
 I 

 

University	of	Reading	

Department	of	Computer	Science	

 

Using	three	GAN-based	models	to	provide	
modeling	inspiration	

	
 

Linfeng	Jia	

 

Supervisor:	Dr.	Varun	Ojha	

 

 

 

September	16,	2022



 I 

Declaration  

I, Linfeng Jia, of the Department of Computer Science, University of Reading, confirm 

that this is my own work and figures, tables, equations, code snippets, artworks, and 

illustrations in this report are original and have not been taken from any other person’s 

work, except where the works of others have been explicitly acknowledged, quoted, 

and referenced. I understand that if failing to do so will be considered a case of 

plagiarism. Plagiarism is a form of academic misconduct and will be penalised 

accordingly. 

I give consent to a copy of my report being shared with future students as an exemplar. 

I give consent for my work to be made available more widely to members of UoR and 

public with interest in teaching, learning and research. 

 
                                                    Linfeng Jia 

September 16, 2022  



 II 

Abstract 

 

Following the development of open world games in recent years, some of the 

landscape and building modelling styles in the game reference real world styles in 

order to enhance the immersion of the player. However, this is a great challenge for 

game modelers. To provide game modelers with inspiration for different styles of 

models, this paper uses the GAN (generative adversarial net), StyleGAN2-ADA and 

StyleGAN3 models to train the same style of realistic images for comparison. The 

training data were obtained from Flickr, Google and Baidu images of landscapes and 

buildings in major Chinese provinces. The results of the experiments show that the 

GAN converges slowly and crashes easily, and the results are not very satisfactory. 

StyleGAN2-ADA is faster in training and convergence and uses less data to obtain 

good quality images. StyleGAN2-ADA is a little slower. In summary, the comparison of 

the various aspects shows that StyleGAN2-ADA is the most suitable model to provide 

inspiration to game modelers. 
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Chapter 1 Introduction 

 

1.1 Background 

 

With increasing research in the field of deep learning, the methods based on deep 

learning are constantly being developed. The algorithms represented in this are CNN 

(Convolution Neural Network),, ANN (Artificial Neural Network), RNN (Recurrent 

Neural Network) etc (Pouyanfar et al., 2018). However, the Generative Adversarial 

Network (GAN), proposed by Ian J. Goodfellow in 2014 shows an important and novel 

theory for image processing (Goodfellow et al., 2014). This method trains two model 

simultaneously: a generative model which generate the realistic image with random 

seed, and a discriminative model to estimate whether the training image from 

generative model is real or not. GAN is also known as one of the coolest ideas in recent 

years. 

 

Since GAN was published, various practical GAN-based models have been studied. 

For instance, Tero Karras et al. used PG-GAN to generate excellent realistic faces 

using the faces of celebrities as input in their paper published in 2017 (Karras et al., 

2017). Moreover, in 2017 the paper by Junyan Zhu et al. presents the well-known 

CycleGAN technique and a large number of examples of image transformation (Zhu et 

al., 2017). Furthermore, StackGAN, proposed by Zhang et al. in 2017, can convert 

natural language into corresponding pictures, including colour, size as well as species 

(Zhang et al., 2017). In 2019, NVIDIA engineers have proposed a StyleGAN 

architecture based on PG-GAN. Where the output realistic image will have a similar 

style to the input image. This structure controls the main style, identity features through 

‘style’ (style means the key attributes), and noise to control the detailed parts to make 

image more realistic (Karras et al., 2019). 
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During these years, as the GAN algorithm has continued to become more widely 

known, researchers in other fields also aim to use GAN to complement their research 

or applications. As Sbai et al. point out that clothing designers can use specially trained 

GAN-generated clothing images as a source of design inspiration, and because the 

GAN-generated images are random, the resulting clothing photos are original and 

highly varied in style, this would be a great help in providing inspiration and improving 

creativity. (Sbai et al., 2018). 

 

According to the above, researchers believe that the GAN network could also provide 

inspiration for the modeling of numerous games on the market today. Several games 

are now gradually introducing the concept of open worlds. In order to increase the 

immersive effect of the game experience, the style of the in-game architectural models 

will be very close to the style of real-life architecture. For example, ‘Genshin Impact’ is 

the most popular game in the world with three different cities, each with a distinctly 

European, Chinese and Japanese architectural style. In the future there will be more 

cities that are similar in architectural style to real countries (Hoyoverse, 2020).  

 

1.2 Problem Statement 

 

In the field of game design, architectural modelers may suffer from a lack of inspiration 

in designing architectural models for games and this will cause failure to produce high 

quality and stylish models. It will not only have an impact on the company's projects, 

but also leaves the designer with a lack of confidence. Nevertheless, GAN could 

provide designers with inspiration by generating realistic images of buildings through 

unsupervised learning. Thus, the research question is how to use appropriate GAN 

models generate landscape and building images to provide inspiration to game 

landscape and architectural modelers. 

 

1.3  Aims and Objectives 
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The aim of this study is to find a suitable GAN architecture to generate images of 

Chinese landscapes and buildings in the same style. 

 

The objectives are: 

l Understanding different GAN structures and choose three of them that are suitable 

to generate landscape and building images. 

l To explore the strength and weakness of the previous work on the choose 

structures. 

l Finding a Chinese landscape and building database and resize them to square 

images. 

l Adjusting the hyperparameters of three different models and training the model 

with previous database as input. 

l Comparison of the structure, overall training time, training time per epoch, 

accuracy of trained images and number of trainable parameters of the three 

different models. 

l Thinking what practical applications these GANs models could be used in. 

l To assessment the society and ethical impact of these GANs models. 

l Self-assessment of the limitations of the method and where improvements can be 

made in the future. 

 

1.4 Solution Approach 

 

This article selects three GAN structures in order to generate better images of Chinese 

landscapes and architecture: the original GAN, StyleGAN2-ADA and StyleGAN3. 

Original GAN is the most basic GAN structure proposed by Goodfellow in 2014, most 

other GAN structures are based on Original GAN (Goodfellow et al., 2014). Therefore, 

it is chosen as the first solution in this article. StyleGAN2-ADA and StyleGAN3 are two 

GAN structures that can be trained to produce images with the same style as the input 

image, and their features are well suited to solve the problem presented in this article, 

as worked out by NVIDIA engineers. Among them, StyleGAN2-ADA could show a low 
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FID (Frechet Inception Distance) score training results even when the data size in the 

training dataset is not as sufficient (Karras et al., 2020). StyleGAN3 builds on 

StyleGAN2 and solves the problem of unnatural image transitions that make the pixels 

look like they are sticking together on the coordinate not on the surface of object when 

morphing (Karras et al., 2021). In the following article we will train all three methods 

using the same dataset and compare the results of all aspects. 

 

1.5 Organization of report 

 

This paper is organised into seven chapters. Chapter 2 will show the literature review 

of previous work of GAN. Chapter 3 focuses on the structure of the three GANs and 

how the three methods are trained with the dataset. Chapter 4 describes the results 

obtained by the three different GANs after training and the comparison of the 

performance of the three GANs with the same dataset. Chapter 5 will conclude the 

experiments, summarise the advantages and disadvantages of the three GANs for the 

dataset in this paper and look at how they can be improved in the future. It will also 

discuss what real-world applications the three methods can be applied to. Chapter 6 

will provide a reflection that summarizes what the authors have learned out of GAN. 

Chapter 7 is the reflection of my learning experience during write the dissertation. 
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Chapter 2 Literature Review 
 
2.1 Image processing methods regarding deep learning 
 
 2.1.1 Generative Adversarial Network 
In order to provide inspiration to game modelers and to stimulate the desire to create 

is the research question of this article. Image generation techniques using deep 

learning models would be a favoured option. Deep learning models can be divided into 

generative models and discriminative models (Bengio, 2009). The discriminative 

model has been greatly developed because of the Back propagation algorithm 

proposed by Seppo Linnainmaa (Linnainmaa, 1976), the Dropout algorithm invented 

by Nitish Srivastava et al. to solve overfitting problem when training a model 

(Srivastava et al., 2014). However, the development of generative models has been 

slower because they are more difficult to model. It was not until 2014 when Ian 

Goodfellow et al. proposed the Generative adversarial network that it received 

increasing attention from academia and industry (Goodfellow et al., 2014). In the 

following years, GAN has also gained rapid development in theory and models.  

 

Generative adversarial network is a deep learning model as well as an unsupervised 

learning model. Its main structure is a generative model and a discriminative model. 

The two models game and learn from each other to produce a better output. Although 

the original GAN theory does not specify that the two models must be neural networks, 

in general both the generative and discriminative models will be deep neural networks. 

In a generative adversarial network, the generative network is responsible for 

generating the image, and it input is a random noise z, generative network uses this 

input to generate a random image noted as G(z). The discriminative network is to 

determine whether the image is real or fake. Its input parameter is x (x represents an 

image generate by generator) and the output of the discriminative network noted as 

D(x), represents the probability that image x is a real image. D(x) ranges from 0 to 1, 

with closer to 1 meaning that the discriminator considers the image to be real and vice 

versa. From the above description, it is clear that GAN is a process in which two models 
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play against each other. The generative network tries its best to generate real images 

to deceive the discriminative network, while the discriminative network tries its best to 

differentiate the images generated by the generative network from the realistic ones.  

 

The generator in GAN takes an input of an n-dimensional vector and it will output an 

image of a specified image pixel size. The generator can be any model that outputs an 

image, such as a deconvolutional network, a fully connected neural network, etc. Since 

GAN is only designed to generate realistic images, there is no requirement for specific 

information about the image output by the generator. Thus, study fellows just use a 

randomly generated vector as input. The random input should ideally satisfy common 

distributions (Gaussian, mean distribution, etc.). 

 

After both the generative and discriminative models have been set up, the GAN 

network start training. In the first step, a random sample is taken from a noisy data 

distribution and input into the generative model to output a set of fake data z. In the 

second step, a random sample is taken from a real data distribution and recorded as 

real data x. The third step uses the data obtained in the first two steps as input to the 

discriminator model (the input to the discriminator model is real and fake images) The 

output value is the probability that the generate image is a real image. In the fourth 

step the algorithm calculates a loss function based on the probability values output 

from the discriminator model in the previous step. It should be noticed that the 

discriminator model and the generator model do not have the same loss function. In 

the fifth step, the parameters of the model are updated using the backpropagation 

algorithm based on the generated loss function. Generally, the parameters of the 

discriminator model are updated first, and then the generator parameters are updated 

by sample the noise data. At this point, the GAN network has completed one training 

loop. After several loops of training, the GAN will output realistic images (when the 

discriminator's output is close to 0.5). 
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2.1.2 StyleGAN 

After the introduction of GAN by Ian Goodfellow in 2014, an increasing number of 

models based on GAN methods have been researched. Among the various models, 

the StyleGAN model, developed by NVIDIA engineer Karras et al. has received 

widespread acclaim and application (Karras et al., 2019). 'Style' in StyleGAN refers to 

the main attributes of the image data (in the StyleGAN paper this refers specifically to 

expression, skin colour, hair style, etc. of the face). In addition to these main attributes, 

StyleGAN also uses noise to control the details of the image (hair, wrinkles, etc.) in 

order to increase the realism of the image. 

Figure 1: StyleGAN generator architecture (Karras et al., 2019) 

 

The main structure of StyleGAN generator is in two main parts. One part is the Mapping 

Network, and the other part is the Synthesis Network. StyleGAN still maintains the 

structure of the PG-GAN (Progressive Growing GAN) proposed by Karras et al (Karras 

et al., 2017). The main role of the Mapping Network in StyleGAN is to decouple the 

latent space. In the process of generating images, the features of the image data need 

to be represented to better generate or classify the image data. However, image data 

generally has multiple features and have high coupling between them. It makes difficult 

for the model to identify the connection between them. This could make the model 

inefficient in learning. Therefore, in order to improve the learning efficiency of the model, 

researchers find the deep relationships under the features of the image data, and 
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decouple these relationships to extract the hidden features, which is the latent code. 

Latent space is the space composed of latent code. The Mapping Network consists of 

eight fully connected layers, where the input value latent z is transformed by a series 

of affine transformations to give the output value intermediate latent w. Different 

elements of w control different visual features. The reason for converting the variable 

z to w via Mapping Network is that in general the variable z is a random vector that fits 

a uniform or Gaussian distribution. However, this is not the case. In StyleGAN paper, 

Karras et al. propose a combined distribution of hair length and masculinity features in 

the training set, where the longer the hair length the weaker the masculinity, which 

leaves the part about the longer the hair the stronger the masculinity missing (Karras 

et al., 2019). The results obtained would be inaccurate if the uniform distribution and 

Gaussian were used for sampling. However, after Mapping Network, the model could 

generate a vector w that does not need to follow the distribution of the training data. 

This step also reduces the correlation between image features so that synthesis 

network for individual control of each feature of the image data. 

 

The second part of the StyleGAN generator is the synthesis network, where the output 

values of the Mapping Network 𝑤 are input into each layer of the generator via the 

AdaIN (adaptive instance normalization) (Huang & Belongie, 2017) style 

transformation method of each convolutional layer to control the style of the image, so 

that each convolutional layer could adjust the style of the image according to the input 

values. The transformed noise is added before each AdaIN layer to enrich the image 

with detail. For the discriminator the authors used the same structure as PG-GAN, the 

Adam (Kingma & Ba, 2014) optimizer and minibatch sizes. 

 

Based on the structure described above, the researchers also propose in the paper a 

method Style mixing. This method allows the combination of two picture styles to 

generate a new realistic picture. The authors obtained two outputs, w1 and w2, 

representing the styles of two different images, by inputting two different latent codes, 

z1 and z2, into the mapping network. The synthesis network then randomly selects a 
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layer before which w1 is used as input and after which w2 is used as input. The 

resulting image will then have both the style of the first image and the style of the 

second image. Depending on the choice of convolutional layers, the images are 

generated differently. Because StyleGAN's convolutional layers are structured from 

low to high resolution, the choice of different layers will result in different characteristics 

of the w-controlled image data. 

 

 2.1.3 StyleGAN2 

Since the introduction of StyleGAN, several applications have been developed based 

on its ability to generate images of the same style or a mixture of different styles, as 

well as to change the feature of an image according to different latent codes. In the 

article by Bermano et al. (2022) points out that StyleGAN can change the pose of an 

image character, gender hair length, etc. Moreover, it can also change the overall style 

of an image, from realistic to anime or oil painting style. It could even change the facial 

expressions of the people in the picture (Shen et al., 2022). However, as more and 

more people use StyleGAN to generate images, some problems with the model have 

gradually emerged. Therefore, Karras et al. further improved the model based on these 

findings and analysed it to improve the quality of the images generated by StyleGAN 

model which means the second generation of the StyleGAN model was developed 

(Karras, Laine, et al., 2020). 

 

According to experiments by Karras et al. it was found that StyleGAN has the potential 

to generate water droplet-like imperfections when generating images. The researchers 

finally found that the reason that this problem would arise was a problem with AdaIN. 

Because AdaIN is normalising each feature map, it may destroy the information 

between the features of the image. To solve this problem the authors adjusted the 

network structure of StyleGAN. Firstly, the author removed the noise and normalisation 

Mean/Standard Deviation from the initial input of the synthesis network. Secondly, they 

remove Standard Deviation from normalisation and the third step removes all noise 

inputs from the style module. After the above steps the water droplet problem was 
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solved. Another highlight in StyleGAN is Style Mixing, and in StyleGAN2 this approach 

is a step closer to accurate control of image features. However, changing only the 

structure of the network is not enough to improve accuracy, so the researchers have 

modified weight demodulation by combining Modulation Standard Deviation with the 

convolutional layer, with mod std scaling the weights of the convolutional layer and 

then normalisation Standard Deviation as weight demodulation. This approach not only 

improves the accuracy of Style Mixing for image features, but also improves the 

training speed of the model. 

Figure 2: StyleGAN2 generator architecture (Karras, Laine, et al., 2020) 

 

Furthermore, the authors also found that the way to generate high resolution in 

StyleGAN is to use a network of progressive growing GAN (Karras et al., 2017). This 

network is trained to generate a 4*4 resolution image and then gradually transition to 

a higher resolution image when the training is stable. However, researchers find out 

this network is very unstable when generating high resolution images, and the 

discriminator can easily separate whether an image is real or fake, which can lead to 

the weights of the generator not being updated effectively during training. Thus, Karras 

et al. have redesigned the StyleGAN2 image generation architecture inspired by the 

MSG-GAN published by Karnewar & Wang (Karnewar & Wang, 2020). The MSG-GAN 

approach is to first train images from 4*4 resolution and then map features from the 

generated low-resolution images to the final generated image via Resnet-style skip 
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connections. This enables each training step to influence the final output, increasing 

the stability of the network. The authors also used lazy regularization in StyleGAN2 to 

reduce the computational cost and not have a significant impact on the final result 

(regularization every 16 minibatches). 

 

2.2 Relationship of the three methods to the research question 

 

The research question in this article is: how to use suitable GAN structures to provide 

relative inspiration to game architectural landscape modelers. In the above review of 

the paper, models based on the GAN, StyleGAN and StyleGAN2 model structures 

might be appropriate to provide inspiration to game architectural landscape modelers, 

the reasons are as follows: 

 

GAN is an unsupervised learning image model that automatically learns the data 

distribution of a sample set so that it can be easily used. User could put some 

landscape and building images into the model, and it will output a realistic image for 

the modeler to use as a reference. It's like a black box, the game modeler doesn't need 

to know the internal structure, he just needs to put in the images to get the output he 

wants. 

 

StyleGAN improves on Progressive growing GAN by allowing it to influence the style 

(various attributes of the image) of the output image. In StyleGAN the authors propose 

and implement the idea of style mixing. This idea also coincides with Ali & Lee. They 

propose that the styles of two different buildings could be combined and used as a 

reference for new architectural designs (Ali & Lee, 2021). However, this idea is better 

reflected in the architectural and landscape modelling of the game. In Monster Hunter 

World, an open world game, the map has a series of designs combining rainforest and 

mountains, sand dunes and lava (Officially called ‘Ecosystem’), and different building 

designs in the town depending on the map area (Capcom, 2018). Because StyleGAN 

is highly effective at generating the same style or a mix of styles as the input image, 
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the images generated with it could be a valuable reference for game modelers. 

 

StyleGAN2 improves on the first generation with structural changes and 

enhancements to make it more suitable for generating buildings and landscapes in HD 

resolution, and StyleGAN2 improves on the first generation's potential for water droplet 

artifacts problems and unrealistic images where some parts of the image may remain 

in place when image rotated. Moreover, StyleGAN2 also enhances the style mixing 

function by changing the network structure and weight demodulation to give more 

detailed control over 'style'. This change also further expands the possibilities for game 

modelers to use StyleGAN2 to generate different styles of images, allowing them to 

combine more detailed sections from different styles of architecture and landscapes to 

provide design inspiration. 

 

2.3 The critique of three methods 

 

Although the three methods mentioned above are all useful in solving the research 

problem, there is still potential for improvement in each method. This section will 

compare the network structures of the three methods and identify their weaknesses by 

comparing the experimental data and the final output images. 

 

Original GAN is considered to be the first generative adversarial network, which has 

the advantages of unsupervised learning, automatically learning the distribution 

without knowing the data distribution of the original sample and producing better image 

samples than other generative models. However, GAN still has some problems that 

need to be solved. For instance, when both the generative and discriminative networks 

in a GAN are composed of neural networks, there is a risk that the entire network may 

not converge due to the constant adjustment of its own network weight. Moreover, 

because the GAN needs to update the discriminative network several times before 

updating the generative network during training, it is difficult to know how far the 

training has progressed. At the same time, the GAN is a bit overwhelmed with training 
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high-resolution images, and the training time could become very long. 

 

StyleGAN is a model that learns the 'style' (image data attributes) of an image to 

enhance the image learning capability of the GAN and make the style of image 

generation controllable. It also provides a significant improvement in stability for high-

resolution image generation compared to GAN. However, it has the potential to 

produce water droplet problems when generating images, which in severe cases may 

affect the integrity of the image subject. Secondly, because of the use of progressive 

growth, the more frequent details of the output in StyleGAN may be fixed in place and 

not change as the subject changes (rotates, moves, etc.), which may make the image 

look less realistic. 

 

StyleGAN2 solves the water droplet problem and the image detail non-following 

problem in StyleGAN by changing the network structure and Weight Demodulation. 

And StyleGAN2 has higher accuracy for image style control than StyleGAN. According 

to the authors' experiments using the FFHQ dataset, the FID of the images generated 

by the second-generation algorithm is also reduced compared to that of the first 

generation (the lower the FID value, the more realistic the image is). At the same time, 

some shortcomings of StyleGAN2 were identified in the course of the experiments. For 

example, some details of the image (human beard, eyelashes, etc.) are shifted 

according to the axes rather than according to the content of the image during the style 

transformation, which makes the generated images look like they are stuck together, 

and the details are not displayed in high definition. In addition, a database of at least 

30,000 images is required for better training results and collecting this number of 

images would be a major undertaking. 

 

2.4 Conclusions 

 

In summary, in order to address the research questions raised in Chapter 1, this section 

reviews the structure of three GAN models (GAN, StyleGAN, StyleGAN2) and the 
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various approaches to image processing proposed by the authors based on the 

different structures. Moreover, the paper analyses the weaknesses of the three models 

and the problems that may be encountered. However, it could see that each of the 

three models also has its own strengths in solving the research problem. GAN is more 

scalable in the network structure among the three models and can adapt the network 

to different needs. This approach is more suitable for people who have some basic 

knowledge of generative adversarial networks. The advantage of the StyleGAN model 

is that it focuses more on the 'style' of the image, which can be of great help to 

modelers who want to generate landscape images in the same style or a mixture of 

styles to provide inspiration. StyleGAN2 builds on the first generation with enhanced 

control over image detail style and fixes the water droplet problem that could occur in 

the first generation. The code of this model is similar to a black box, so the user does 

not need to know what is inside, but only needs to input hyperparameters for training, 

making it more user-friendly. 
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Chapter 3 Methodology 
 
3.1 Algorithm description of three different GANs 
 
3.1.1 Generative adversarial net 
 
In the previous chapter, we reviewed the general structure of GAN, in this section we 

will explain each step of GAN in more detail. 

 

The main structure of the generative adversarial network is consist of a generator and 

a discriminator, where the input to the generator is the latent space and random noise, 

after which the generator will get a set of image outputs G(z) based on the input noise, 

and this set of output data and the real image are input into the discriminator to get the 

probability D(x) that G(z) is the real image. After obtaining D(x) the loss function is 

calculated to adjust the weights of the two networks, with the final aim of making the 

discriminator output as close as possible to 0.5. (The discriminator cannot determine 

whether the image is generated by the generator) 

Figure 3:  The structure of Generative adversarial network 
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In GAN, the generator needs to be a model of the output image, while the discriminator 

can be any discriminator model. Since the purpose of the discriminator is to 

discriminate whether the image is a real image (the similarity of the data distribution), 

the GAN needs to calculate a loss function to update the model parameters, and the 

mathematical expression of the loss function is Equation (1) 

 

																										𝐿(𝐺, 𝐷) 	= 	−𝔼!~#!𝑙𝑜𝑔𝐷(𝑥) − 𝔼$~#"𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))																					(1) 

 

The task of the discriminator is to maximise L(G,D) and the task of the generator is to 

minimise L(G,D) so that the discriminator cannot distinguish between the real and the 

fake generated images. Generally, the discriminator model is updated after the loss 

function has been calculated, and then the generator model is updated. Furthermore, 

we could find that the discriminator is a classifier in the network. So, we can generally 

use cross entropy (de Boer et al., 2005) to discriminate the similarity of the image data 

distribution with the equation 

 

																																																								𝐻(𝑝, 𝑞) ≔ −5𝑝%𝑙𝑜𝑔𝑞%
%

																																																(2) 

 

where 𝑝!  and 𝑞!  in the equation are the distribution of the real samples and the 

distribution generated by the generator, respectively. Since the function of the 

discriminator in GAN is to determine whether the image is a real image or not (a binary 

classification problem), the equation can be further expanded as 

 

														𝐻((𝑥% , 𝑦%)%&'( , 𝐷) = −5𝑦%𝑙𝑜𝑔𝐷(𝑥%)
(

%&'

−5(1 − 𝑦%)𝑙𝑜𝑔(1 − 𝐷(𝑥%))											(3)
(

%&'

 

 

According to the derivation of the equation of cross entropy, Goodfellow et al. 

proposed the objective function of the optimization function in GAN (Goodfellow et 

al., 2014), which is also considered to be the core of GAN 
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				min
)

max
*

𝑉(𝐺, 𝐷) =𝔼!~+#$%$(!)[𝑙𝑜𝑔𝐷(𝑥)] + 𝔼$~+"($)[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))]										(4) 

 

This equation summarises everything that generators and discriminators do in a 

network. You could see from this equation that the generators and discriminators are 

playing a game, in a process of continuous learning and playing to finally reach a 

balance. 

 

Having obtained the structure and loss function of the GAN, the authors also propose 

an algorithm for the GAN, as shown below: 

Figure 4: Generative adversarial network Pseudo-algorithms (Goodfellow et al., 2014) 

 

Combining the algorithm with figure 3 GAN architecture diagram we could see that the 

algorithm samples randomly in the noise to get a set in the data 𝑧" − 𝑧#, and then 

randomly in the real data set to get a set of data 𝑥" − 𝑥#. Furthermore, one of the data 

from 𝑧" − 𝑧# and 𝑥" − 𝑥#	is input into the discriminator, which outputs the probability 

that the input value is a real image. Next step, the loss function could be calculated 

according to the loss function equation and the probability value. Finally, the algorithm 

updates the discriminant model first according to the loss function and the back 
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propagation algorithm, then updates the generative model afterwards. This completes 

one loop of GAN training. 

 

3.1.2 StyleGAN2-ADA 

 

The StyleGAN2-ADA (StyleGAN2-adaptive discriminator augmentation) algorithm is 

an improved algorithm based on the structure of StyleGAN2 reviewed in the literature 

review. Its main purpose is to solve the problem that StyleGAN2 may produce 

overfitting of the discriminator during training if the amount of training sets is small 

(Zhang & Khoreva, 2018), which may lead to the generator not being able to effectively 

adjust the model parameters thus leading to a reduction in model training efficiency. In 

general, the solution to this problem would be to use image augmentation. However, 

this method may result in affecting the output image. How to use image augmentation 

without affecting the output image is the thing that StyleGAN2-ADA does. 

 

The core algorithm of StyleGAN2-ADA is the addition of image augmentation to the 

structure of StyleGAN2, which is based on the bCR method (balanced consistency 

regularization) proposed by Zhao et al. (Zhao et al., 2021).  

Figure 5: (a) is the image augmentation structure of bCR (Zhao et al., 2021) and (b) is the 
image augmentation structure of StyleGAN2-ADA (Karras, Aittala, et al., 2020) 
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As shown in Figure x, the main idea of the bCR method is to add a consistency 

regularization term to the discriminator. If bCR performs two different image 

augmentations on the same image, its output should be consistent. However, in 

StyleGAN2-ADA, the authors argue that bCR only performs image augmentation on 

the discriminator cannot constrain the output of the generator. Therefore, the authors 

add image augmentation to StyleGAN2 generator model and remove the consistency 

regularization term added to the discriminator loss function. For the loss function, the 

authors use a non-saturating logistic loss (Goodfellow et al., 2014), which is formulated 

as: 𝑓(𝑥) = 𝑙𝑜𝑔(𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥)). In terms of transfer learning, among the transfer learning 

with respect to GAN studied by other authors (Wang et al., 2020) (Wang et al., 2018), 

Karras et al. found that transfer learning with the freeze discriminator layer studied by 

Mo et al. (Mo et al., 2020) has the best performance in StyleGAN2-ADA. 

Generally, when doing image augmentation, a probability p is set which controls the 

intensity of the image augmentation. p ranges between 0 and 1 and is generally an 

artificially set hyperparameter. Researchers have found that the value of p can greatly 

affect the final output image. However, the optimal value of p varies depending on the 

augmentation method and the data set. Different datasets and augmentation methods 

have different p.	This could make it difficult to determine the p -value before the start 

of the experiment. Since image augmentation is used to ensure that the discriminator 

is not overfitted to the image during training. Therefore, the authors propose two 

heuristic indicators for overfitting, which dynamically adjust the p-value according to 

the degree of fit (Karras, Aittala, et al., 2020). The two heuristics are 𝑟$  and 𝑟% 

respectively, and their equation expressions are 

 
(5) 

 
 

The 𝐷%&'!(, 𝐷$')!*'%!+(, 𝐷,-(-&'%-*  represents the output of the discriminator in the 

network for the training set, the validation set and the generated image set, respectively. 

After obtaining the results of the three parameters and bringing them into Eq. (5), the 
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discriminator results are averaged for each set of consecutive batches. The authors 

used 4 batches of batch size 64 in the algorithm to find the mean value. r values range 

from 0 to 1, with 0 representing no overfitting and 1 representing complete overfitting. 

However, this method has one drawback, as the data set is relatively small, this method 

also requires the data set to be divided into a training set and a validation set, further 

reducing the size of the training set, which is not what we would like to see. Therefore, 

the authors further propose a second heuristic 𝑟%. The output of 𝑟% is the proportion of 

𝐷%&'!( that gets a positive value. From equation (5) it could be seen that 𝑟% only needs 

one parameter 𝐷%&'!( . In the ideal case, 𝐷%&'!(  should converge to around 0 then 

there is no overfitting and vice versa. The 𝑟%  also used by the authors in the 

StyleGAN2-ADA algorithm for dynamically adjusting p, decreasing the p value as rt 

approaches 1 and increasing it as it approaches 0. 

 

3.1.3 StyleGAN3 

 

StyleGAN3 builds on the second generation in order to solve the problem of image 

texture sticking that arises during image deformation (e.g., transformation from one 

face to another). This problem can lead to unnaturalness and blurring in the image 

deformation process and in the final generated image. According to Karras (Karras et 

al., 2021), this problem is caused by the fact that the existing StyleGAN2 network has 

some positional reference information in the intermediate layer, which causes the 

pixels of the image to be fixed at the same coordinates during the deformation process. 

Among the causes of this are: image borders, noise input, and Aliasing, which is the 

effect of different signals becoming indistinguishably overlapped when sampled. This 

effect usually occurs when the sample rate is too low. 

 

To address these issues, the authors redesigned the network structure of StyleGAN2. 

The researchers found that image texture sticking would be greatly reduced if a 

position code that would affect the transformation process was not inserted during the 

operation. However, this operation is difficult to implement in a normal neural network 
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layer (which is a discrete domain). Therefore, the authors switch the operation in the 

network from the discrete domain to the continuous domain for the operation. At the 

end of the operation the continuous domain is then transformed into the discrete 

domain for the other steps. In StyleGAN3, the discrete domain is converted to the 

continuous domain according to the Whittaker-Shannon interpolation formula 

(Shannon, 1949), which is given by: 𝑧(𝑥) = (∅. ∗ 𝑍)(𝑥). where * stands for continuous 

convolution and ∅. stands for low-pass filter, Z means the discrete feature map. After 

the convolution, up/down sampling and ReLU operations, the network converts the 

continuous domain into a discrete domain by means of 𝑡𝑤𝑜 −

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙	𝐷𝑖𝑟𝑎𝑐	𝑐𝑜𝑚𝑏, which is given by: 

 

																																														𝐼𝐼𝐼.(𝑥) = ∑ 𝛿(𝑥 − (𝑋 + "
/
)/𝑠)0∈ℤ!                         (6) 

 

Converting a continuous domain to a discrete domain is simply a process of sampling 

from a continuous feature map using the above formula. Based on the above 

transformation approach, the researchers redesigned the convolutional layers, 

upsampling, downsampling and non-linearity based on the network structure of 

StyleGAN2. The authors represent F as an operation on a discrete feature map Z and 

f as an operation on a continuous feature map z as  

 

																															𝑓(𝑧) = ∅.3 ∗ 𝐹(𝐼𝐼𝐼.⊙𝑧)									𝐹(𝑍) = 𝐼𝐼𝐼.3⊙𝑓(∅. ∗ 𝑍)																												(7) 

 

This makes it feasible to see the operations of a different domain corresponding to 

another domain. In the convolution layer, considering a discrete kernel K and a 

convolution with sampling rate s, we could derive different expressions in the discrete 

and continuous domains respectively according to the above equations 

 

𝐹4+($(𝑍) = 𝐾 ∗ 𝑍												𝑓4+($(𝑧) = ∅. ∗ (𝐾 ∗ 𝐼𝐼𝐼.⊙𝑧) = 𝐾 ∗ (∅. ∗ 𝐼𝐼𝐼.⊙𝑧) = 𝐾 ∗ 𝑧					(8) 
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At the upper sampling level, the continuous domain upsampling in the ideal situation 

is not modified. So, the expressions for the discrete and continuous domains in 

upsampling are respectively 

 

																																				𝐹56(𝑍) = 𝐼𝐼𝐼.3⊙ (∅. ∗ 𝑍)																	𝑓56(𝑧) = 𝑧																																								(10) 

 

In the continuous domain downsampling operation, 𝜓. ≔ 𝑠/ ∙ ∅. is the interpolation 

filter normalized, which can be used as a low-pass filter to filter out high frequencies to 

avoid Aliasing. the expression for the discrete domain downsampling can be obtained 

from equation (7). The continuous and discrete domain downsampling expressions are 

 

												𝐹*+7((𝑍) = 𝐼𝐼𝐼.3⊙ (𝜓.3 ∗ (∅. ∗ 𝑍))																						𝑓*+7((𝑧) = 𝜓.3 ∗ 𝑧																									(11) 

 

In the nonlinearity layer, we can obtain the nonlinearity in the discrete domain by using 

equation (7), however the ReLU operation in the continuous domain may lead to 

Aliasing problems, so the authors use a low-pass filter to solve this problem. The 

expressions for the nonlinearity in the discrete and continuous domains are 

 

														𝐹8(𝑍) = 𝑠/ ∙ 𝐼𝐼𝐼.⊙ (∅. ∗ 𝜎(∅. ∗ 𝑍))																							𝑓8(𝑧) = 	𝜓. ∗ 𝜎(𝑧)																						(12) 

 

Based on the above theoretical formulations for the convolutional, 

upsampling/downsampling and nonlinearity layers, the network structure of StyleGAN3 

is illustrated below: 

Figure 6: The StyleGAN3 architecture (Karras et al., 2021) 
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In contrast to the network structure of StyleGAN2, StyleGAN3 firstly transforms the 

input constants into Fourier transformations to ensure accurate translation of z 

Secondly, the noise input is removed to eliminate the introduced position reference 

information. Thirdly, the output skip connections are removed, which solves the 

problem of gradient disappearance. Also, each convolution operation is normalised by 

dividing by the EMA (Exponential Moving Average) before it. Fourth, the 2x upsampling 

filter in the network structure CUDA kernel is replaced with an ideal low-pass filter. Fifth, 

a fixed margin is maintained around the target canvas and then cropped to this canvas 

size after each layer. Finally, the Leaky ReLU is wrapped in the middle of the 

upsampling and downsampling layers. 

 

3.2 Implementation of three different GANs 

 

3.2.1 Chinese Architecture and Landscape Dataset 

To generate images of Chinese architecture and landscapes through three different 

GAN-based models to provide inspiration for game modelers, this database contains 

17,000 images from Flickr, Google Images and Baidu Images. The database includes 

photos of attractions, landscapes, and cities from all major provinces in China. The 

images are all in JPEG format, and the original resolution varies in size. In order to 

train the model more efficiently, all images are resized to 64*64. 

Figure 7: Chinese landscape and architecture dataset 
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3.2.2 Implementation of Generative adversarial net 

 

GAN, as the most basic generative adversarial network structure, will be used as a 

baseline against other models in this experiment. To increase the efficiency of the code, 

GAN will be run on Google colab pro (Google, 2022). In this implementation, only the 

CPU used for training the GAN. The GAN code was built using TensorFlow platform. 

The original database (in the format of JEPG) was first uploaded to Google Drive, and 

then the whole database was converted to npy format and saved according to the 

requirements of TensorFlow. The second step was to build the generator model and 

the discriminator model using the code, both of which were constructed exactly 

according to the structure of the GAN paper. After building the models and the loss 

function, I write a function ‘save_images’ to store the images on Google Drive in order 

to compare the images generated by each epoch. In the training function, I write a 

checkpoint to prevent the program from crashing suddenly and causing the problem of 

starting from scratch. A checkpoint is generated every 5 epochs and there will only be 

a maximum of 3 checkpoints. Finally, after running the training function, each epoch 

will output the loss values of the generator and discriminator models as well as the 

training time after the training is completed. 

 

Figure 8: The code of generator and discriminator model 
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After the generator and discriminator structures were constructed, the final generator 

trainable parameters obtained were 2,043,011 and the discriminator trainable 

parameters were 1,613,889. 

 

3.2.3 Implementation of StyleGAN2-ADA 

 

In implementing the StyleGAN2-ADA model, I used colab pro to run the code either. 

Unlike GAN, the StyleGAN2-ADA code has been integrated by NVIDIA engineers 

and uploaded to the NVlabs on GitHub (Karras et al., 2020). This makes it easier for 

users to use the StyleGAN2-ADA model code. As the model structure needs to use 

both CPU and GPU, the GPU assigned in the colab is Tesla P100-PCIE-16GB. After 

obtaining the GPU, I used the dataset_tool.py file in the code to convert the original 

database into a tfrecords file for the next operation The version of code I used was 

based on TensorFlow 1.X. However, after August 1, 2022, colab no longer supports 

Tensorflow 1. In order to make the code work as usual, I reinstalled Tensorflow 1.15.2 

and tensorflow-gpu1.15 and specified NumPy=1.19.4 for proper output. 

 

The StyleGAN2-ADA code faithfully implements the model structure of the thesis, the 

main bodies of which are the mapping network, the synthesis network and the 

ToRGB. The code shows the network structure as shown in the figure below: 

 

Figure 9: Generator and Discriminator of StyleGAN2-ADA 
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In StyleGAN2-ADA, the trainable parameters for the generator are 22, 243, 610, and 

the trainable parameters for the discriminator are 23, 407, 361. Before model training 

can begin, the train.py file needs to be run and the hyperparameters set artificially. 

Among the StyleGAN2-ADA hyperparameters are: 

 

Settings Explanation 

--outdir The file path to save result 

--gpus How many GPUs used in training 

--snaps Number of ticks will have an image and network snapshot 

--seed Random seed 

--data The path of training dataset 

--res The resolution of dataset images 

--mirror Augment dataset with x-flips 

--mirrory Augment dataset with y-flips 

--use-raw Use raw image dataset 

--cfg Base configuration 

--lrate Learning rate 

--ttur Use two time-scale update rules 

-gamma R1 gamma 

--nkimg The number of starting counts 

--kimg Training duration 

--aug Augmentation mode (default: ada) 

--p Augmentation probability (default: 0.6) 

--target Override ADA target for --aug=ada and --aug=adarv 
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--augpipe Augmentation pipeline 

--resume Resume from network pickle 

 
Table1: Hyperparameters of StyleGAN2-ADA 

 

After setting the above hyperparameters, the entire network of the model is fully 

generated and ready for training. 

 

3.2.4 Implementation of StyleGAN3 

 

In terms of generating the StyleGAN3 model, it is more similar to the StyleGAN2-ADA 

approach. Its code has also been put into NVlabs. The difference is that StyleGAN3 is 

written using the Pytorch library. Model training is still run on both the GPU and CPU. 

The GPU used to train StyleGAN3 is a Tesla P100-PCIE-16GB, and the original 

dataset can be stored in Google Drive as a zip file after using the Pytorch library with 

dataset_tool.py, which saves space in the storage database. Since the model code 

uploaded by the author a year ago did not match the current Pytorch library, I 

reinstalled the Pytorch version with the following version information: 

torch==1.10.0+cu113 torchvision==0.11.1+cu113 torchaudio===0.10.0+cu113. 

Meanwhile, for proper output of log, training etc. files. I have set numpy to version 

1.19.4 and TensorFlow to version 1.15.2. 

 

The code of StyleGAN3 reproduces exactly the theoretical structure of the paper, and 

the network structure of its code output is shown in the following figure: 
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Figure 10: Generator and discriminator structure of StyleGAN3 

 

In StyleGAN3, there are 37,768,199 trainable parameters for the generator and 

26,488,833 trainable parameters for the discriminator. StyleGAN3 also requires 

hyperparameters to be set before the training of the model: 
 

Settings Explanation 

--outdir Where to save the results 

--cfg Base configuration 

--data Training data 

--gpus Number of GPUs to use 

--batch Batch size 

--gamma R1 regularization weight 

--cond Train conditional model 

--mirror Enable dataset x-flips 

--mirrory Enable dataset y-flips 

--aug Augmentation mode (default: ada) 

--augpipe Augmentation pipeline 
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--resume Resume from given network 

--freezed Freeze first layer of discriminator 

--p Probability for augmentation 

--batch-gpu limit batch size per GPU 

--cmax Max feature maps 

--glr Generator learning rates 

-dlr Discriminator learning rates 

--map-depth Mapping network depth 

--metrics Quality metrics 

--kimg Total training duration 

--tick How often to print progress 

--snap How often to save snapshots 

--seed Random seed 

--workers Dataloader worker process 

--nobench Disable cuDNN benchmarking 

 
Table 2: Hyperparameters of StyleGAN3 

 

After setting the above hyperparameters, the StyleGAN3 model is ready to start 

training. In the next experiment design section, I will explain in detail how each model 

is set up with hyperparameters and compare the three models by setting different 

experiment times. 

 

3.3 Experiment Design 

 

The purpose of this experiment is to compare the performance of GAN, StyleGAN2-

ADA and StyleGAN3 with the Chinese landscape and architecture database, so I 
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designed the experiment with one node for one day of training, one node for 3000kimg 

training and one node for 5000kimg training to compare the performance of the three 

models. Because of the relatively simple network structure, I set the hyperparameters 

batch_size=32, buffer_size=60000, generate_res=64*64 image_channels=3, 

epoch=300 in GAN.  

The hyperparameters of styleGAN2-ADA are set as follows: --cfg= 11gb-gpu-complex 

--aug=ada --outdir=./results --snap=4 --data=./datasets/StyleGAN2-ADA_64 ---

augpipe=bgc  --kimg=5000 --mirror=True  --mirrory=false  --metrics=None  --

target=0.7.  

The hyperparameters of StyleGAN3 are set as follows: --outdir=./results –

cfg=stylegan3-t (translation equivariance)  --data=./datasets/stylegan3_64.zip  --

gpus=1  --batch=32  --batch-gpu=32 –gamma=0.5  --mirror=True  --kimg=5000  

--snap=4  --metrics=None. This is because metrics take a lot of time to compute, and 

if they are computed once after each training session, it will take much longer to train. 

In the StyleGAN3 settings, I set both the batch size and batch gpu to 32, because the 

RAM size allocated by colab pro is about 51GB, and according to the test, the training 

speed is the fastest when the batch gpu=32 without exceeding the RAM limit. 

 

3.4 Summary 

 

At the beginning of the methodology section, the network structure of GAN is reviewed 

and how the key optimisation formulations are converted from cross-entropy. Secondly, 

this section writes about how the structure of the image augmentation part in 

StyleGAN2-ADA differs from its reference bCR, in addition to reviewing the method of 

adaptive adjustment of p-values proposed by the authors in their paper, which readily 

adjusts according to the values obtained from the two heuristic 𝑟$ and 𝑟%. Moreover, 

this section reviews the network architecture of StyleGAN3, where the authors 

redesigned the convolutional, upsampling, downsampling, and nonlinearity layers of 

the overall network based on the StyleGAN2 network architecture in order to reduce 

the problems of Aliasing and images sticking. Low-pass filters, Dirac comb, Whittaker-
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Shannon interpolation formula, and Fourier transform are used to transform the 

discrete and continuous domains. Following a review of the theory of the algorithm, a 

detailed description of how the three models were implemented is given. This includes 

the use of the colab platform for reproduction, how many hyperparameters the three 

models have, what they are, the number of trainable parameters, the various libraries 

used and version information. After reproducing the three models, section describes 

how the experiments were designed in order to compare the performance of the three 

different models in order to select the most suitable model to address the research 

questions in this paper. 
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Chapter 4 Result 

 
4.1 The result of experiment 
 
After the settings in section 3.3, each of the three models was run in the colab for 24 

hours. The various parameters output during the training process are the training 

epochs/ticks, training time for each epoch/tick, test time for generate images, 

augmentation and GPU memory usage as shown in the table below: 

 

Model / Type Original GAN 
StyleGAN2-

ADA 
StyleGAN3 

Epoch/tick 150 epochs 593 ticks 456 ticks 

Training time per 

epoch or tick 
570s (without GPU) 119.7s 179.5s 

Time for generate 

100 images 
56s 93s 87s 

Augmentation N/A 0.04-83.091 0.02-0.73 

GPU memory N/A 8.1GB 10.84GB 

Table 3: Training information of GAN, StyleGAN2-ADA and StyleGAN3 

 

After one day of training, I used the resulting trained model for image generation. 

Original GAN used the ‘build_generator’ function, use of stored h5 format files to 

generate random images. StyleGAN2-ADA and styleGAN3 run generate.py and 

gen_images.py respectively to generate the images generated by the corresponding 

models. The result of the generated image is shown below:                                                                        

`                 (a)                                            (b) 
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(c) 

Figure 11: The generate images of GAN (without GPU) (a) and StyleGAN2-ADA (b) and 

StyleGAN3 (c) in one day 

 

After a day of training, we continued with the three models. When the training volume 

reached 3000kimg we again performed the image output for the three trained 

models. 

                GAN                               StyleGAN2-ADA 

 

   StyleGAN3 

Figure 12: The Generate images of three models after 3000kimg training 
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Eventually, the experiment proceeded to the final step. In the 5000kimg training, I not 

only used the images generated by the completed models, but also further confirm the 

quality of the images generated, I performed the FID (Fréchet inception distance) 

calculation on each of the three models. FID is a metric used to judgement the quality 

of images created by a generative model ((Heusel et al., 2018)). A smaller value of FID 

means that the quality of the image generated by the generator is better. The FID value 

of GAN, StyleGAN2-ADA and StyleGAN3 after 5000kimg training are: 182.726, 54.011, 

11.508. The images generated by the three models after training are shown below: 

               GAN                                 StyleGAN2-ADA 

StyleGAN3 

Figure 13: The Generate images of three models after 5000kimg training 

 

4.2 Summary 

 

This section shows the experimental results of three different models trained for one 

day, 3000kimg and 5000kimg, including the number of training epochs/ticks, training 

time, generate image time, augmentation, GPU usage, FID and output images of the 

three models. In the next section, I will compare and analyse the results obtained. 
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Chapter 5 Analysis and discussion 

 
5.1 Analysis GAN, StyleGAN2-ADA and StyleGAN3 by result 
 
After obtaining various information about GAN during the training process it can be 

found that his training speed is relatively slow, however he is somewhat faster than the 

other two models in terms of image generation speed. In terms of the generated 

images, the difference between the three generated images in one day of training, 

3000epoch, and 5000epoch was not very much and did not produce good quality 

images. To find out the cause of the problem, I looked at the generator loss and 

discriminator loss in the code output and found that the generator loss remained 

around 5.839 and the discriminator loss around 0.3019 in the initial one-day training. 

However, after 1000 epochs of training, there is a gradual increase in the generator 

loss output, accompanied by a gradual decrease in the discriminator loss output. This 

usually happens because the generator starts to diverge gradually, and the model 

starts to crash. Although the model did not crash completely during this training, as the 

training epoch increased, eventually the generator would completely diverge. based 

on the environment and the circumstances of this experiment, I found that the problem 

that caused the generator to diverge was that the database was small. The database 

used for this experiment was only 17,000 images, which is a small amount of data. 

This could lead to overfitting problems during training and a rapid crash of the 

generator. Secondly, before the training, the GAN set the batch size to 32, which seems 

to be a bit too large from the results. Because using a large batch size may affect the 

performance of the network, many training examples will be input to the discriminator, 

which may overwhelm the generator and have a negative impact on the model training.  

Since the generator gradually collapses after a high number of epochs, it could be 

found that the generator works best when the epoch is around 1000, which is when 

the GAN model is best trained using the Chinese landscape and architecture database, 

based on the loss path of the generator and the discriminator. However, the quality of 

the images generated using the model at this time is still unsatisfactory. 
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Figure 14: The images generated by GAN after 1000 epochs 

 

StyleGAN2-ADA can be trained almost 5 times faster than a CPU-only GAN thanks 

to the addition of a GPU. However, due to the complexity of the network, it is a little 

slower when generating images. Since StyleGAN2-ADA uses adaptive image 

augmentation, the augmentation increases gradually as the training tick increases 

(because of the small amount of data, the 𝑟% diverges relative to 0 at the beginning 

of training, and the augmentation increases gradually to ensure that the model does 

not overfitting. In terms of the generated images, it could be seen that after one day 

of training, the generated images have a lot of repetitive clouds, cut-off peaks and 

distorted buildings. This is clearly not the image quality we expected. After 3000kimg 

training the quality of the graphics improved significantly. However, the problem of 

image fragmentation and repetition show again in the generated images after 

5000kimg. Moreover, the FID of StyleGAN2-ADA reached 54.011 after 5000kimg 

training, which is different from the FID of around 5 proposed by StyleGAN2-ADA in 

the paper. Based on the above it can be obtained that the model has reached the 

optimal point before 5000kimg. Therefore, I calculated the FID of a model with a 

training volume between 3000kimg and 5000kimg (3424kimg) which the FID is: 

20.326 and also calculated one model’s FID before 3000kimg (2424kimg) training 

volume which the FID is 24.754. Comparing the FIDs at 5000kimg, the model after 

3424kimg train is more than twice as small as 5000kimg.It is clearly found that the 

model reaches its optimal point around 3000kimg and then collapse gradually.  
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Figure 15: The image generated by StyleGAN2-ADA after 3424kimg train 

 

StyleGAN3 is the most complex of the three models, so it takes longer to train than 

StyleGAN2-ADA, which also uses GPUs, and uses the most GPUs. However, its image 

generation time is faster than that of StyleGAN2-ADA. In terms of images, the quality 

of the landscape images obtained by StyleGAN3 after one day of training time is much 

better than that of the buildings, which still exhibit rotation and are partially missing. 

After a training volume of 3000kimg these problems gradually disappear and the 

images look very realistic, with only less images generated that may show distortion of 

the buildings. After 5000kimg training, StyleGAN3 output the best quality of images 

with FID=11.508. StyleGAN3 is also the only one of the three models where the 

generator does not crash after 5000kimg of training. 

 

5.2 Comparing the strength and drawbacks of the three models 

 

The network structure of GAN is the simplest and easiest to reproduce among the 

three models, using only Python and the TensorFlow library, which also means that the 

layer structure of the GAN model is the easiest to tune. However, the simple model 

structure results in the least trainable parameters of the three models, and the GAN 

model is difficult to converge. In this experiment, the model did not converge well, and 

the discriminator loss was only around 0.3 at best. Overfitting due to less data could 

also be a cause of this situation. This is still a long way from the 0.5 discriminator 

(which is unable to determine whether an image is true or false) that we want to achieve. 

Therefore, the quality of the images generated by the trained model is not very 



 38 

satisfactory.  

 

StyleGAN2-ADA has the fastest training speed among the three models, and still 

produces good quality images (FID=20.326) when the data volume is small, and the 

number of training ticks is low. However, the generator model gradually diverges after 

reaching the optimum in the model training. The generator diverging is not as obvious 

as it could have been because the metrics had not been set to True in the 

hyperparameter settings (In order to save the training time). Furthermore, it was found 

that the StyleGAN2-ADA model still suffers from image blurring due to image sticking 

problem during training from the beginning to the 5000kimg generated images. 

 

StyleGAN3 has the most trainable parameters and hyperparameters of the three 

models due to the redesign of some of the layers in the model. As a result, it generates 

the best quality images at the end of training (FID=11.508) and is the only one of the 

three models whose generator does not crash after 5000kimg of training. Due to the 

complex structure of the model, it is slower to train than StyleGAN2-ADA, and the 

convergence of the model is slower, requiring a training volume of 5000kimg to achieve 

the best image quality, which typically takes 11-12 days to complete, depending on the 

speed of the P100-PCIE-16GB GPU on the colab. 

 

The research problem of this thesis is to find a way to provide landscape and 

architectural modelling inspiration for game modelers. Of the three methods GAN 

produces poor quality images, StyleGAN3 produces the best quality images, but it 

takes too long to train and converges slowly, and due to its complex network structure, 

it takes a lot of time to train and tune the model parameters if the modeler wants 

different styles of landscape and architecture(Chinese to British), StyleGAN2-ADA has 

the shortest training time and faster convergence among the three models, reaching 

the optimum at around 3000kimg in the database of this experiment. In the 

experimental environment of this colab, it only takes 5-6 days to train, and good image 

quality was obtained. Generally, modelers cannot wait too long on images that provide 
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inspiration, and there is a high probability that different styles exist in the same game 

(Capcom, 2018). This could lead to models needing to be retrained. Therefore, I think 

StyleGAN2-ADA is the most suitable model (assistant) to inspire modelers among the 

three models. 

 

5.3 Some real-world application using StyleGAN architecture  

 

As well as generating stylistically similar images to help modelers, StyleGAN has also 

made good contributions in other areas. In medicine, according to Nguyen et al 

(Nguyen et al., 2022), some young doctors are unable to accurately identify the degree 

of erosion in esophagitis. In order to help doctors to make more accurate judgements, 

the authors used StyleGAN2-ADA image augmentation on the RGB channel to 

significantly enhance the recognition accuracy after performing classification and 

extraction of esophageal disease features. The StyleGAN model also has good results 

in engineering applied sciences. According to a paper by Situ et al. it is difficult to obtain 

good training results for automatic sewer defect detection because of the small number 

of samples. The authors used the StyleGAN2 and StyleGAN2-ADA models to train the 

classifier by generating synthetic images from a small number of sample images. 

Excellent recognition results were obtained after training. 

 

5.4 Limitations 

 

In this experiment, only three models, GAN, StyleGAN2-ADA and StyleGAN3, were 

used to generate landscape and building images, and the number of models used was 

small. This may lead to problems such as clutter and lack of clarity in classification, 

which may affect the training results. Moreover, this experiment does not use transfer 

learning, which might lead to a lower convergence rate of the model. Finally, the 

parameters and hyperparameters of the model were relatively fixed in this experiment 

and were not adjusted or compared. 
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5.5 Society and ethical impact 

 

There are no ethical issues as the database of training images are all from open-source 

images. The trained images are all realistic images and do not infringe on the rights of 

any person or place. In terms of social impact, the goal of this experiment is to find a 

way to provide inspiration to modelers, thus for modelers the landscape and building 

images generated by StyleGAN2-ADA can be used to improve design efficiency. 

 

5.6 Summary 

 

In this section, it begins by analysing the results of GAN, StyleGAN2-ADA and 

StyleGAN3 and comparing the benefits and drawbacks of the three results, concluding 

that StyleGAN2-ADA is the most suitable as an inspirational aid to modelers. 

Furthermore, the section presents some real-world applications in medical and 

engineering applications using the StyleGAN structure and get the excellent result. 

Finally, this section writes about some of the shortcomings of this experiment.  
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Chapter 6 Conclusion and Future work. 
 
6.1 Conclusions 
 
In the recent years, as more and more open world games are being developed, many 

of the landscapes and buildings in these open worlds reference the real-world style to 

increase the immersion of the player. However, this style poses a significant challenge 

to modellers. Based on recent developments in deep learning and GAN, the research 

problem of this thesis is to use suitable GAN-based models to provide inspiration to 

game modellers for landscapes and buildings. In this experiment, Generative 

adversarial net, StyleGAN2-ADA and StyleGAN3 were chosen as the models for 

experimental comparison. In the methodology part, the structure of each of the three 

models is described and analysed in detail. GAN first introduced the idea of letting 

generators and discriminators play each other to learn automatically, which also laid 

the foundation for later GAN-based models. StyleGAN2-ADA builds on StyleGAN2 by 

proposing two heuristics for adaptively adjusting image augmentation to reduce 

overfitting. StyleGAN3 redesigned the convolutional layer, upsampling layer, 

downsampling layer and non-linear layer in order to solve the problem of image sticking. 

The image processing is converted from the discrete domain to the continuous domain 

and then back to the discrete domain when the processing is complete. Furthermore, 

section describe the source of the Chinese landscape and architecture database and 

the detailed parameters for this experiment. At the end of the methodology part, the 

implementation of the three models in colab, how many trainable parameters, types of 

hyperparameters, the setting of hyperparameters, GPU model and the design of the 

experimental steps are presented. At the beginning of the experiment, information was 

obtained on the training time, image generation time, augmentation level and GPU 

usage for each of the three models at three training time points (one day train, 

3000kimg,5000kimg). The images generated by the models after the three training 

time points were also obtained. After the results were obtained, the paper analyzed the 

results and found that the GAN model is slow and easy to crash during the training 
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process and cannot be effectively converged, the quality of the generated images is 

not quite well and adjusting the batch size may improve the training effect. but slower 

than GAN. According to the calculation of FID, we can find that StyleGAN2-ADA 

reaches the optimum around 3000kimg training length and converges faster. The 

quality of the generated images is also good (FID=20.326). StyleGAN3 has the most 

complex model structure, so the training speed is slower than StyleGAN2-ADA, and 

the convergence speed is also relatively slow. However, it produces the best quality 

images of the three models, with FID=11.508. Based on a comparison of the three 

models and how well they matched the work of game modellers, StyleGAN2-ADA was 

ultimately considered the most suitable model to provide inspiration to game modelers 

 

6.2 Future work 

 

Although it was found that StyleGAN2-ADA is more suitable as an inspirational method 

for modelers, based on the steps and results of this experiment, it could be found that 

more models can be added to compare various aspects of StyleGAN2-ADA in the 

future to find a much better solution (For instance: StyleMapGAN (Kim et al., 2021)). 

Secondly, multiple sets of hyperparameters can be set in future experiments. For 

example, changing the batch size value, gamma value (changing gamma will have an 

effect on batch normalization), and target value may have a significant impact on the 

training results of the model (Ioffe & Szegedy, 2015). In the future model training, 

transfer learning and freeze discriminator layer could be used to improve the training 

efficiency and convergence speed of the model. In terms of databases, it is also 

possible to use multiple databases for training to compare cross-sectionally whether 

different methods perform differently in different databases. In order to provide a better 

service to modelers, I will consider making the training process available as a software 

or interface for modelers to use in the future. 
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Chapter 7 Reflection 

 
In the course of this thesis, I initially searched through a large body of literature for 

problems that could be solved using GAN-related models in order to select a research 

question for the thesis. During the literature search I learnt how to quickly understand 

the main content of a piece of literature. Reading the abstract and introduction allowed 

me to quickly understand the subject matter of the paper. After identifying the research 

question, I read the papers GAN, StyleGAN, StyleGAN2, StyleGAN2-ADA and 

StyleGAN3 in detail. In order to fully understand these papers, I also searched for 

relevant reading material online to deepen my understanding of the various models. 

This has taught me that if I encounter a problem in the learning process that I cannot 

understand, I can supplement it by reading related knowledge, and when I read and 

understand more, I sometimes find that the knowledge is in fact all interlinked. I also 

had the most problems with reproducing the code, as the model code was slow to 

update and sometimes could not keep up with the latest version of the library. For 

example, colab no longer supports TensorFlow 1 as of August 1, but the model code 

only runs on TensorFlow 1, which requires adjustments to the code or the environment. 

In addition, the various library versions (numpy, pytorch, jaxlib) need to be adjusted to 

run the model code properly. There were times when I ran into unsolvable problems 

when tuning the code and had to try to find other ways to train around the problem. In 

this experiment with the StyleGAN2-ADA model code, the model code run using the 

pytorch library failed to load the training plugin due to the CUDA version and CUDA 

could not be tuned for versioning on the colab. As this could not be resolved, I ended 

up using the TensorFlow library to train StyleGAN2-ADA and was able to get the 

completed model. With the experience of this experiment, any future projects that are 

similar could learn from the experience of this project in terms of information gathering 

and code replication. Moreover, I think the project need to be more logically rigorous. 
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