. We want
the classifier to classify class 2 data points as well. Performance measures like precision and
recall are computed to correctly assess the performance of the classifier model. Figure 3.4
illustrates the confusion matrix. TP (true positive) and TN (true negative) are positive and
negative tuples that were correctly classified respectively (Han, Kamber and Pei, 2012). FN
(false negative) and FP (false positive) are misclassified as negative and positive respectively
(Han, Kamber and Pei, 2012). Precision (Equation 3.4) is defined as the ability of the classifier
to predict positive tuples correctly as positive considering all the tuples classified as positive
(Han, Kamber and Pei, 2012). On the other hand, recall (Equation 3.5) is the ability of the
classifier to predict positive tuples correctly as positive considering all the misclassified tuples
(Han, Kamber and Pei, 2012).

Precision =
TP

TP + FP
(3.4)

Recall =
TP

TP + FN
(3.5)

Figure 3.4: Summary of confusion matrix (Han, Kamber and Pei, 2012).

3.3.3 Receiver operating characteristics (ROC) plot

The ROC curve is another method to evaluate the classifiers when the data set is unbalanced,
similar to out case. The true positive rate (TPR) (Equation 3.6) is the fraction of positive
tuples correctly classified by the model and false positive rate (FPR) (Equation 3.7) is the
fraction of negative data points classified as positive (Han, Kamber and Pei, 2012). P and N
are the number of positive and negative tuples. ROC curve is a plot of FPR and TPR where
FPR is plotted on x-axis and TPR is plotted on y-axis. (Han, Kamber and Pei, 2012).

TPR and FPR of all the data tuples are plotted to form the ROC curve. The diagonal
line in the Figure 3.5 shows denotes random guessing since it is difficult to infer that the
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Figure 3.5: ROC curves of two classification models M1 and M2 (Han, Kamber
and Pei, 2012).

model is leaning towards TPR or FPR (Han, Kamber and Pei, 2012). The more the model
leans towards TPR the better classifier it is (Han, Kamber and Pei, 2012). If the model is
closer to the diagonal, it means that the model performs poorly (Han, Kamber and Pei, 2012).
Here, M1 performs better than M2 because initially M1 has more TPRs as compared to M2

(Han, Kamber and Pei, 2012). Also, M2 is closer to the diagonal so it performs poorly (Han,
Kamber and Pei, 2012).

TPR =
TP

P
(3.6)

FPR =
FP

N
(3.7)



Chapter 4

Methodology

As described in Chapter 2, diffusion is a physical phenomena modelled mathematically. It
is a numeric value calculated using computer simulations. Furthermore, this numerical data
as input is fed to machine learning algorithms described in Chapter ?? to produce diffusion
prediction models. In order to answer the research questions specified in Chapter 1, it is
required to make logical assessments based on strong mathematical reasoning. Following this
approach, positivism research paradigm is chosen as the framework of the research design
since it involves applying scientific methods to deliver the thesis objectives. Underpinning
this paradigm, primary research is conducted to collect quantitative data from computer
simulations (also known as computer experiments) and quantitative analysis is performed on
it using machine learning algorithms. Firstly, data is collected using computer simulations and
then fed into machine learning algorithms for further analysis.

4.1 Computer simulations of diffusion

Computer simulations are performed to generate two datasets. The simulation code is written
in c and c++ programming languages. The simulations are conducted referring to Allen and
Tildesley (1989).

4.1.1 Simulation of diffusion of nano-particles in a cubic array of repelling
rods

Referring to the BD simulations conducted by Zhang, Hansing, Netz and Derouchey (2015), a
cubic lattice (Figure 4.1) of repelling rods (attractive and repulsive forces) is used to represent
the polymer chains. Diffusion of a single tracer particle is modelled in terms of the stochastic
differential equation given by Cruz, Chinesta and Régnier (2012) as Equation 4.1.

dR(t) =
1

ξ
F (t)dt+BdWt (4.1)

Here, R(t) denotes the 3-dimentional position vector R = (X,Y, Z) of the nano-particle, ξ
is the friction coefficient, B =

√
2kBT/ξ, F = −∇U potential forces which represent the

strength of the interaction of the diffusing particle with the polymer network, Wt is a three-
dimensional Wiener process (Zhang, Hansing, Netz and Derouchey, 2015, Zhou and Chen,
2009). Wiener process is a continuous-time stochastic process and is a mathematical name
given to the Brownian Motion (Allen and Tildesley, 1989). Referring to Zhang, Hansing, Netz
and Derouchey (2015), Zhou and Chen (2009), the interaction between the diffusion particle

19
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Figure 4.1: Illustration of the regular three-dimensional cubic network (infinitely
extended in all three space dimensions).

and the polymer network can be modelled as a sum of steric and electrostatic contributions
as Equation 4.2.

U = U s + U e (4.2)

U s(r) =

{
4ε
[
(σ/r)12 − (σ/r)6 + 1/4

]
r ≤ rc

0 r ≥ rc
(4.3)

U e(r) = U0 exp [−r/k] (4.4)

Here, s and e denote the steric and electrostatic interactions of the r is the distance between
the centers of the particle and the network (Zhang, Hansing, Netz and Derouchey, 2015).
With rc = 21/6σ the steric interaction is purely repulsive (WCA potential) (Zhang, Hansing,
Netz and Derouchey, 2015). The polymer grains are arranged in a regular cubic grid of mesh
size a. The potential strength U0 is the electrostatic interaction between the NP and the
polymer lattice which can be positive (repulsive) or negative (attractive) (Zhang, Hansing,
Netz and Derouchey, 2015). The Debye screening length is the range of the interaction
of NP and the polymer network given by k2 = εε0kBT/(2e

2I) (Zhang, Hansing, Netz and
Derouchey, 2015). Here, T denotes the temperature at which the diffusion occurs and kB is
the Boltzman constant and e is the elementary charge (Zhang, Hansing, Netz and Derouchey,
2015). I = 1

2

∑
j njz

2
j is the ionic strength where z is the valence of the salt ions, and n is

their bulk number densities (Zhang, Hansing, Netz and Derouchey, 2015). It is assumed the
tracer particle and network links are of the same diameter σ.

The quantities in the Equations 4.2, 4.3, 4.4 carry their physical units of time and length
and so on. However, it is preferred to work with dimensionless (unitless) quantities in the
simulations. The basic length scale is the diameter of the particle σ. Therefore, all lengths are
measured in units of σ introducing dimensionless quantities R∗ = R/σ, r∗ = r/σ. The basic
timescale is the diffusion time τB = σ2/D where D =

√
2T/ξ is the single-particle diffusion

coefficient. Thus, time is measured in units of τB, t∗ = t/τB, W ∗ = W/
√
τB. Using thermal

energy kBT as a basic energy scale, ε∗ = ε/(kBT ). The Dimensionless forces are therefore
F ∗ = σF/(2kBT ). In terms of these dimensionless quantities, Equation 4.1 is written as
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Equation 4.5.

dR∗ =
1

σ
dR =

τB
σξ

kBT

σ
F ∗dt∗ +

√
2kBTτB
σ2ξ

dW ∗t

= F ∗dt∗ + dW ∗t (4.5)

The dimensionless forces F ∗ = − σ
2kBT

∇U derived from the Equation 4.2 are given by
Equations 4.6 and 4.7. Thus, there are four dimensionless model parameters as given in
Equation 4.8 that determine the resulting properties, where a∗ = a/σ is the reduced mesh
size, ε∗ = ε/(2T ) the relative strength of Lennard-Jones (LJ) repulsion, U∗0 = (U0/2T ) the
relative strength of electrostatic interactions and k∗ = k/σ the dimensionless screening length.

F ∗,s = ε∗
24

r∗
[(r∗)−12 − 2(r∗)−6]r̂ (4.6)

F ∗,e =
U∗0
k∗
e−r

∗/k∗ r̂ (4.7)

a∗, ε∗, U∗0 , k
∗ (4.8)

Based on different combinations of values of these parameters, diffusion of tracer particles
is computed as follows:

1. Initialize the parameters as per Table 4.1. Nt is the total number of time-step iterations
of the simulations and the size of each time-step is ∆t. nparticles is the number of
tracer particles in the cubic lattice whose diffusion is calculated. iout is the step interval
at which the output is logged in the output file.

Table 4.1: Parameter settings of BD simulation

Parameters Values

Number of atoms (tracer particles)
(nparticles)

100

Mesh size (a) 4, 6, 8, 10
Electrostatic Potential (U0) Range of [-20, +20]
Screening Length (k) 1, 2, 3, 4
Strength of LJ repulsion (ε) 0.5, 1, 2
Time-step (∆t) 0.1
Number of integration steps (Nt) 20
Skip number of step for output (iout) 10

2. Compute new positions of NPs : The Heun scheme is used to integrate the stochastic
differential Equation 4.5. As per the Heun scheme, the next position of the particles
are computed using the Euler-Maruyama given by Equation 4.9.

R̄∗ = R∗(t) + F ∗(t)∆t+
√

∆t ζ (4.9)

where F ∗(t) = F ∗(R(t)) are the forces calculated with the current position and ζ a
normally distributed random variable with zero mean and unit variance.
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3. Compute forces as per new positions : All the forces (Brownian contribution, elec-
trostatic potential, LJ force) acting on the particles in x, y and z directions in the current
position are calculated. The Brownian contribution is given by B =

√
∆t. The polymer

network is modelled as rigid rods, forming a perfect cubic grid. The particles interact
with these rods. Consider the particle at position = (X,Y, Z) with || < a and consider
its interaction with the rod 1 given by (s, 0, 0) and rod 2 given by (s, 0, a) with s ∈ R.
In principle, it is required to integrate the interaction potential along the rod. Instead,
interaction potential is interpreted as Equation 4.2 giving the integrated potential when
the distance vector is interpreted as the shortest distance. So in this case the distance
vector to rod 1 is r1 = (0, Y, Z) and r2 = (0, Y, Z − a). Similarly, the interaction
potential is calculated for all the rods. The LJ (steric) force is calculated using the
Equation 4.3 and the electrostatic forces is calculated using the Equation 4.4. Calculate
forces corresponding to these new positions as given in Step 2 by F̄ ∗ = F ∗(R̄∗).

4. Update positions : Update the positions using Equation 4.10.

R̄∗(t+ ∆t) = R∗(t) +
1

2
[F ∗(t) + F̄ ∗]∆t+

√
∆t ζ (4.10)

5. Integrate forces : An ensemble of N realisation of the stochastic process, meaning
the integration of Equations 4.9, 4.10 is repeated with different random numbers ζ
independently N times. Expectation values are then calculated by ensemble averages,
R∗(t) = N−1

∑N
i=1R

∗
i (t). Solutions RW (t) to Equation 4.1 for given initial condition

R(0) and given realisations of the noise Wt are called ’trajectories’. For the same initial
condition but different realisations different trajectories are obtained. Therefore, the ex-
pectation values are calculated as ensemble averages, 〈A(R(t))〉 = N−1

∑N
i=1RW (i)(t),

with any function A(R) of interest and RW (i) the ith trajectory. The first quantity is
the mean position, A(R) = R. Since the noise term is zero on average, an ordinary
differential equation is given by Equation 4.11.

d

dt
〈R〉 =

1

ξ
〈F 〉 (4.11)

If no external forces are present then 〈F 〉 = 0 and this quantity is at most a check of
the numerical implementation. The primary quantity of interest is the f mean-square
displacement, A(R) = [R(t)−R(0)]2. From stochastic calculus we get, Equation 4.12
or, for each component as Equation 4.13.

d

dt
〈R(t)2〉 =

2

ξ
〈R · F 〉+ 3B2 (4.12)

d

dt
〈X(t)2〉 =

2

ξ
〈XFx〉+B2 (4.13)

In the absence of interactions, F = 0, free diffusion is given by Equation 4.14 with the
single-particle diffusion coefficient D = B2 = 2T/ξ.

〈[X(t)−X(0)]2〉 = Dt (4.14)

In the presence of interactions, F 6= 0, the mean-square displacement 〈[R(t)−R(0)]2〉 is
typically not a linear function of t and Equation 4.14 can not be applied naively. However,
in many physical systems a short-time diffusion coefficient Dshort is defined by fitting
Equation 4.14 to the data for short enough times, t < tshort. Typically, Dshort = D
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t

〈x2〉

τB

Figure 4.2: Schematic of mean-square displacement as function of time (blue).
Red dashed lines indicate the short- and long-time diffusive regimes

Figure 4.3: Left: The mean-square displacement 〈x2(t)〉, 〈y2(t)〉, 〈z2(t)〉 as a func-
tion of t/τB for a∗ = U∗

0 = 10, ε∗ = 1, k∗ = 2 and ensemble of N = 100. The
brown line denotes the non-interacting case. Right: Trajectories of four selected
particles.

since, loosely speaking, the particle “did not have enough time to experience interaction
forces”. The long-time diffusion coefficient is defined by Dlong by fitting Equation
4.14 to the data for long enough times, t > tlong. While typically tshort . τB, the
value of tlong is not known in advance. Therefore, it is required to be careful and
check whether the simulations are long enough to cover times larger than tlong. This is
illustrated in Figure 4.2. Figure 4.3 shows the different components of the mean-square
displacement 〈R∗ · R∗〉 and corresponding trajectories. Strong fluctuations are seen
due to the small ensemble size (N = 100). Nevertheless, it is apparent that diffusion is
slowed down (compared to free diffusion) due to the interaction with the network. If the
network attracts the particles very strongly, diffusion almost comes to a halt. Therefore,
defining and evaluating the diffusion coefficient becomes problematic as illustrated in
Figure 4.4.

6. Repeat steps 2 to 5 for each ∆t until Nt.
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Figure 4.4: Mean-square displacement 〈x2〉/(a/2)2 scaled with half the mesh size
a squared for strongly attractive network, U∗

0 = −20, k∗ = 2, ε∗ = 1.

4.1.1.1 Description of data set

The data set generated consists of 4 feature columns; mesh size (a), electrostatic potential
(U0), screening length (k), strength of LJ repulsion (ε) and 1 target column diffusion (D). All
the values in the data set are of continuous data type. The total size of the data set is 924.

4.1.2 Molecular dynamics simulation of diffusion of magnetic NP in ferroflu-
ids

Langevin dynamics simulation of ferrofuilds is conducted to study the effect of NP particle
volume fraction (φ), dipolar coupling constant (λ) and the Langevin parameter (α) on diffusion
of magnetic NP referring to Wang, Holm and Müller (2002). The translational and rotational
Langevin equations of motion of MNP i are given by Equations 4.15 and 4.16 respectively.
Mi and Ii are the mass and inertia tensor of the MNP, dT and dR are the translational and
rotational friction constants respectively. ξTi and ξRi are Gaussian random force and torque
respectively.

Miv̇i = Fi − dT vi + ξTi (4.15)

Ii · ω̇i = τi − dRωi + ξRi (4.16)

Substituting, Equations 4.19 and 4.20 into Equations 4.15 and 4.16, we obtain the dimen-
sionless equations of motions given by Equations 4.17 and 4.18.

v̇∗i =
∑
j 6=i

(F dip∗ij + FLJ∗ij )− d∗T v∗i + ξT∗i ) (4.17)

I∗i · ω̇∗i =
∑
j 6=i

τdip∗ij +m∗i ×H∗ − d∗Rω∗i + ξR∗i (4.18)

Here, the dimensionless quantities are given by length r∗ = r/σ, dipole moment m∗2 =
m2/4πµ0 ∈ σ3, moment of inertia I∗ = I/(Mσ2), time t∗ = t(∈ /Mσ2)1/2, the friction
constants d∗T= dT (σ2/M ∈)1/2 and d∗R= dR/(Mσ2 ∈)1/2, magnetic field H∗ = H(4πµ0σ3/ ∈
)1/2, temperature T ∗ = kT/ ∈.

1. Initialize model parameters as per Table 4.2.
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Table 4.2: Parameter settings of MD simulation

Parameters Values

Number of atoms (tracer particles) N 1000
Moment of inertia I∗ 0.4
Friction constant d∗T 10
Friction constant d∗R 3
temperature T ∗ 1
Time-step (∆t∗) 0.002
Number of integration steps (Nt) 200,000

2. Compute forces : The ferrofluid model consists of N spherical MNPs of diameter σ.
They are distributed in a cubic box of side length L. Each MNP possesses a dipole
moment mi at its center. Adopting periodic boundary conditions, the dipole-dipole
interaction potential between particle i and j is given by Equation 4.19.

Udipij =
1

4πµ0

∑
n∈Z3

{
mi ·mj

|rij + nL|3
− 3[mi · ( rij + nL) ] [mj · ( rij + nL) ]

|rij + nL|5

}
(4.19)

Here, rij = ri−rj is the displacement vector of the two particles. The sum is performed
over all cubic lattice points, n = (nx, ny, nz) with nx, ny, nz integers. The LJ potential
is adopted to model the short-range steric interaction potential between the MNPs given
by Equation 4.20.

ULJij = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6

− C(Rc)

]
(4.20)

Here, C(Rc) = (σ/Rc)
12 − (σ/Rc)

6 with a cutoff radius of Rc = 21/6σ.

3. Integrate equations of motions : Using Ewald summation for the long-range dipole-
dipole interactions, Equation 4.19 is evaluated by Equation 4.21.

Udipij = U
(r)
ij + U

(k)
ij + U

(self)
ij + U

(surf)
ij (4.21)

Here, the U
(r)
ij is the real-space, U

(k)
ij is k space, U

(self)
ij is self and U

(surf)
ij is the surface.

These contributions are given by Equations 4.22, 4.23, 4.24 and 4.25 where B(r) and
C(r) are given by Equations 4.26 and 4.27 respectively.

U
(r)
ij =

1

4πµ0

∑
n∈Z3

{(mi ·mj)B( |rij + n|) − [mi · ( rij + n) ] × [mi · ( rij + n) ]C( |rij + n|) }

(4.22)

U
(k)
ij =

1

4πµ0L3

∑
k∈Z3,k 6=0

4π

k2
exp[−(πk/κL) 2] (mi · k) × (mj · k) exp( 2πik · rij/L)

(4.23)

U
(self)
ij = − 1

4πµ0

2κ3

3
√
π

(m2
i +m2

j ) (4.24)

U
(surf)
ij =

1

4πµ0

4π

( 2µBC + 1)L3
mi ·mj (4.25)
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B(r) = [ erfc(κr) + ( 2κr/
√
π) exp(−κ2r2) ] /r3 (4.26)

C(r) = [ 3erfc(κr) + ( 2κr/
√
π) ( 3 + 2κ2r2) × exp(−κ2r5) ] /r3 (4.27)

The inverse length κ is the splitting parameter of the Ewald summation. Leap-frog
method is used to solve the equations of motions (Equations 4.17 and 4.18).

4. Repeat steps 2 and 3 for each ∆t∗ until Nt.

4.1.2.1 Description of data set

The data set generated consists of 3 feature columns; particle volume fraction (φ), dipolar
coupling constant (λ), langevin parameter (α) and 3 target columns; diffusion (D), average
cluster size (savg1), magnetization (M). However, in this thesis, only diffusion (D) is considered
as the target. All the values in the data set are of continuous data type. The total size of the
data set is 90.

4.2 Implementation of machine learning algorithms

The data set is fed to machine learning algorithms mentioned in Chapter 3. It is implemented
in python language. It is a very popular language used for data science. It is powerful due
to the extensive libraries such as numpy, pandas, seaborn, matplotlib to read, manipulate and
perform analysis on the data (McKinney, 2013). Dedicated machine learning python libraries
scikit-learn (Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer,
Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot and Duchesnay, 2011) and
scipy (Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson,
Weckesser, Bright, van der Walt, Brett, Wilson, Millman, Mayorov, Nelson, Jones, Kern,
Larson, Carey, Polat, Feng, Moore, VanderPlas, Laxalde, Perktold, Cimrman, Henriksen,
Quintero, Harris, Archibald, Ribeiro, Pedregosa, van Mulbregt and SciPy 1.0 Contributors,
2020) make it extremely convenient to train and test different models. Google colaboratory
(Bisong, 2019) provides an integrated development environment to write and execute code in
python. It provides a flexibility to sync the .ipynb code file with the google drive. It provides a
convenient way to segment code, add rich text markdowns which can incorporate latex, html,
image and so on. The .ipynb file containing entire code is uploaded on the gitlab repository
(Desai, 2021).

Since it is not possible to determine which ML algorithms will learn better the given
data set, different descriptive (EDA, pearson coefficient, feature analysis, PCA, t-Test) and
predictive (random forest, KNN, decision tree, extreme gradient bossting and k-means) ML
algorithms are used and their results are compared. To evaluate the models in case of regres-
sion, 10-fold cross validation is performed 30 times which is also known as repeated k-fold
cross validation. It is the best technique to assess the performance of ML models (Nakatsu,
2021). In 10-fold cross validation, the data set is spilt into 10 partitions 10 times. Each time 1
(10%) part is selected as test set and the remaining 9 parts (90%) are used to train the model.
This ensures that every data point is part of both the training and test set. The average R2

score over the 10 folds is calculated and saved. This process is again repeated 30 times to
make sure that the high R2 score is not generated just because a random split of the data set
is good. The average R2 score is over 30 iterations is computed and considered as the final
score of the model. Therefore, each model is evaluated for a total of 30 × 10 = 300 times
before arriving at the final score. In case of classification, hold-out method (Tan, Steinbach
and Kumar, 2016) is performed where the models are trained on the 70% of the data and



CHAPTER 4. METHODOLOGY 27

tested on the remaining 30%. This is repeated 30 times and average the precision and recall
scores are computed.

Feature analysis is performed by using flexible neural tree (FNT) software provided by Ojha
(2016). The FNT model is trained and tested on the diffusion data set using 10 cross validation
with the relevant settings mentioned in Chapter 3. This experiment is manually repeated 30
times. The selection of each feature is recorded for every iteration. If a feature is selected then
it is recorded as 1 otherwise 0. Similarly, this is performed for all the combinations of 2 and
3 selected features together in every iteration. The details of this experiment is maintained
in an excel file uploaded on the gitlab (Desai, 2021). The average R2 score and the selection
rate is given by the Equation 4.28 is calculated over 30 iterations. Further, FNT analysis file
is read in python to perform t-test on the results.

Selection Rate =
Number of times the individual feature or feature subset is selected× 100

30
(4.28)



Chapter 5

Results and discussion : Diffusion of
NP in polymer

5.1 Descriptive analysis

5.1.1 Exploratory data analysis

As explained in Chapter 3, electrostatic potential (U0), mesh size (a), screening Length (k)
and strength of LJ repulsion (ε) influence the rate of diffusion (D). In order to understand the
nature and strength of the influence, the first step is to visualize on a simple scatter-plot as
shown in Figure 5.1. No clear pattern or relationship between a, k, ε and D can be established
using a simple scatter-plot. However, some pattern seems to exist in the influence of U0 on D.
Especially at U0 = 0, there is free diffusion in the absence of electrostatic potential. During
free diffusion, nano-particles diffuse freely in the absence of any external force and hence the
diffusion is highest at U0 = 0.

5.1.2 Pearson correlation coefficient

During the simulation, each feature value is manually entered to produce a value of D. Hence,
finding a correlation between the feature values does not hold any meaning. The correlation
coefficient is calculated between each feature and D. Referring to Table 5.1, U0 has a positive
correlation with D, diffusion increases with U0. Usually, diffusion is found to increase with
larger a. On the contrary, a has a negative correlation with D. As mesh size increases the
diffusion decreases which is an unexpected result. However, this could be due to the influence
of U0 on diffusion.

Table 5.1: Pearson correlation coefficient of all the features with respect to D

Feature Pearson Coefficient

Mesh Size (a) -0.07
Electrostatic Potential (U0) 0.27
Screening Length (k) 0.08
Strength of LJ repulsion (ε) 0.01

28
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Figure 5.1: Variation of diffusion (D) with respect to electrostatic potential (U0),
mesh size (a), screening length (K) and strength of LJ repulsion (ε)
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To further investigate this behaviour, a, U0, D are visualized together using a scatter-plot
in Figures 5.1(e), (f), (g). It can be inferred that the diffusion of particles increases even
for lower mesh sizes (a = 4, a = 5) when U0 is negative (attractive forces). In case of free
diffusion, it is high for large mesh sizes (a = 6, a = 8, a = 10) and low for small mesh size
(a = 4). To summarize, the rate of diffusion is not only affected by each individual features
but also by a combination of them.

5.1.3 Principal component analysis

Four dimensional data consisting of U0, a, k, ε are reduced to two dimensional principal com-
ponents 0 and 1 using PCA. Principal components 0 (PC0) and 1 (PC1) account for 95% and
4% of the total data variation respectively. Referring to the Table 5.2, PC0 can be used to
measure U0 since the value of loading is −1. Consequently, higher value of PC0 implies low
value of U0. Referring to Figure 5.2, it is evident that for high U0, the diffusion is low. PC1
can be used to mainly measure a due to high positive loading. Therefore, high PC1 values
imply large a and presence of some k and ε. As per Figure 5.2, diffusion is high for both high
and low PC1 values. Hence, the relationship between a and D is not clear.

Table 5.2: Influence of U0, a, k, ε on the principal components 0 and 1

Feature Principal Component 0 Principal Component 1

a ≈ 0 0.99
U0 -1 ≈ 0
k ≈ 0 0.03
ε ≈ 0 0.0008

Figure 5.2: Variation of diffusion with respect to principal components
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5.1.4 Feature Selection

Table 5.3: Feature ranking based on selection rate using flexible neural tree

Feature Selection Rate (%) Rank

Electrostatic Potential (U0) 100 1
Mesh Size (a) 83.33 2
Screening Length (k) 60 3
Strength of LJ repulsion (ε) 30 4

Table 5.4: 2-feature subset selection using flexible neural trees

Features Selection Rate (%)

a, U0 83.33
U0, k 60
a, k 53.33
U0, ε 30
a, ε 23.33
k, ε 23.33

Table 5.5: 3-feature subset selection using Flexible Neural Trees

Features Selection Rate (%)

a, U0, k 53.33
U0, k, ε 23.33
a, U0, ε 23.33
a, k, ε 20

Table 5.3 shows the rank of the individual features based on the selection rate. Range of the
rank is 1 to 5, 1 being the highest selection rate and 5 being the lowest selection rate. U0

has the highest ranking which implies that U0 is naturally selected by FNT in every iteration
to predict diffusion and is the most important feature in the feature space. ε is the least
important feature as it is selected only 30% of the time. Referring to Table 5.4, a and U0

are selected together most of the time as compared to other combination of the features.
On the other hand, a, U0, k are selected more number of times as compared to other feature
combinations. These results are consistent with those mentioned in the previous sections.

5.1.5 t-test

A random experiment is performed in Section 5.1.4 using FNT. In order to confirm that the
results are not a mere coincidence, t-test is performed on different combination of feature
selection data as illustrated in the Table 5.6. In case of a and U0 t value is small and the
p-value is greater than 0.05. Therefore, the null hypothesis is accepted. There is statistically
significant evidence that a and U0 belong to the same distribution. It implies that FNT
naturally choosing a and U0 together 83.33% of the times is not by chance and the results are
actually correct. For the remaining cases, the t-value is high and p-value less than 0.05. This
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means that the features in each pair do not belong to the same distribution, thus, rejecting
null hypothesis.

Table 5.6: t-test on FNT experiment data

Feature 1 Feature 2 T value p-value

a U0 -0.84 0.40
a ε 5.25 2.32× 10−6

U0 k 4.14 10−4

U0 ε 7.94 7.71×10−11

5.2 Predictive analysis

5.2.1 Regression

0.0 0.2 0.4 0.6 0.8 1.0
Actual Diffusion (D)

0.0

0.2

0.4

0.6

0.8

Pr
ed

ic
te

d 
Di

ffu
si

on
 (D

)

(a) Decision Tree

0.0 0.2 0.4 0.6 0.8 1.0
Actual Diffusion (D)

0.0

0.2

0.4

0.6

0.8

Pr
ed

ic
te

d 
Di

ffu
si

on
 (D

)

(b) Random Forest

0.0 0.2 0.4 0.6 0.8 1.0
Actual Diffusion (D)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
te

d 
Di

ffu
sio

n 
(D

)

(c) XGBoost

Figure 5.3: Actual vs predicted diffusion
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The results from feature analysis provide the best features subsets. Using these results, decision
tree, random forest and extreme gradient boosting algorithms are trained with 2 features, 3
features and all the 4 features. 30 times 10-fold cross validation is performed and the average
R2 over 30 iterations is computed. R2 scores of all the models are compared as shown in
Table 5.7. Random forest seems to learn the data set very well since it has the highest score.
Figures 5.3(b) and 5.5 show that there are very few outliers (denoted by the red peaks) and
the predicted diffusion values are almost the same as the actual values. In case of 4 features,
the second highest score is that of decision tree. Figures 5.3(a) and 5.4 show that there are
slightly more outliers (denoted by the red peaks) as compared to random forest. However in
case of 3 features the accuracy of DT becomes equivalent to the random forest which remains
unchanged. Furthermore, Figure 5.7 shows that the variance of the decision tree significantly
reduces without ε. This could be due to the fact that ε is misleading the models to provide
skewed predictions. Figures 5.3(c) and 5.4 show that the number of outliers is significantly
more as compared to random forest. In this case as well, R2 score is not affected by number
of features. Interestingly, in case of 2 features, the accuracy scores of all the models decrease
significantly.

Table 5.7: Comparison of R2 scores of n feature subsets where n = 2, 3, 4

Algorithm a, U0 a, U0, k a, U0, k, ε

Decision Tree 0.84 0.98 0.97
Random Forest 0.85 0.98 0.98
Extreme Gradient Boosting 0.86 0.94 0.94
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Figure 5.4: Decision tree
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Figure 5.5: Random forest
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Figure 5.6: Extreme gradient boosting

Figure 5.7: Comparison of R2 scores of Random Forest (RF), Decision Tree (DT)
and XGBoost algorithms based on number of features

5.2.2 K-means and manual clustering

In order to apply k-means clustering to the data set, it is required to choose an appropriate k.
This thesis uses Silhouette score to select the appropriate k. Silhouette score is computed for
all the cluster sizes ranging from 1-10 as shown in Figure 5.8. It is evident that the Silhouette
score is the least in case of k = 9. Following this, k-means algorithm is applied to the data set
and it is divided into 9 clusters. However, it is observed that the clusters are formed based on
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U0 and not diffusion as shown in Figure 5.9. Moreover, the k seems to be very large and the
clusters overlap even in case of U0. This is not an expected outcome because the intention is
to cluster the data set based on diffusion to extract some pattern associated with it.

Figure 5.8: Silhouette score for k clusters

(a) Clusters vs. Diffusion (D) (b) Clusters vs. U0

Figure 5.9: Behaviour of k-means with respect to U0 and D

To achieve the desired clusters, the data set is manually split into 2 clusters based on the
histogram of diffusion as shown in Figure 5.10. It shows that many data points fall below
D = 0.08 and using this information, the data is divided into 2 clusters; Class-1 corresponds
to low diffusion (D <= 0.08) and Class-2 corresponds to high diffusion (D > 0.08). The
manual clusters are plotted on the PCA grid in Figure 5.11 shows some overlap of both the
clusters. This means that the even manually created clusters cannot be clearly separated.
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Figure 5.11: Manual clusters plotted on PCA grid

5.2.3 Classification

The original data set now also includes the discrete cluster labels generated in Section 5.2.2.
Random forest (RF) and k-nearest neighbour (KNN) classification models are applied to the
clustered data set. The size of Class-1 and Class-2 is 192 and 732 respectively. Since the data
set is highly unbalanced, performance measures such as precision, recall and ROC are used to
evaluate the models. RF and KNN models are trained using 2 types of training. In Type-1
training, the models are trained on 70% of cluster-1 and 70% of cluster-2 and tested on the
remaining data. In Type-2 training, the models are trained on 70% of cluster-1 and tested on
the remaining data. This process is repeated 30 times and the average precision and recall
scores are computed as shown in Tables 5.8 and 5.9.
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Table 5.8: Precision (P) and recall (R) scores of random forest

Features Type of training
D <= 0.08 D > 0.08

P R P R

a, U0, ε, k
Type-1 99.83 99.82 99.95 99.95
Type-2 7.34 100 0 0

a, U0, k
Type-1 99.89 99.94 99.89 99.97
Type-2 7.34 100 0 0

Table 5.9: Precision (P) and recall (R) scores of k-nearest neighbour

Features Type of training
D <= 0.08 D > 0.08

P R P R

a, U0, ε, k
Type-1 85.58 87.3 96.65 96.03
Type-2 7.34 100 0 0

a, U0, k
Type-1 87.86 87.64 96.75 96.67
Type-2 7.34 100 0 0

(a) KNN Type-2 training, 3 features (b) RF Type-2 training, 3 features

(c) KNN Type-2 training, 4 features (d) RF Type-2 training, 4 features

Figure 5.12: ROC curve of KNN and RF

It is observed that RF performs better than KNN in case of Type-1 training due to high
precision and recall scores. This could be due to the ensemble method used by RF. The base
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learners in RF may predict the class label incorrectly but RF’s output is the majority class
voted by all the base learners rather than a single learner. Since it is rare for majority base
learners to predict incorrect class label, RF is able to overcome bias. In case of Type-2 training,
the results for both the models are same. This could be due to the fact that they are trained
with data points containing only Class-1. Therefore, they are able to classify Class-1 correctly
but are not able to recognise Class-2. Better results are obtained for 3 features as compared
to 4 features. These results supplement those in Section 5.2 that removal of ε improves the
performance of ML models. In case of Type-2, the results remain same for RF and KNN.
Figure 5.12 shows that in case of Type-2 training, 3 and 4 features, the ROC curve of KNN is
closer to the diagonal line than that of RF. This means that RF performs better than KNN.



Chapter 6

Results and Discussion : Diffusion in
ferrofluids

6.1 Descriptive analysis

6.1.1 Exploratory data analysis

As explained in Chapter 3, particle volume fraction (φ), dipolar coupling constant (λ) and
Langevin parameter (α) influence the rate of diffusion (D). In order to understand the nature
and strength of the influence, the first step is to visualize on a simple scatter-plot as shown
in Figure 6.1. No clear pattern or relationship between α, φ and D can be established using
a simple scatter-plot. However, there seems to be some pattern in influence of λ on D. For
lower values of λ (λ = 1, λ = 2), D seems to be high whereas for the higher value of λ
(λ = 4), the diffusion seems to be low.

6.1.2 Pearson correlation coefficient

Correlation mathematically quantifies the magnitude and direction of the relationship between
two variables. During the simulation, each feature value is manually entered to produce a value
of the diffusion coefficient (D). Hence, finding a correlation between the feature values does
not hold any meaning. The correlation coefficient is calculated for each feature and the
diffusion coefficient (D). Referring to Table 6.1, all the 3 features have a negative correlation
with D. However, the λ has the highest negative correlation with D as seen previously. As
dipolar coupling constant increases diffusion decreases.

Table 6.1: Pearson correlation coefficient of all the features with respect to D

Feature Diffusion (D)

Particle volume fraction (φ) -0.38
Dipolar coupling constant (λ) -0.85
Langevin parameter (α) -0.1

To further investigate this behaviour, α, φ, λ and D are visualized together using a scatter-
plot as shown in Figure 6.1(c). It can be inferred that the range of diffusion slightly decreases
for lower values of φ.

39



CHAPTER 6. RESULTS AND DISCUSSION : DIFFUSION IN FERROFLUIDS 40

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Langevin parameter

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D

(a) α vs D

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D

(b) φ vs D

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D

(c) λ vs D

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Langevin parameter

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D

1.0
2.0
4.0

(d) α, λ vs. D

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D

langevin
0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
16.0
18.0

(e) α, φ vs. D

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D

1.0
2.0
4.0

(f) λ, φ vs. D

Figure 6.1: Variation of particle volume fraction (φ), dipolar coupling constant
(λ) and Langevin parameter (α) with respect to diffusion (D)

6.1.3 Principal component analysis

Three dimensional data consisting of α, φ, λ are reduced to two dimensional principal compo-
nents 0 and 1. Principal components 0 (PC0) and 1 (PC1) account for 95% and 5% of the
total data variation respectively. Referring to the Table 6.2, PC0 can be used to measure α
since the value of loading is positive 1. Consequently, higher value of PC0 implies high value
of α. Referring to Figure 6.2, the relationship between α and D is not clear. PC1 can be used
to mainly measure λ due to high positive loading. Therefore, high PC1 values imply large
λ. As per Figure 6.2, diffusion is low for high PC1 values which is contradicting. Hence, the
relationship between λ and D is not clear. Lastly, φ does not seem to be an important feature
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according to PCA.

Table 6.2: Influence of φ, λ, α on the principal components 0 and 1

Feature Principal Component 0 Principal Component 1

φ 0 0
λ ≈ 0 1
α 1 ≈ 0

Figure 6.2: Variation of diffusion with respect to principal components

6.1.4 Feature selection

Table 6.3 shows the rank of the individual features based on the selection rate. Range of
the rank is 1 to 5, 1 being the highest selection rate and 5 being the lowest selection rate.
φ, λ have the highest ranking which implies that φ, λ are naturally selected by FNT in every
iteration to predict diffusion and are the most important features in the feature space. α is
the least important feature as it is selected only 33.33% of the time. Referring to Table 6.4, φ
and λ are selected together all of the time as compared to other combination of the features.
On the other hand, φ, α and λ, α are selected only 33.33% of the times as compared to other
feature combinations.

Table 6.3: Feature ranking based on selection rate using flexible neural tree

Feature Selection Rate (%) Rank

φ and λ 100 1
α 33.33 2

6.1.5 t-Test

A random experiment is performed in Section 6.1.4 using FNT. In order to confirm that the
results are not a mere coincidence, t-test is performed on different combination of feature
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Table 6.4: 2-feature subset selection using flexible neural trees

Features Selection Rate (%)

φ, λ 100
φ, α 33.33
λ, α 33.33

selection data as illustrated in the Table 6.5. In case of φ and λ t value is negative and the
p-value is greater than 0.05. Therefore, the null hypothesis is accepted. There is statistically
significant evidence that φ and λ belong to the same distribution. It implies that FNT naturally
choosing φ and λ together all the times is not by chance and the results are actually correct.
For the remaining cases, the t-value is high and p-value less than 0.05. This means that the
features in each pair do not belong to the same distribution, thus, rejecting the null hypothesis.

Table 6.5: t-test on FNT experiment data

Feature 1 Feature 2 T value p-value

φ λ -1.28 0.21
φ α 7.16 1.59× 10−9

λ α 9.6 1.37×10−13

6.2 Predictive analysis

6.2.1 Regression

The results from feature analysis provide the best features subsets. Using these results,
decision tree, random forest and extreme gradient boosting algorithms are trained with all
possible combinations of 2 features and all the 3 features. Their R2 scores are compared as
shown in Table 6.6. In case of 3 features, random forest and extreme gradient boosting seem
to learn the data set very well since they have the highest score. Figures 6.3(b),(c), 6.5 and 6.6
show that there are very few outliers (denoted by the red peaks) and the predicted diffusion
values are almost the same as the actual values. Figure 6.4 show that there are slightly
more outliers (denoted by the red peaks) as compared to random forest and extreme gradient
boosting. However in case of 2 features the accuracy of DT and RF reduces but extreme
gradient boosting remains unchanged. Furthermore, Figure 6.7 shows that the variance of
the extreme gradient boosting reduces without α but the accuracy score remains unaffected
by number of features. Interestingly, in case of 2 features, the accuracy scores of DT and RF
reduce by 4%.
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(b) Random Forest
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(c) Extreme gradient boosting

Figure 6.3: Actual vs predicted diffusion
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Figure 6.4: Decision Tree
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Figure 6.5: Random forest

Figure 6.6: Extreme gradient boosting

Table 6.6: Comparison of R2 scores with repsect to the number of features

Algorithm φ, λ φ, λ, α

Decision Tree 0.94 0.97
Random Forest 0.94 0.98
Extreme Gradient Boosting 0.98 0.98

6.2.2 K-means and manual clustering

In order to apply k-means clustering to the data set, it is required to choose an appropriate k.
This thesis uses Silhouette score to select the appropriate k. Silhouette score is computed for
all the cluster sizes ranging from 1-10 as shown in Figure 6.8. It is evident that the Silhouette
score is the least in case of k = 6. Following this, k-means algorithm is applied to the data
set and it is divided into 6 clusters. However, it is observed that the clusters are formed based
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Figure 6.7: Comparison of R2 scores of random forest (RF), decision tree (DT)
and XGBoost algorithms based on number of features

on α and not diffusion as shown in Figure 6.9. Moreover, the k seems to be very large and
the clusters overlap even in case of α. This is not an expected outcome because the intention
is to cluster the data set based on diffusion to extract some pattern associated with it.

Figure 6.8: Silhouette score for k clusters



CHAPTER 6. RESULTS AND DISCUSSION : DIFFUSION IN FERROFLUIDS 46

(a) Clusters vs. Diffusion (D) (b) Clusters vs. α

Figure 6.9: Behaviour of k-means with respect to α and D

To achieve the desired clusters, the data set is manually split into 2 clusters based on the
histogram of diffusion as shown in Figure 6.10. It shows that the number of data points are
almost equally distributed in case of D = 0.6 and using this information, the data is divided
into 2 clusters; Class-1 corresponds to low diffusion (D <= 0.6) and Class-2 corresponds to
high diffusion (D > 0.6). The manual clusters are plotted on the PCA grid in Figure 6.11
shows some overlap. This means that manually created clusters are clearly separated.
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Figure 6.10: Histogram of diffusion
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Figure 6.11: Manual clusters plotted on PCA grid

6.2.3 Classification

The original data set now also includes the discrete cluster labels generated in Section 6.2.2.
Random forest (RF) and k-nearest neighbour (KNN) classification models are applied to the
clustered data set. The size of Class-1 and Class-2 is 49 and 41 respectively. Here, the
data set is balanced and performance measures such as precision, recall and ROC are used to
evaluate the models. RF and KNN models are trained using 2 types of training. In Type-1
training, the models are trained on 70% of cluster-1 and 70% of cluster-2 and tested on the
remaining data. In Type-2 training, the models are trained on 70% of cluster-1 and tested on
the remaining data. This process is repeated 30 times and the average precision and recall
scores are computed as shown in Tables 6.7 and 6.8.

Table 6.7: Precision (P) and recall (R) scores of random forest

Features Type of training
D <= 0.6 D > 0.6

P R P R

φ, λ, α
Type 1 97.71 100 100 97.18
Type 2 26.79 100 0 0

φ, λ
Type 1 97.92 99.78 99.76 97.44
Type 2 26.79 100 0 0

Table 6.8: Precision (P) and recall (R) scores of k-nearest neighbour

Features Type of training
D <= 0.6 D > 0.6

P R P R

φ, λ, α
Type 1 89 63.56 68.4 88.97
Type 2 26.79 100 0 0

φ, λ
Type 1 97.61 73.11 77.19 97.18
Type 2 26.79 100 0 0
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(a) KNN Type-2 training, 3 features (b) RF Type-2 training, 3 features

(c) KNN Type-2 training, 2 features (d) RF Type-2 training, 2 features

Figure 6.12: ROC curve of KNN and RF

It is observed that RF performs better than KNN in case of Type-1 training due to high
precision and recall scores. This could be due to the ensemble method used by RF. The base
learners in RF may predict the class label incorrectly but RF’s output is the majority class
voted by all the base learners rather than a single learner. Since it is rare for majority base
learners to predict incorrect class label, RF is able to overcome bias. In case of Type-2 training,
the results for both the models are same. This could be due to the fact that they are trained
with data points containing only Class-1. Therefore, they are able to classify Class-1 correctly
but are not able to recognise Class-2. Better results are obtained for 3 features as compared
to 2 features. In case of random forest, removal of α does not improve the performance. On
the other hand, the performance of the KNN improves when α is removed. In case of Type-2,
the results remain same for RF and KNN. Figure 6.12 shows that in case of Type-2 training,
3 and 2 features, the ROC curve of KNN is closer to the diagonal line than that of RF. This
means that RF performs better than KNN.



Chapter 7

Conclusions and Future Work

Descriptive and predictive ML algorithms are applied to both the diffusion data sets. In case
of diffusion in polymer, PCA and EDA indicate that U0 has the highest degree of influence
on diffusion but the nature of influence is not clear. PCA and pearson correlation provide
contradicting results in regards to the influence of a on D. Hence, the relationship between
a and D is not clear. Finally, feature analysis shows that electrostatic potential (U0), mesh
size of the polymer matrix (a) and screening length (k) are the critical feature subsets. This
is further confirmed by the reduction in variance of decision tree without ε and increase in its
accuracy. However, random forest is the best predictive model with the least outliers because
its accuracy and variance remains the same irrespective of ε. It is interesting to note that
the models are unable to predict diffusion correctly with only U0 and a. Therefore, U0, a
and k are required to predict diffusion with the highest accuracy. Since, k-means attempts to
cluster the data points according to U0, manual clustering is performed on the data set based
on diffusion. However, when the manual clusters are plotted on the PCA grid, the clusters
seem to overlap. This can be resolved by applying other clustering algorithms. In case of
classification, random forest performs well with high precision and recall scores. To sum up,
diffusion can be controlled effectively by choosing appropriate U0, a and k values.

In case of ferrofluids, EDA, pearson coefficient and PCA indicate that as λ increases,
diffusion decreases. However, no clear relationship can be established between φ, α and
diffusion. According to PCA, λ and α seem to be the important features. On the contrary,
feature analysis shows that φ and λ are important features. It is evident that λ is an important
feature but it is not clear as to which of the two subsets denote critical features. Extreme
gradient boosting learns the data set very well and its accuracy remains the same irrespective
of number of features. Therefore, it is the best predictive model for ferrofluids to predict
diffusion. Since, k-means attempts to cluster the data points according to α, manual clustering
is performed on the data set based on diffusion. However, when the manual clusters are
plotted on the PCA grid, the clusters seem to overlap. This can be resolved by applying other
clustering algorithms. In case of classification, random forest performs well with high precision
and recall scores.

Inspite of the results achieved, there still remains a wide scope for future work. New factors
such as temperature can be added to the feature sets. The models can be trained to predict
diffusion based on the new features along with the existing features. It has been difficult to
anomaly detection model to detect anomalous diffusion. However, this can be conducted as
part of further work. This thesis focuses on single objective to predict diffusion. However,
using artificial neural network (ANN) it is possible to predict multiple targets especially in
the case in the case of ferrofluids where, average cluster size and magnetization can also be
predicted along with diffusion values.
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Chapter 8

Reflection

It has been a challenging journey to work such cross domain project which is an amalgamation
of molecular dynamics and machine learning. Since, I am new to both, I referred to a wide
variety of literature such as books, journals, academic papers, website, videos to understand
the concepts of ML and molecular dynamics (MD). Though some of the idiosyncrasies were
confusing, I still managed to grasp the technical jargon of MD. Particularly, understanding the
process of computer simulation was difficult. I learnt the importance of ML algorithms, model
evaluation concepts such as repeated k-fold cross validation, performance measures and so
on. I got the knack of approaching the solution to a real world problem. I understood the
process of data mining to find the hidden patterns in the data which are otherwise invisible.
My research helped me understand the working of different descriptive and predictive ML
algorithms. Coding in python lead me to explore several libraries used in data analytics such
as sklearn, seaborn, scipy, numpy and so on. It improved my python programming skills. While
working on this thesis, I managed my timetable to attend the meetings with the collaborating
professors. For each of the meetings, I had to present the results achieved in a way that a
person who is novice to ML can comprehend. In this way, I learned how to translate the
requirements in terms of ML and vice versa. I logged all the discussions, inputs and feedbacks
to reprogram the course of my research. Thus, I developed management, communication and
presentation skills. Overall, this thesis helped me to perceive the problem statement with the
lens of a data scientist.
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Hermann) .

Lopez-Lopez, M. T., Durán, J. D. G., Iskakova, L. Y. and Zubarev, A. Y. (2016), ‘Mechanics
of magnetopolymer composites: A review’, Journal of Nanofluids 5, 479–495.

MacQueen, J. et al. (1967), Some methods for classification and analysis of multivariate
observations, in ‘Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability’, Vol. 1, Oakland, CA, USA, pp. 281–297.

McKinney, W. (2013), Python for Data Analysis: Data Wrangling with Pandas, NumPy, and
IPython, 1 edn, O’Reilly Media.
URL: http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-
20&path=ASIN/1449319793

McKinney, W. (2018), Python for data analysis, O’Reilly.

Megariotis, G., Vogiatzis, G. G., Schneider, L., Müller, M. and Theodorou, D. N. (2016),
‘Mesoscopic simulations of crosslinked polymer networks’, Journal of Physics: Conference
Series 738(1).

Meyer, R. A. and Green, J. J. (2015), ‘Biodegradable polymer iron oxide nanocomposites: the
future of biocompatible magnetism’, Nanomedicine (Lond) 10(23), 3421–3425.
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Appendix A

An Appendix Chapter

A.1 In a nutshell: Molecular Dynamics, Langevin Dynamics,
Brownian Dynamics

The theory given in this section is found in Allen and Tildesley (1989). For a collection of N
particles we have Newton’s equation of motion given by Equation A.1.

mi
d

dt
vi = F toti (A.1)

where mi and vi is the mass and velocity of particle i, respectively, and F toti denotes the
total force acting on particle i and i = 1, . . . , N . The velocity is related to the position ri
by d

dtri = vi. For given forces F toti (r1, . . . , rN , v), our task is to solve 6N first order ordinary
differential equations to find the trajectories r1(t), . . . , rN (t) for given initial conditions. This
is the program of Molecular Dynamics.

Now consider small particles (typically 1-100nm) moving through a viscous liquid which
acts as a solvent. This problem can be solved using Equation (A.1) by including all solvent
molecules and calculating the forces. However, this is terribly inefficient, since our particle
barely moves, while the solvent molecules. Therefore, the idea is to neglect the solvent,
use Equation. (A.1) only for our particles of interest and include the effect of the solvent

implicitly (“implicit solvent”). To do this, the forces are split into F toti = Fi + F frici + FBi ,

where Fi = −∇iU are potential forces, F frici = −ξvi is the friction force that particle i
experiences when travelling though a viscous liquid with friction coefficient ξ. For spherical
particles ξ = 3πησ with η the viscosity of the solvent, σ the hydrodynamic diameter. Finally,
B
i are Brownian (“random”) forces. Plugging these into Equation (A.1) gives us the Langevin
equation

mi
d

dt
vi = Fi − ξvi + FBi (A.2)

While Equation (A.2) is of the same form as Equation (A.1), it is important to emphasize
that all particles and all their interactions are included in Equation (A.1), while the Langevin
equation does not consider the solvent explicitly and therefore includes friction and random
forces.

The fastest process in the Langevin equation is the inertial relaxation, i.e. the velocities
attain their instantaneous stationary values. This happens on the inertial time scale τI = m/ξ
(can e.g. be seen from Equation (A.2) for Fi = 0). In many cases of interest, τi is very short
(typically τI ≈ 10−8 . . . 10−6 s) and therefore we are looking to a further simplification: set
the particle acceleration to zero (“overdamped motion”). Then Equation (A.2) becomes a
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first-order differential equation that we can write (using vi = d
dtri) as Equation A.3, which is

the equation of Brownian Dynamics.

d

dt
ri =

1

ξ
Fi +

1

ξ
FBi (A.3)
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