

University of Reading

Department of Computer Science

A Study into the Effectiveness of

Recurrent Neural Networks for Trading

Kyle Blue Doidge

Supervisor: Varun Ojha

 A report submitted in partial fulfilment of the requirements of

the University of Reading for the degree of

Bachelor of Science in Computer Science

April 29, 2021

1

Declaration

I, Kyle Blue Doidge, of the Department of Computer Science, University of Reading, confirm that this

is my own work and figures, tables, equations, code snippets, artworks, and illustrations in this report

are original and have not been taken from any other person’s work, except where the works of others

have been explicitly acknowledged, quoted, and referenced. I understand that if failing to do so will

be considered a case of plagiarism. Plagiarism is a form of academic misconduct and will be penalised

accordingly.

Kyle Blue Doidge

29/04/2021

2

Abstract
Manual trading comes with some pitfalls: poor trading discipline, stress, and dealing with

misinformation only to name a few. There has been a rise in automated trading to combat these

downsides and leverage machine learning. To contribute to this field, we created an RNN model to

forecast the price direction of Bitcoin. In the process, we experimented with RNN architectures,

dataset parameters and optimised model hyperparameters to create the most effective model whilst

gaining insights that may contribute to the field. Our dataset only included 1-minute Bitcoin price and

volume data, nothing more. Although hyperparameters such as number of neurons or hidden layers

varied in testing, all models followed the same base structure which featured repeated RNN, dropout,

and batch-normalisation layers. Through experimentation, we discovered forecast period was not

most optimal when lowest, likely due to noise in markets at low timeframes. Addition of technical

indicators in the dataset did not increase accuracy. GRU prevailed over LSTM and bidirectional variants

did not result in increases in accuracy despite findings in existing literature. After some

experimentation, we chose an optimal sequence length of 100, GRU architecture, and a 10-minute

forecast period. We then optimised model hyperparameters using Genetic Algorithm to obtain a final

model. Our final model achieved a directional accuracy of 54.8%. When only the top 20% of

predictions were used, this increased to 59.2%. When tested in a simulated trading environment, the

model gained 38.94% account balance in 565 trades and traded the correct direction 60.11% of the

time.

3

Acknowledgements

An would first and most importantly like to thank my Supervisor, Varun Ojha, who was extremely

knowledgeable and helpful throughout the duration of this project. Any queries were responded to

promptly and valuable suggestions were provided to further the project.

I would also like the Computer Science department, the “CS Cluster” and Julian Kunkel (who

maintained the cluster) for allowing me to make use of their system which included a powerful v100

16GB GPU, which was a drastic improvement over my laptop for Machine Learning.

4

Contents
Declaration .. 1

Abstract ... 2

Acknowledgements.. 3

Contents .. 4

Abbreviations .. 6

Chapter 1 Introduction .. 7

1.1 Background ... 7

1.2 Aims and objectives ... 7

1.3 Solution approach .. 8

1.3.1 Tools, Libraries and Frameworks .. 8

1.3.2 Methodology Overview .. 8

1.4 Summary of contributions and achievements .. 9

1.5 Organization of the report .. 9

Chapter 2 Literature Review .. 11

2.1 Bitcoin Price Forecasting ... 11

2.2 Data Pre-processing Approaches .. 11

2.3 Machine Learning Approaches to Price Forecasting ... 12

2.4 Critique of the Review .. 13

2.5 Summary ... 14

Chapter 3 Methodology ... 15

3.1 Problems (tasks) description ... 15

3.1.1 Overview of used Technologies and Tools .. 15

3.1.2 Justification of used Technologies and Tools .. 15

3.2 Main Implementation ... 16

3.2.1 Data Retrieval .. 16

3.2.2 Data Pre-Processing .. 16

3.2.3 Creating the Model ... 19

3.3 Experimentation and Simulation .. 21

3.3.1 Technical Indicators .. 21

3.3.2 Testing Architecture and Dataset Modification .. 22

3.3.3 Hyperparameter Optimisation using Genetic Algorithm .. 23

3.3.4 Trading Simulation .. 25

5

3.4 Summary ... 25

Chapter 4 Results and Discussion ... 27

4.1 Regression Model ... 27

4.1.1 Hyperparameter Optimisation using Genetic Algorithm .. 27

4.1.2 Final Regression Model Results .. 28

4.2 Classification Model .. 29

4.2.1 Base Parameters ... 29

4.2.2 RNN Architecture .. 30

4.2.3 Indicators versus no Indicators ... 31

4.2.4 Effect of Sequence Length .. 32

4.2.5 Effect of Forecast Period ... 32

4.2.6 Hyperparameter Optimisation using Genetic Algorithm .. 33

4.2.7 Final Classification Model Results ... 34

4.3 Significance of Findings ... 36

4.4 Challenges ... 37

4.5 Summary ... 38

Chapter 5 Conclusions and Future Work ... 39

5.1 Conclusions ... 39

5.2 Future Work .. 39

Chapter 6 Reflection .. 41

Git Repository (Full Code) ... 42

References ... 43

Appendices .. 47

Appendix Chapter 1 – Regression Model Results ... 47

1.1 RNN Architecture .. 47

1.2 Indicators versus no Indicators ... 47

1.3 Effect of Sequence Length .. 47

1.4 Effect of Forecast Period ... 48

Appendix Chapter 2 – Code Snippets ... 48

2.1 Trading Simulation Code (Regression Model) ... 48

2.2 Trading Simulation Code (Classification Model) ... 49

2.3 Full Model Class Code ... 50

2.4 Indicator Correlation Reduction ... 53

6

Abbreviations

ANN: Artificial Neural Network

RNN: Recurrent Neural Network

CNN: Convolutional Neural Network

LSTM: Long Short Term Memory (this is an RNN architecture)

GRU: Gated Recurrent Unit (this is an RNN architecture)

MAE: Mean Absolute Error

GPU: Graphics Processing Unit

CPU: Central Processing Unit

RAM: Random Access Memory

VRAM: Video Random Access Memory

CFD: Contract For Difference (a type of contract brokers sell)

7

Chapter 1

Introduction

1.1 Background

Trading currencies and shares is known to be a complex activity, with few traders being able to provide

consistent profits. Many retail traders (often referred to as individual traders) trade primarily using

volume (amount traded in a given timeframe) and price history represented in a graphical chart

format. Traders who approach market analysis in this way are called technical analysts [1]. The

graphical format only abstracts the original numbers and prices in order to make it more digestible

and presentable, however, it could be argued that these traders trade purely based on numerical price

history. The majority of modern studies have found potential for profitability following this approach

to trading [2]; however, the process is still highly convoluted. There is a large learning process involved

in becoming a successful trader, however, a lot of the commonly distributed knowledge is largely

unhelpful and often erroneous. On top of this, human traders can suffer from a variety of disciplinary

issues (one may not stick to a predefined rule he previously made to protect his balance). This

approach has many pitfalls; thus, a new approach is in order.

More recently, large trading firms have begun to make use of automated trading systems. Here, a

computer will automate the analytical, and executional process of trading [3].

A rising automated trading approach (the approach detailed in this report) makes use of machine

learning. Price history data is an example of time series data; each price quote is associated with a

timestamp, and proceeds/precedes other price quotes. Recurrent Neural Networks (RNNs) are a class

of Artificial Neural Networks (ANNs) that make use of time-series data to solve temporal problems,

therefore price history data could be fed into an RNN with the aim of it learning to predict future price

direction to automate the trading decision process. We can predict future direction through either

creating a classification model which predicts whether the future price will be more (class 1) or less

(class 2) than the current price, or creating a regression model, which would aim to predict future

price. There are a number of RNN architectures currently available, each of which poses different

benefits and drawbacks. Two popular RNN architectures that perform better than a simple RNN

include GRU and LSTM [4] (both their unidirectional and bidirectional variants), both of which will be

explored in this document.

1.2 Aims and objectives
There are a number of things we aim to achieve or discover throughout this study. We must ensure

these aims are met by setting measurable objectives for each aim.

The primary aim of this study is to discover whether Recurrent Neural Networks can be used to

accurately predict the future price direction of financial markets using only price and volume history.

To explore this, we must create a Recurrent Neural Network models, and train it to predict future

8

prices direction via feeding it price history of a financial vehicle (we chose Bitcoin in this case). There

are two potential models types we could create, a regression model (which would predict future

price), and a classification model (which would predict future price direction). We will measure the

accuracy for each of these models (using metrics such as R Square, Mean Absolute Error, Categorical

Cross-Entropy and accuracy) on unseen test data, and place them in a simulated trading environment

to test and demonstrate their real-life performance.

A secondary aim of this study is to discover how changes to the RNN architecture and how

modifications to the dataset affect the predictive accuracy of the models. To explore this, we can train

our model using consistent hyperparameters, only varying the RNN architecture used (between LSTM,

GRU and their bidirectional variants), and measure changed in the accuracy metrics. Additionally,

using the same approach, we can modify various parameters of our dataset, such as the sequence

length and forecast period, and again measure the changes in the capabilities of the resultant models.

Our final secondary aim is to create a final model with near-optimal hyperparameters. This is often a

lengthy and tedious process of trial and error [5], therefore, this is best done through the use of an

optimisation algorithm such as Genetic Algorithm, thus to discover near-optimal hyperparameters,

we will use Genetic Algorithm to tweak and discover the most optimal hyperparameter combinations.

1.3 Solution approach

1.3.1 Tools, Libraries and Frameworks

Python provides a variety of libraries to aid data science and machine learning. For this reason, Python

has been used to accelerate the experimental process. TensorFlow is an open-source library

developed and maintained by Google which is used for Machine Learning. TensorFlow is widely and

thoroughly documented, thus it makes a sensible choice to create and test machine learning models

for this project. NumPy and Pandas are adopted python data-manipulation/general-purpose libraries.

These libraries are utilised in this project primarily for data pre-processing. Matplotlib has been used

for plotting and visual analysis.

1.3.2 Methodology Overview

Firstly, an open-source dataset was obtained from Kaggle [6]. This dataset included prices and volume

history from a range of cryptocurrencies pairs (1287 in total) present on a cryptocurrency exchange

called Binance. Only Bitcoin was used within this project, though it is possible to experiment with

different cryptocurrencies using the same models generated in this project.

The regression model would attempt to predict future price, while the classification model would

attempt to predict future price direction. The dataset was pre-processed by standardising the data

using z-scores (this makes more sense since our price data when converted to percent change fits a

Gaussian distribution [7]) creating sequences with a fixed length, and adding targets to each sequence

(future price) for the RNN to aim for.

9

The dataset was then split into a training set, a validation set, and a test set in a 60 20 20 split

respectively. The training data was used to train a series of RNNs. Each of the RNNs followed the same

base structure, while the number of hidden layers, neurons, hyperparameters, and the architecture

(LSTM or GRU) varied throughout tests. Testing was conducted on the dataset and model architecture

and intriguing results (and accuracy metrics) were noted. Later, a final model was created following

results from previous testing and by optimising hyperparameters using Genetic Algorithm. The final

model was tested on unseen test data and in a simulated trading environment.

1.4 Summary of contributions and achievements

Several interesting results were discovered in our experimentation which significantly contribute to

the field of price forecasting using RNNs.

The most significant achievement from this study was the creation of our final model. The final model

was created using near-optimal hyperparameters discovered through the use of Genetic Algorithm.

This model managed to generated impressive profits in our simulated trading environment, which

includes transaction fees and leverage. The final model traded in the correct direction 60.11% of the

time in our simulated trading environment while existing literature that attempts to forecast bitcoin

price direction struggles to get a classification accuracy of over 55% [8].

Additionally, we discovered that the optimal forecast period was not necessarily the lowest, and a

large sequence length did not significantly increase accuracy. These findings subverted expectations.

Our experimentation provided additional findings which are detailed in Chapter 5.

1.5 Organization of the report
This report is separated into several numbered chapters, each with its own subsections. Subsections

are also numbered using the format:

[Chapter Number].[Subsection 1 Number].[Subsection 4 Number]

For example, the current section of the report (1.5) refers to the fifth subsection of the first chapter.

There are six main chapters overall. The first chapter (the current chapter) introduces the project and

summarises the approach and results. The second chapter reviews existing literature and relates them

to our project and experimentation. The third chapter gives an in-depth explanation of the

methodology used to implement our models and conduct our study. The fourth chapter shows the

results of our experimentation and provides some discussion and analysis. The fifth chapter

summarises the findings and conclusions from the study and details some potential future work. The

sixth and final section is a reflection on the learning experience this project elicited.

Additional headings that aren’t referred to by chapter number include the abstract (at the beginning

of the document), the references, and the appendices.

There are a number of graphs and graphic used throughout the report to guide explanations. Each of

these is marked by figure numbers in the format:

[Chapter Number].[Figure Number]

10

The figure number of each graphic is displayed underneath the graphic (alongside a caption). Similarly,

any tables displayed throughout this document are referred to by table number (with the same

format). This table number (and a caption) is displayed above each associated table. Lastly, any code

snippets (also known as listings) follow the same format. Captions including the listing number are

provided below each code snippet.

11

Chapter 2

Literature Review

By analysing existing literature associated with this project, we can identify how we can create a

solution that further augments existing research. Additionally, we can identify common results and

findings which can be used for future comparison with our own findings.

2.1 Bitcoin Price Forecasting

There are a few existing studies in the literature that directly relate to our study; they attempt to

forecast the future price direction of Bitcoin using Recurrent Neural Networks. The success of

accurately broadcasting the future price direction of Bitcoin is varied. McNally et al [8] managed to

achieve a classification accuracy (up or down) of 52% using an LSTM model. This is not entirely

impressive, and while above 50%, the model would likely either break even, or consistently lose

money when used in a real-life environment due to trading fees and commissions. Madan et al [9]

managed to create a model which elicited 50-55% accuracy (for predicting price direction) when

forecasting 20 minutes into the future; an accuracy marginally superior to that achieved by McNally

et al. Madan et al additionally claims to have created a model which boasts 98.7% directional accuracy

when predicting daily price change, though these claims are to be taken lightly. Although Madan made

use of Blockchain data in addition to price data, such high accuracy is likely not possible using only this

information; markets are too complex. Greaves and Au [10] took a slightly different approach in

predicting the price direction of Bitcoin. While others used price and volume history as their primary

data source, Greaves and Au made use of bitcoin transaction history (from the blockchain) only. This

elicited 55% directional accuracy. While the use of Bitcoin blockchain data may seem beneficial for

predicting future price, we aim to make our findings more generalisable to other financial markets,

such as stocks or currencies, thus this will not be adopted in our project.

2.2 Data Pre-processing Approaches

There are differences across the literature for the way in which data was pre-processed before feeding

it to the neural networks during training. Bodyanskiy et al [11] (among others) approached training of

the RNN using only raw price data (open, high, low, close and volume). Raw price data can generally

be very noisy, though using raw price data will ensure no data is obscured or lost. Hsu et al [12]

hypothesized that predictive accuracy (and thus potential profits) is higher if a model incorporates

12

technical indicators1 (often smoothed and derived data) into its dataset. Of the related existing

literature Hsu reviewed, the majority made use of technical indicators in an attempt to improve

predictive accuracy. Despite this, Hsu et al concluded through their own experimentation that the use

of technical indicators did not significantly improve model accuracy. This contrasted the findings of

Demir et al [13], who found that the addition of technical indicators drastically increased accuracy

when forecasting electricity prices. Indicators may help in smoothing data (and filtering noise) which

may in theory increase the model’s ability to generalize, however, Boonprong et al proposed that the

optimization of hyperparameters may increase generalization capabilities under heavy noise [14]. For

example, having too many neurons and hidden layers, for example, could decrease generalization

capability, and potentially lead to overfitting since the ANN may learn complex relationships that don’t

model the data correctly. This is best represented in a diagram:

Figure 2.1 - Visual representation of underfitting, overfitting, and a good fit [15]

It is clear that there is fierce debate in the literature regarding the predictive ability of technical

indicators. Advocates stress the value in the use of technical indicators [16] [17], while opposition

refutes its predictive value [18] [19]. In this situation, it is most sensible for us to test model accuracy

when trained with and without technical indicators hereby drawing our own conclusions on this

controversial topic.

2.3 Machine Learning Approaches to Price Forecasting

A variety of deep learning methodologies have been employed in a number of areas. Autoregressive

Integrated Moving Average (ARIMA) models are popular in literature for forecasting future market

prices, however, McNally et al found the predictive accuracy or ARIMA models to be significantly

worse than more modern deep learning architectures such as LSTM when applied to Bitcoin price

forecasting (despite the drastically increased learning time) [8]. In their experimentation, the LSTM

model achieved a Root Mean Squared Error (RMSE) of 6.87%, while the ARIMA model achieved an

RMSE of 53.74% (lower is better). Because of its ability to deal with complex relationships and operate

on large sequential data, recurrent neural network architectures such as GRU and LSTM are

increasingly used to develop forecasting models [20].

GRU is a more recent recurrent neural network architecture that rivals the predictive accuracy of LSTM

architecture whilst simultaneously having a simplified neuron/memory-cell structure [21]. Yang et al

1 A technical indicator is a mathematical calculation derived from raw price data which aims to forecast future
market direction. Technical indicators are often used by retail traders when conducting manual market analysis.

13

found simpler structure provided by GRU would also translate into a faster training process (around

29.29% faster on the same dataset) [22]. Zhou et al proposes a Recurrent Neural network architecture

called Minimal Gated Unit (MGU) which again boasts a simpler structure (than both GRU and LSTM),

and thus faster training times, whilst maintaining similar accuracy on large sequential data [23].

Despite this, popularity and thus documentation is lacking, making this a poor candidate for this

project.

From the aforementioned literature, we can surmise that the use of Recurrent Neural Network

architectures such as GRU and LSTM are among the most effective current machine learning

methodologies for time series forecasting, however, which architecture do we expect will result in

better predictive accuracy? While in the majority of problems, GRU and LSTM can produce similar

results, Gao et al [21] argues that the use of LSTM results in better accuracy when dealing with larger

sequential data. This is due to the larger number of gates per memory cell in LSTM [24].

The predictive accuracy of GRU and LSTM models often vary for the unidirectional and bidirectional

variants. Studies have concluded for a majority of applications bidirectional variants lead to higher

accuracy than their unidirectional counterparts [25]. This is likely because in longer sequences

unidirectional models have to make a trade-off between “remembering” past input information and

“knowledge combining” new information with input information already processed [26]. Additionally,

Schuster et al [26] claims that despite having double the neurons/memory-cells (one set connected in

the forward direction, and another independent set connected in the backward direction),

bidirectional RNNs learn at a similar rate to conventional unidirectional RNNs.

2.4 Critique of the Review

The existing literature provides some important pointers that we can use to guide this project, and

optimize the accuracy of our resultant machine learning model.

Since the literature behind the predictive utility of technical indicators is mixed, it is important for us

to conduct our own experimentation. While we could theoretically draw conclusions by comparing

accuracy metrics from opposing studies, comparisons are complicated via the use of different accuracy

metrics. As an example, Bodyanskiy et al [11] measured predictive accuracy using NMAE (normalised

MAE) and NMSE (normalised MSE) while Hsu et al [12] measured predictive accuracy using R2 (among

other metrics).

One criticism we can draw from the existing literature is that the majority tend to lack comprehensive

and practical (real-world) testing. While studies such as those conducted by Bodyanskiy et al [11] and

Greaves et al [10] provided a series of metrics illustrating the predictive capabilities of the generated

models, it is not immediately clear by reading these metrics how this would translate into real-life

performance and profits (which I estimate is a major motivator behind a significant amount of these

projects). We intend to tackle this problem by providing the results of simulating trading on the unseen

test dataset.

Many of the studies mentioned here cease to detail the experimental process involved in obtaining

optimal hyperparameters for their model. It is unclear how chosen hyperparameters were obtained

in related literature. Optimising model hyperparameters using an optimisation algorithm such as

Genetic Algorithm may have resulted in more optimal hyperparameters and thus better results in the

14

detailed studies. Following this line of reasoning, we will make use of Genetic Algorithm for

hyperparameter optimisation.

2.5 Summary

There were a number of important discoveries and findings in existing literature that influence our

project. Firstly, there are a number of approaches to forecasting Bitcoin prices specifically. Some

studies make use of Bitcoins blockchain transactions as a means of forecasting price [10], while others

simply make use of price alone [8]. Both methods obtain similar accuracies (around 52-55%). It seems

that forecasting longer-term prices (such as daily prices) may increase accuracy [9], but the validity of

these findings is in question.

There is hot debate in literature about the effectiveness of technical indicators in forecasting future

price movements. Hsu et al concluded they did not increase accuracy, while Demir et al [13] concluded

that the use of technical indicators lead to an increase in accuracy.

There were a number of different machine learning approaches to forecasting future prices, such as

the use of ARIMA and RNN models such as LSTM and GRU. RNN models tended to outperform ARIMA

[8], which was a popular machine learning approach in the literature for time-series forecasting.

Literature generally agrees that the use of bidirectional RNN variants may lead to an increase in

accuracy [25]. Moreover, LSTM may likely outperform GRU when larger sequence length are used [21].

15

Chapter 3

Methodology

3.1 Problems (tasks) description
Ultimately, this experimental process aims to explore whether or not an automated trading process

using an RNN model and price/volume history can be used as a profitable replacement for manual

trading. In the process, we discuss whether our classification model or our regression model are more

likely to translate into profitable trading. Additionally, we investigate the differences in accuracy

between the LSTM and GRU architectures (and bidirectional variants) for this particular problem.

Moreover, we find out how the use of technical indicators, the dataset sequence length and the

forecast period affect resultant model statistics. Lastly, we find near-optimal hyperparameters for our

model through the use of Genetic Algorithm.

3.1.1 Overview of used Technologies and Tools

Language: Python3

Libraries / Technologies:

• TensorFlow

• Keras

• NumPy

• Pandas

• Matplotlib

Hardware:

• RAM: 128GiB

• CPU: 2x Intel Xeon Silver 4108 CPU @ 1.80GHz – 8 core – 16 thread

• GPU: Tesla V100-PCIE 16GB

3.1.2 Justification of used Technologies and Tools

Though we have briefly looked at the technologies used, we will discuss them here in more detail.

When conducting experiments in machine learning, it is important to have the ability to make swift

changes to a range of aspects of the machine learning model such as the architecture, the optimisation

function and the hyperparameters. Manually developing each feature would drastically increase the

amount of time taken to conduct the experiment, therefore it is helpful to make use of existing

technologies. Python provides an array of technologies and libraries which have been made to simplify

and accelerate machine learning development such as TensorFlow and PyTorch. For this reason,

Python was the chosen language for this experiment.

16

TensorFlow was chosen over PyTorch due to its popularity and extensive documentation. TensorFlow

now comes installed with a library called Keras, which further simplifies the development process in

aspects of model creation.

NumPy and Pandas are libraries that are commonly used alongside one another in Python. Both

libraries attempt to simplify the data manipulation process. Data manipulation is imperative in the

data pre-processing stage, thus explaining the adoption of these two libraries in this project. Pandas

specialises in two-dimensional array structures while NumPy specialises in more complex array

structures (also known as matrices or tensors). Additionally, NumPy is written in C (and dynamically

linked to Python) thus increasing execution speed when manipulating data (which is known to be a

computationally expensive task).

Matplotlib provides a simple interface for charting in Python, which will be useful in displaying the

results of our experimentation.

3.2 Main Implementation

3.2.1 Data Retrieval

As previously mentioned, the dataset was downloaded from Kaggle [6]. The dataset includes price and

volume history for Bitcoin. Due to the large size of the dataset, it was compressed in a parquet file.

Loading from a parquet file is made easy by pandas (pd.read_parquet()). The dataset includes

price data from 17/08/2017 to 11/02/2021 and includes 1828151 overall data points with each data

point representing 1 minute of price action. Almost 2 million data points was considered too much to

feasibly train the data on. Additionally, the Adaptive Markets Hypothesis states older data points are

often less relevant in markets [27]; markets highly competitive and adaptive. They change and

develop. Because of this, only the most recent 100,000 data points were used.

3.2.2 Data Pre-Processing

It is important to first note that Recurrent Neural Networks require training data in the form of a

number of sequences with an accompanied target. Simply loading a raw time-series dataset, and using

this to train our RNN will not work. The data must undergo some pre-processing and transformation

in order for it to both be in an acceptable format and useful for our RNN.

When pre-processing continuous time-series data (such as price history) there are a number of

common steps taken in pre-processing data. All common pre-processing steps were encapsulated

within a “DataPreprocessor” class, simplifying the process of pre-processing further datasets. The

common data pre-processing steps are represented in the flow chart below:

17

Figure 3.1 - Flow chart showing the data pre-processing procedure

First, our DataPreprocessor class loads the price and volume history into a DataFrame. A DataFrame

is a multi-type 2D array type provided by the Pandas data manipulation library. Input data

normalisation before training leads to significantly improved accuracy (and training speed) when

training an artificial neural network [28], thus before creating sequences from our loaded data, it must

be transformed and normalised.

Before normalisation, all prices must first be converted into percent change. In other words, each

absolute price value must be replaced with the amount it has increased or decreased (as a percentage)

since the previous price. Prices in markets rarely remain the same; current prices may drastically differ

from prior year’s prices, and training using completely different (old) prices values will not be useful

for future price values. Converting each price into percentage change will make old price values useful

for future prediction. After converting prices into percent change, we can proceed to adding the target

value.

The target value for the regression model and the classification model differs though they are based

on the same premise. Both require calculation of the future price value (again, in percent change). The

future price value is dependent on the forecast period. Should we want to forecast the next price

value, the future price value is simply the next price, however, should we want to forecast the price

after 10 steps (forecast period of 10), we must compile the percentage changes of the next 10 prices,

and use this as the target. We compile the percentages using the following formula:

(percentages are portrayed as decimals between 0 and 1 in our code)

combined_pct = 1
for x in values[i + 1:i + self.forecast_period + 1]:
 combined_pct *= (1 + x)
combined_pct -= 1

Listing 3.1 - Code showing how percentages were compiles for sequence targets

18

For our regression model, this forecasted percentage is the target, however, for the classification

model, this target is 1 if the forecasted percent change is positive, and 0 if negative. After adding the

target price for the ANN to aim for, we can normalise the data. Common normalisation techniques

include MinMax normalisation and Z-Score normalisation. MinMax normalisation involved scaling all

data linearly between 0 and 1 whilst Z-Score normalisation involves scaling the data such that the

mean of the data becomes 0 and the standard deviation becomes 1. Since the term “normalisation”

often refers to scaling between two limits, Z-Score normalisation is better known as “standardisation”.

The formula for converting a raw value into a standardised value is as follows (where 𝜇 is the mean of

the data and 𝜎 is the standard deviation of the data):

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑠𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 =
𝑣𝑎𝑙𝑢𝑒 − 𝜇

𝜎

Standardisation is more suitable for data that assumes a Gaussian (normal) distribution [7], such as

our price change data (Figure 3.2), thus we will choose to standardise our data over normalising our

data (using Min-Max Normalisation).

Figure 3.2 - Price % change/frequency diagram of Bitcoin showing Gaussian distribution

It is important that we avoid standardising the target, since a Z-Score prediction is not inherently

useful (to a trader), and it is much more cumbersome to convert a Z-Score to a price.

After standardising our data, we convert the data into an array of sequences of a defined length.

Each single data point in a sequence includes the “open”, “high”, “low”, “close” and “volume”

(standardised) values (and a sequence includes a number of these data points). The “target” value is

separated out of the sequence into a separate array (this array is also known as the sequence

labels). Each value in this array corresponds to the sequence at the same index.

These sequences (and labels) are further split into 3 separate sets: the training set, the validation

set, and the test set, in a 60/20/20 split. The training and validation set are further shuffled together

(randomising their order) in order to reduce order effects on training. Shuffling training and

validation sets has been made common practice due to the statistical gains it promotes in model

accuracy [29]. The test set was left unshuffled since data would typically appear in chronological

order in a lifelike scenario.

19

3.2.3 Creating the Model

Since we are experimenting with various hyperparameters and architectures, it is important to make

the manipulation of these parameters simple, therefore a “Model” class was created (full code in

Appendix 2.3). The constructor takes a number of parameters, each of which modify the underlying

TensorFlow model in some manor, allowing us to easily manipulate various model parameters:

class Model():
 def __init__(self, train_x, train_y,
 validation_x , validation_y, seq_info:str, *,
 max_epochs = 100, batch_size = 1024, hidden_layers = 2,
 neurons_per_layer = 64, architecture = Architecture.LSTM.value,
 dropout = 0.1, is_bidirectional = False, initial_learn_rate = 0.001,
 early_stop_patience = 6, is_classification=False):
 ...
 ...

Listing 3.2 - Custom Model class constructor

Although hyperparameters can be modified, there is a base structure to our machine learning model

(Figure 3.3):

Figure 3.3 - The Recurrent Neural Network model structure used (classification model)

While the number of layers, the number of neurons, and the RNN architecture may vary, our Recurrent

Neural Network will follow the above structure (regardless of the hyperparameters).

In the above diagram, the notation (Bi) means the RNN layer could potentially be bidirectional. A

bidirectional RNN architecture has two independent sets of neurons, one set (theoretically) facing one

direction, and one set facing another. One set of neurons pass the sequence in the traditional forward

order, while the other set passes the sequences in the backward direction. This aims to mitigate the

effects of the exploding and vanishing gradient problem present in basic RNNs.

You may notice that after every (Bi)LSTM/(Bi)GRU layer exists a dropout layer. Dropout is a simple

regularisation technique first proposed by Srivastava et al [30] to address the overfitting problem.

Regularisation techniques work by limiting the capacity of machine learning models to increase

20

generalisation capabilities (and reduce overfitting). Dropout works by randomly ignoring (disabling) a

chosen percentage of neuron connections in the previous layer. This reduces the model’s ability to

learn complex relationships, thereby reducing the risk of overfitting.

After each dropout layer exists a batch normalisation layer. Despite its name, the batch normalisation

layers standardise neuron outputs between layers in our deep neural network. This has the effect of

preventing exploding and vanishing gradients (large error gradients that result in large updates to the

ANN making it hard to learn) and keeping activations away from their saturation regions [31]. Both of

these lead to a more stable training process and a more accurate model.

It is worth noting that Figure 3.3 displays the base RNN structure for our classification model. The

classification model includes 2 neurons in the output layer, meaning there are two output values. The

first output value pertains to the confidence that future price will decrease, while the second output

value refers to the confidence that future prices will increase. This layer makes use of a sigmoidal

activation function, bounding our output values between 0 and 1. Our regression model is completely

identical to the classification model with the exception that there is only a single neuron in the output

layer, meaning there is only a single output value. Additionally, the output value has no limits, since

the activation function is linear. In code, model structure this is represented like so:

Create the model ####

self.model = Sequential()

if self.is_bidirectional:

self.model.add(Bidirectional(self.architecture(self.neurons_per_layer,

input_shape=(self.train_x.shape[1:]), return_sequences=True)))

else:

 self.model.add(self.architecture(self.neurons_per_layer,

input_shape=(self.train_x.shape[1:]), return_sequences=True))

self.model.add(Dropout(self.dropout))

self.model.add(BatchNormalization())

for i in range(self.hidden_layers):

 return_sequences = i != self.hidden_layers - 1 # False on last iter

 if self.is_bidirectional:

self.model.add(Bidirectional(self.architecture(self.neurons_per_layer,

return_sequences=return_sequences)))

 else:

 self.model.add(self.architecture(self.neurons_per_layer,

return_sequences=return_sequences))

 self.model.add(Dropout(self.dropout))

 self.model.add(BatchNormalization())

if self.is_classification:

 self.model.add(Dense(2, activation="sigmoid"))

else:

 self.model.add(Dense(1))

Listing 3.3 - Code showing implementation of model structure

Each call to the model.add() (TensorFlow) function adds the passed layer to the model.

21

Upon creation of a model, we detect whether or not a graphics card exists on the system. If a graphics

card exists, we use the CuDNN variants of LSTM and GRU layers. This allows us to drastically accelerate

the learning process by taking advantage of the superior parallelism capabilities of graphics processing

units.

The classification model makes use of two metrics, accuracy (the percentage of correct classifications)

and (sparse) Categorical Cross-Entropy. Categorical Cross-Entropy measures the distance between

prediction vectors and the labels. The higher the distance, the worse the predictions. This means

Categorical Cross-Entropy also takes into account the extent to which the classifications were correct

(or how confident the RNN during a classification). While the accuracy metric is easier to comprehend

and interpret, Categorical Cross-Entropy is a more complete classification metric, therefore it is also

used as the loss function. The regression model on the other hand makes use of two common

regression metrics: Mean Absolute Error (MAE) and R Squared. Mean Absolute Error is self-

explanatory; it is the mean of the (absolute) errors (actual – predicted). This is used as the loss

function. R Square measures the proportion of the variance in the dependent variable (price) that is

explained by the input data in our model. An R Squared score below zero means our model was unable

to fit the data well while a score of 1 means the model fits perfectly.

Adam optimiser makes use of advanced momentum techniques and adaptive learning rates in

minimise model loss. It is widely known to be among the best performing optimisers (on average), and

thus it retains high status in machine learning practice [32]. Because of this, the Adam optimiser was

adopted into our RNN model.

During the training of our models, we made use of early stopping to reduce the chance of overfitting

[33]. An early stopping patience of 6 epochs was used to account for potential outliers in validation

loss.

Tensorboard

Though a GUI is not completely necessary for this experiment, we have adopted the use of

TensorBoard: a visualisation toolkit that links directly to TensorFlow. This allows us to monitor training

and validation loss (and additional metrics) through dynamic line charts during training.

3.3 Experimentation and Simulation

3.3.1 Technical Indicators

As previously mentioned, a technical indicator is a calculation made on raw price data. The calculated

values are often used by traders to help forecast future price direction and to help understand market

sentiment.

There are a vast number of technical indicators traders commonly used. A technical indicator library

(Python TA) was used to bypass having to manually create these calculations. The library included 123

of the most popular indicators. Running our tests with all 123 indicators would drastically limit the

range of hyperparameters we could feasibly use for our model, and dramatically increase training

times. Because of this, we decided to reduce the count of indicators. To capture most of the variability

in the indicator values, we reduced the indicators to the 15 indicators with the least collective

correlations.

22

This was done by first calculating the correlations between all the indicators. Then, the lowest absolute

correlation value is found (closest to 0). These two indicators are added to the list of indicators.

We then find out which indicator has the lowest collective correlations with our current list of

indicators. This then added to the list of indicators. This process repeats until we have 15 indicators in

the list. This process can be seen in greater depth in the code shown in Appendix 2.4.

This correlation reduction method produced the following correlation matrix/heatmap:

Figure 3.4 - Correlation Heatmap after Reducing Indicator Correlations

The majority of correlations now reside around zero, implying correlation reduction was successful.

3.3.2 Testing Architecture and Dataset Modification

Training an RNN model can take significant amounts of time (depending on the hyperparameters and

dataset), thus, creating numerous models in the name of experimentation would take significant

amounts of time; there is no way around this. Additionally, having to manually stop and start training

more new models would require a huge amount of engagement with the computer. Because of this,

we decided to automatically generate new models based on pre-set parameters in a loop.

To do this in TensorFlow, we must clear the old “Session” and create a new “Session” when creating

each new model, otherwise the previous model in not cleared from memory, and a memory error will

be thrown when hardware inevitably runs out of GPU memory.

Each of our tests had base parameters; parameters that would be used for every test. Base parameters

were captured in a dictionary:

base_params = {

 "architecture": Architecture.GRU.value,

 "is_bidirectional": False,

23

 "indicators": False,

 "sequence_length": 200,

 "forecast_period": 10,

}

Listing 3.4 - Base dataset parameters and architecture

In each test, a select few of these parameters may be modified. To go about this, parameters to be

modified would be captured in a dictionary:

tests = [
 # Format:
 # (num_repetitions, {"param to change": new_value})
 (5, {"architecture": Architecture.LSTM.value, "is_bidirectional": False}),
 (5, {"architecture": Architecture.GRU.value, "is_bidirectional": False}),
 (5, {"architecture": Architecture.LSTM.value, "is_bidirectional": True}),
 (5, {"architecture": Architecture.GRU.value, "is_bidirectional": True}),
 (5, {"indicators": False}),
 (5, {"indicators": True}),
 (1, {"sequence_length": 50}),
 (1, {"sequence_length": 100}),
 (1, {"sequence_length": 150}),
 (1, {"sequence_length": 200}),
 (1, {"sequence_length": 250}),
 (1, {"sequence_length": 300}),
 (1, {"sequence_length": 350}),
 (1, {"sequence_length": 400}),
 (1, {"forecast_period": 1}),
 (1, {"forecast_period": 5}),
 (1, {"forecast_period": 10}),
 (1, {"forecast_period": 20}),
 (1, {"forecast_period": 30}),
 (1, {"forecast_period": 50}),
]

Listing 3.5 - Code showing data structure used to automate experimentation on dataset and architecture

Then, during each loop (one loop represents one test) we would combine the base parameters and

the modifications:

for test_num, test in enumerate(tests):
 additional_params = test[1]
 new_params = {**base_params, **additional_params} ## Combine parameters
 ...

Listing 3.6 - Code used to loop and replace base parameters with additional parameters used in testing

The combined parameters would then be used to create the new model. Results for each test were

stored in a CSV file for later analysis.

3.3.3 Hyperparameter Optimisation using Genetic Algorithm

Genetic Algorithm is an optimisation algorithm based on Darwin’s Evolutionary theory widely known

as “Survival of the Fittest” [34]. Parts of its implementation can vary based on preference, though the

general concept remains the same.

Firstly, a population of individuals are created. Each individual has a “chromosome”; a collection of

genes. Each gene in the chromosome has a value (in our case, it is numerical). Changing the value of

24

a gene would modify a certain behaviour of the individual, therefore the chromosome values define

the individual’s behaviour.

After a population of individuals is created, their initial “fitnesses” must be evaluated. The way in

which fitnesses are calculated differ by application.

Next, parents are selected for recombination. There are a number of different selection methods,

though Rank-Based selection was used in our experimentation. In Rank-Based selection, each

individual is first given a rank based on its fitness rating, with the individual with the highest fitness

having a rank of 1. We then pick two weighted random individuals using 1 / rank as their weights.

These two individuals are now a parent pair. We continuously select in this manner until all individuals

have been selected as parents.

Next, there is a strong chance (defined by the crossover rate) parents recombine and crossover their

chromosomes to make two new individuals; their children. There are a number of crossover methods.

One of the simplest methods, Uniform Crossover, was used here. Uniform Crossover is able to

distribute parent features more evenly than other selection methods in an unbiased manner [35]. In

Uniform Crossover, we recombine by first selecting at random one of the parents. Child one then gets

the first gene value of the parent we picked, while child two gets the gene value of the other parent.

This process repeats for every gene.

These children then undergo some mutation; there is a chance (this is defined by the mutation rate)

for each gene value to be set to a random number (within pre-defined limits). This adds some variation

to the population.

These children make up the next population, also known as a generation. Next, the fitnesses of these

children must be calculated, and the process repeats. Over time, fittest individuals combine their best

features causing increases in fitness over generations, making the “behaviour” of individuals more

effective at solving the defined problem.

Some genetic algorithms, such as our implementation, make use of a concept called “elitism”. This is

where a number of the fittest individuals get a free pass to the next generation, despite not being

offspring. In our experimentation, we only picked two elite individuals, since too many can lead to

premature convergence [36]. The elite can still be selected as parents.

In our experiment, we used genetic algorithm to select optimal hyperparameters, therefore each gene

value of an individual referred to a hyperparameter value of a model. To ensure hyperparameter

values were sensible, and conformed to the capabilities of the system, there where upper and lower

limits to each hyperparameter:

Limits are inclusive
limits = {
 "hidden_layers": Limit(1, 4),
 "neurons_per_layer": Limit(16, 128),
 "dropout": Limit(0.0, 0.5),
 "initial_learn_rate": Limit(0.000001, 0.1),
 "batch_size": Limit(50, 2000),
}

Listing 3.7 - Hyperparameter limits for Genetic Algorithm

These limits were identical for both the regression and the classification models.

25

Fitness was calculated by training a model with the hyperparameters specified in a chromosome and

evaluating its performance using its validation metrics. For the classification model, fitness was

−1 ∗ 𝑆𝑝𝑎𝑟𝑠𝑒 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝐶𝑟𝑜𝑠𝑠 𝐸𝑛𝑡𝑟𝑜𝑝𝑦

and for the regression model fitness was the R Square score.

For the genetic algorithm hyperparameters, we selected a population size of 10, mutation rate of 0.2,

crossover rate of 0.9, and run it for 15 generations. Genetic algorithm is often more effective at lower

mutation rates, however, elitist genetic algorithms tend to have significantly higher optimal mutation

rates [37].

3.3.4 Trading Simulation

A trading simulation was created to test the effectiveness of the final models produced in real-life

scenarios. This was something that was not present in the existing literature.

The trading simulation would begin with a starting balance of £10,000. It would then test each

predicted value against each actual value in unseen test data. If the direction of the predicted value

conformed with the actual market direction, the percentage change in that forecast period would be

added to the account, otherwise it would be subtracted. To enhance realism, commission2 structures

and leverage3 were added to the simulation, thus, each “trade” would result in the subtraction of a

small amount of money despite the success of the trade.

The leverage provided in the simulation was 2x, while commissions were placed at 0.0122% of trade

value, which is around the area provided by some CFD brokers that allow trading of Bitcoin.

Lastly, if a trade were to hypothetically still be in progress, another trade cannot be made. As an

example, if the forecast period of the model was 10 minutes, a single trade can only be made

(maximum) over each 10-minute period.

Code implementing the trading simulation can be seen in Appendix 1.1 (regression model) and 1.2

(classification model).

3.4 Summary

In order to train a Recurrent Neural Network, we had to feed it a dataset. For our dataset, we used

Bitcoin price history for 1-minute intervals. This was obtained from Kaggle. We then pre-processed

the dataset by adding converting prices into percentage change, adding the target, standardizing the

data, converting the data into sequences, and finally splitting those sequences into a training, a

validation and a test set (using a 60/20/20 ratio).

This data was to be used to train and test a series of RNN models. Our models all followed a base

structure. Generally, the model consisted of a (potentially bidirectional) LSTM/GRU layer followed by

2 Commissions – Trading fees that the broker charges per trade. Some brokers just charge the spread – the
difference between buying and selling price
3 Leverage – Additional money brokers offer to clients to increase buying power, thus increasing size of both
wins and losses. A leverage of 10x would increase a traders buying power 10-fold, allowing them to trade 10
times their deposited account balance

26

a Dropout layer, then followed by a Batch Normalisation layer. The number of hidden layers and

neurons per layer were variable. The output layer was the only layer that differed between our

classification and regression models. Classification models had 2 neurons in the output layer, while

regression models had only one neuron in the output layer.

The technical indicator library we used provided 123 of the most popular technical indicators,

however, we reduced this to just 15 by minimising the correlations between them; 123 was too much

to feasibly test.

Testing the effects of modifications to the dataset and architecture was made simpler by looping the

experiments. To do so error-free, TensorFlow sessions had to be cleared and recreated on each

iteration.

Lastly, Genetic Algorithm was used to optimise model hyperparameters. Our implementation made

use of Uniform Crossover, Rank-based Selection, and elitism. Hyperparameters included a mutation

rate of 0.2, a crossover rate of 0.9, 2 elite individuals per generation, 15 generations and a population

size of 10.

27

Chapter 4

Results and Discussion
Since we experimented with both regression models and classification models, results for each are

isolated into their own sub-section.

As previously mentioned, results for the regression model were less significant than results for the

classification model; predictions were not as accurate. Results for the regression model will not be

explored in the same depth as there is less to learn from doing so. Full results are still provided in

Appendix Chapter 1 (these results pertain to the experimentation on the dataset and RNN

architecture).

4.1 Regression Model

4.1.1 Hyperparameter Optimisation using Genetic Algorithm

Previous experimentation on RNN architecture and dataset (sequence length and forecast period)

showed insignificant differences in resultant (validation) accuracy, however, training times drastically

differed, thus favourable training times had a stronger impact on architecture and dataset parameters

used for our final regression model (since hyperparameter optimisation generally consume a large

amount of time). Following this line of reasoning, we settled on a sequence length of 100, a forecast

period of 10, and a unidirectional GRU architecture.

The number of hidden layers, the number of neurons per layer, the batch size, the dropout, and the

initial learn rate were all continuously modified by Genetic Algorithm in the hopes of continuously

improving fitness (which is the R Square value) and finding near-optimal hyperparameters.

Figure 4.1 - Best Model Fitness over Generations of Genetic Algorithm for Regression Model

From Figure 4.1 we can see that fitness was fairly stable over generations, and it seems as if fitness is

generally improving. Despite this, improvements are fairly minimal, and this stability may be the

28

result of the model’s inability to learn beyond a certain point. Additionally, the R Square value fails

to reach a point higher than 0, meaning the model fits the problem poorly. The reasoning for these

results is made clearer when we look at predicted vs actual prices (Figure 4.2).

Figure 4.2 - A Snippet of Predicted vs Actual Prices for Regression Model

Figure 4.2 shows us that predicted prices tend towards 0, the mean price (in % change). In all

predictions, our model is not particularly biased in any sort of direction, making its utility fairly futile

in real-life scenarios. This suggests our RNN underfitted our data. Similar results were found in a

number of the studies that implemented regression models for predicting market prices, such as those

found by Khan et al [38]. Efforts were made to solve this problem, such as artificially increasing the

variability of the data, and increasing the number of neurons / hidden layers. Despite efforts, no

increase in predictive accuracy was seen.

4.1.2 Final Regression Model Results

Regardless of its unsatisfactory predictive abilities, we decided to continue with experimentation on

unseen test data with the expectation directional accuracy may still prove useful. When tested on

unseen test data, we saw an R Square score of 0.00026, and a Mean Absolute Error of 0.00334.

Directional accuracy was 50.3%, which is not far above random directional prediction.

When only looking at the top 20% of predictions (the most extreme values) accuracy and R Square

values increase to 51.6% and 0.00106 respectively, while MAE increased to 0.00358. An increase in

MAE is to be expected here since MAE is relative to the variance/deviation in data [39] (and we can

expect higher variance in data when looking at extremes).

The top 20% of predictions were placed in a simulated trading environment to test potential real-life

performance.

29

Figure 4.3 - Balance over simulated trades for the final regression model

As expected, results lead to a drastic decrease in account balance (41.43% loss) over around 900

trades, despite a near 50% accuracy. Commission fees whittled away at the account balance

periodically. The regression model was unable to perform effectively under real-life conditions.

4.2 Classification Model
The classification model’s performance will be analysed more rigorously. The results provide greater

contributions to this area of study, therefore deeper analysis will prove valuable.

4.2.1 Base Parameters

Several following sections in this chapter detail results from experimentation with certain parameters

or modifications to the model or dataset. Each of these experiments (with the exception of

hyperparameter optimisation) have base model and dataset parameters; only one of these

parameters is changed during each experiment. The rest remain the same.

These parameters were based on recommendations found in existing literature, having poor base

parameters would not provide meaningful results.

The base parameters are as follows:

Table 4.1 - Base Model and Dataset Parameters for Experimentations of Classification Model

Parameter Value

Architecture GRU

Bidirectional No

Hidden Layers 2

Neurons per Layer 100

Batch Size 1024

Dropout 0.2

Initial Learn Rate 0.001

Sequence Length 200

Forecast Period 10

30

Indicators No

Firstly, more layers in a neural network exponentially increases training times. Generally, one hidden

layer is enough to learn a problem to reasonable accuracy, though a second hidden layer is often more

optimal [40] [41].

As for the number of neurons per layer, Jeff Heaton states “the optimal size of the hidden layer is

usually between the size of the input and size of the output layers” [42]. Our classification model

requires two outputs and a vast number of inputs if we take into account the sequence length of 200

(and the potential use of technical indicators in our dataset). We will later be optimising the number

of neurons per hidden layer, thus we left this at 100.

Cheng et al discovered that a dropout of around 0.3 or less works well with the majority of models

[43]. Following these recommendations, a dropout rate of 0.2 was chosen.

Initial learn rate was kept at 0.001 which is the default learning rate for Adam optimiser provided by

TensorFlow. The initial learn rate (should it not be too high) should not significantly impact resultant

accuracy, since Adam optimiser features an adaptive learn rate.

The Batch size is 1024, which is the highest possible allowed by hardware (we are using a v100 GPU

with 16GB of VRAM) when considering the most complex model to be trained in our experimentation.

No additional indicator data was used following Hsu et al’s findings [12].

4.2.2 RNN Architecture

Architecture of the classification model was modified and the predictive accuracy of the models was

monitored. Our first priority here would be to find models with the highest accuracy and lowest Sparse

Categorical (Cross) Entropy. If differences were insignificant, training times would decide the most

favourable architecture.

Results were averaged over 5 test runs to eliminate the effects of outliers. Metrics stored in the below

tables (Table 4.2 and Table 4.3) are final validation metrics after training.

Table 4.2 - Comparison of validation metrics for unidirectional LSTM and GRU architectures for classification model

 LSTM GRU

 Accuracy Sparse Categorical

Entropy

Train Time

(Minutes)

Accuracy Sparse Categorical

Entropy

Train Time

(Minutes)

Test 1 0.539 0.6902 1.6 0.553 0.6865 2.0

Test 2 0.538 0.6903 1.4 0.547 0.6863 2.3

Test 3 0.538 0.6900 1.6 0.550 0.6856 2.3

Test 4 0.530 0.6915 1.4 0.545 0.6872 2.0

Test 5 0.507 0.6926 1.3 0.542 0.6878 2.0

Average 0.530 0.6909 1.4 0.547 0.6867 2.1

Table 4.3 - Comparison of validation metrics for bidirectional LSTM and GRU architectures for classification model

 LSTM (Bidirectional) GRU (Bidirectional)

31

 Accuracy Sparse Categorical

Entropy

Train Time

(Minutes)

Accuracy Sparse Categorical

Entropy

Train Time

(Minutes)

Test 1 0.518 0.6919 2.9 0.547 0.6866 3.7

Test 2 0.542 0.6899 2.6 0.549 0.6866 3.7

Test 3 0.529 0.6913 2.6 0.540 0.6887 3.7

Test 4 0.538 0.6913 3.5 0.543 0.6877 3.8

Test 5 0.525 0.6909 2.6 0.546 0.6886 4.4

Average 0.530 0.6911 2.8 0.545 0.6877 3.9

Results indicated that the use of bidirectional RNN variants did not provide any statistical benefit over

unidirectional RNNs for this use case. Additionally, unidirectional RNNs trained significantly faster,

since unidirectional RNNs only require a forward pass of the sequences, while bidirectional RNNs

require both a forward and backward pass of sequences [26]. This ruled out the use of bidirectional

architectures for our final model.

Additionally, both GRU architectures outperformed LSTM architectures. This contradicted initial

expectations since literature suggested LSTM may outperform GRU architectures when a larger

sequence length was used [21] (a sequence length of 200 was used in this case). For this use case, not

only is GRU more efficient (in terms of memory), it is also more accurate.

It is interesting to see consistently higher training times for GRU when compared to LSTM, despite

GRU’s simpler memory-cell structure. This is likely simply due to GRU overfitting at later epochs, thus

early-stopping halts training after a longer period.

4.2.3 Indicators versus no Indicators

We expected the addition of indicators to increase model accuracy just as Hsu et al hypothesised [12].

The idea behind this prediction was that the indicators could have smoothed the noisy price action,

thus leading to better generalisation capabilities. When looking at Table 4.4 we can see that this is not

the case.

Table 4.4 – Validation metrics for indicator experimentation using classification model

 Indicators No Indicators

 Accuracy Sparse Categorical

Entropy

Train Time

(Minutes)

Accuracy Sparse Categorical

Entropy

Train Time

(Minutes)

Test 1 0.544 0.6872 2.0 0.547 0.6864 2.2

Test 2 0.550 0.6864 2.3 0.540 0.6876 2.2

Test 3 0.547 0.6866 2.1 0.549 0.6864 2.0

Test 4 0.549 0.6863 2.0 0.556 0.6852 2.0

Test 5 0.554 0.6858 2.1 0.546 0.6875 2.1

Average 0.549 0.6865 2.1 0.547 0.6866 2.1

From these results we can conclude that the addition of indicators does not significantly increase the

predictive capabilities of the model – the addition of indicators only increased accuracy by 0.2% on

average. It is reasonable to interpret this minor increase in accuracy as the result of chance; running

the tests again we may find that no indicators have a higher overall accuracy.

32

The addition of indicators adds an additional 15 values to each data point in the sequences; therefore,

this approach causes a drastic increase in the use of VRAM, therefore we will omit the use of indicators

for the final model.

Despite Hsu et al’s hypotheses, they similarly concluded that indicators did not significantly increase

accuracy, though this contradicted the findings of Demir et al [13], who discovered significant

increases in accuracy by using technical indicators to predict electricity price. There is potential that

this could be the result of our indicator selection method. Demir et al approached this by handpicking

indicators that highlighted oscillations or trends in prices (rather than attempting to maximise

variation in data, much like our approach).

4.2.4 Effect of Sequence Length

A higher sequence length may provide the model with more data to work with, therefore, should the

additional data also be important, we would expect an increase in accuracy. In contrast, a sequence

length that is too long may end up being counterproductive since LSTM or GRU memory-cells will have

some difficulty remembering information too far away from the most recent data point [44].

Results for variation of sequence length can be seen in the table below (Table 4.5):

Table 4.5 - Validation metrics for classification models with varying sequence lengths

Length Accuracy Sparse Categorical Entropy Train Time (Minutes)

50 0.545691 0.687607 0.640377

100 0.548006 0.686467 1.091628

150 0.547626 0.686195 1.553121

200 0.540233 0.688038 2.007162

250 0.540924 0.687546 2.269982

300 0.556876 0.684797 3.354287

350 0.543036 0.687603 3.662318

400 0.550387 0.686008 4.395992

The results suggest that longer sequence length don’t necessarily always lead to increases in accuracy.

There is an optimal sequence length dependant on architecture and the dataset. In this case, all the

tested sequence lengths result in similar model accuracies (when forecasting 10 minutes into the

future). We can assume the slight insignificant changes in accuracy were due to the slightly random

nature of training a model; starting neuron connection weights and connections that are cut off as a

result of dropout vary in the training of each model [45].

Of course, training times and VRAM usage for those with longer sequence lengths is significantly

higher. Because of this, a sequence length of 100 was chosen for the final model (100 was picked over

50 to ensure enough data points were available for possible unforeseen contingencies).

4.2.5 Effect of Forecast Period
Table 4.6 - Validation metrics for classification models with varying forecast periods

Forecast Period Accuracy Sparse Categorical Entropy Train Time (Minutes)

1 0.533769 0.690035 2.644503

33

5 0.549016 0.686612 2.193867

10 0.542076 0.688374 2.009085

20 0.533822 0.690954 1.708920

30 0.529190 0.691260 1.563716

50 0.509222 0.693329 1.661368

4.2.6 Hyperparameter Optimisation using Genetic Algorithm

Based on prior results, a unidirectional GRU architecture, a sequence length of 100, and a forecast

period of 10, and no indicators were used for the final classification model. The base model

hyperparameters used during prior tests may not necessarily be optimal, therefore we optimised the

hyperparameters using Genetic Algorithm. The fitnesses of the models over generations can be seen

below (Figure 4.4).

Figure 4.4 - Best classification model finesses over generations of Genetic Algorithm

A population size of 10, a crossover rate of 0.9, a mutation rate of 0.2 and elitism (with 2 elite) was

used. The Genetic Algorithm was run over 15 generations. The metric used for fitness was (negative)

Categorical Cross Entropy. Best model fitnesses over generations lacked stability, though is again likely

due to the random nature of training Artificial Neural Networks. The most accurate model was

discovered in generation 14. This model’s hyperparameters was subsequently used in the final model.

The hyperparameters corresponding to the most accurate model were (Table 4.7):

Table 4.7 - Final model hyperparameters

Hyperparameter Value

Hidden Layers 2

Neurons per Layer 60

Batch Size 1534

Dropout 0.471

Initial Learn Rate 0.00373

Dropout and initial learn rate are shown to 3 significant figures.

34

The near-optimal hyperparameters discovered are similar to those used for our base hyperparameters

which were based on recommendations from literature. The only surprising result is the abnormally

high dropout rate present in final hyperparameters (0.471). Similar high dropout rates were present

throughout the majority of models with the highest fitnesses over generations; we can assume this is

no mistake. Cheng et al recommended dropout rates in the region of 0.2 or 0.3 [43], though this may

vary depending on the complexity of the problem. Due to high levels of noise and the sheer complexity

of financial markets, a higher dropout rate was likely more optimal. It prevented the model from

overfitting. This finding will prove useful when manually optimising models in future work.

4.2.7 Final Classification Model Results

As previously stated, final model hyperparameters can be seen in Table 4.7. These were used when

training the final model. While the model hyperparameters are identical to those discovered using

Genetic Algorithm, resultant validation metrics can still differ slightly due to different initial weights

and the random nature of dropout. Overall, the training process of the final model was fairly stable;

both the accuracy (Figure 4.5) and loss (Figure 4.6) did not diverge. In other words, there were little

signs of overtraining.

Figure 4.5 - Validation and training accuracy over epochs for final classification model

Figure 4.6 - Validation and training loss over epochs for final classification model

35

Early stopping reverted the model weights to those present at epoch 2 where validation metrics were

at their best. At this point, validation accuracy was around 0.55 (55%) while categorical cross-entropy

was around 0.683.

We later tested the model on unseen test data. The data was unshuffled and from a future period of

time (in relation to training and validation data). The model achieved a classification accuracy of 54.8%

and a categorical cross-entropy of 0.689. While these accuracy metrics are fairly impressive (anything

consistently over 50% is impressive in financial markets) we can further increase accuracy by selecting

only the top 20% of predictions; the predictions the model is most certain are correct. As we stated

before, the classification model has two outputs. We can think of output one as the model’s

confidence that future price will decrease and output two as the model’s confidence that future price

will increase. When the difference between these two outputs is highest, the model is most certain

about that particular prediction/classification.

When tested on only the top 20% of predictions, the accuracy metrics drastically improved, increasing

the classification accuracy to 59.2% and decreasing the categorical cross-entropy to 0.682.

Next, the model and test data predictions were used in the created trading simulator. The model saw

a steady and stable increase in account balance of 38.94% over 565 trades (Figure 4.7).

Figure 4.7 - Account balance over simulated trades for final classification model

Additionally, 60.11% of these trades were winning trades. On average, each winning trade adds 0.37%

to the account, while each losing trade would take 0.36% from the account, thus, the expected profit

per trade is 0.079% (2sf):

(𝑤𝑖𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑎𝑣𝑔 𝑤𝑖𝑛) − (𝑙𝑜𝑠𝑠 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑎𝑣𝑔 𝑙𝑜𝑠𝑠) = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑓𝑖𝑡

(0.6011 ∗ 0.37) − ((1 − 0.6011) ∗ 0.36) = 0.078803 %

We would have expected accuracy to decrease over time since markets are dynamic, and are

constantly adapting. Profitable trading strategies cease to last forever [27], however the trading

strategy this model adopted survived the period of time it was simulated over.

36

Looking at confusion matrices for the model’s predictions give us a little more insight into the

strategies and biases of the model:

Figure 4.8 - Confusion matrix for final classification model's predictions on test data

Figure 4.9 - Confusion matrix for final classification model's predictions on test data (best 20% of predictions)

Figure 4.8 is a confusion matrix that comprises all predictions while Figure 4.9 is a confusion matrix

that includes only the top 20% of predictions. Both matrices display similar results, showing the model

having a bias towards predicting prices will decrease. This is intriguing since, over the period

represented in the dataset, the price of Bitcoin was generally increasing in a steady uptrend. Perhaps

downward movements are more predictable for this trading vehicle. Despite the lengthy uptrend, the

majority of predictions are correct.

4.3 Significance of Findings

Our resultant model managed to achieve an overall accuracy of 60.11% when used in a simulated

trading scenario, which translated into a positive overall expectancy (for profits). An accuracy of

60.11% rivals and often outperforms the predictive accuracy of findings in existing literature

(especially for forecasting bitcoin price). McNally et all achieved a final classification accuracy of 52%

[8] while Madan et al predicted future price direction of Bitcoin with 50-55% accuracy for 10-minute

intervals [9]. Additionally, as markets continue to adapt, the usage of AI in financial markets will

increase (following current trends) [46] hereby it is to be expected that drawing profits using machine

learning is increasing in difficulty. Older models such as those seen in existing literature may result in

37

poor results when used in today’s trading environment. The fact that our model managed to result in

consistent profitability despite the increasing domination of AI in financial markets is impressive.

Our usage of a simulated trading environment is completely original. This is nowhere to be seen in the

existing literature. This is quite unfortunate since displaying the potential effectiveness of the model

in a real-life scenario is a simple yet effective method for communicating the models’ capabilities. It

additionally helps with finding potential loopholes in methodology and results. For example, it is likely

that a large number of models present in literature simple achieve high levels of accuracy since the

same prediction is continually predicted (for example when a trend is identified, the model may

predict an increase in price 10 times in a row). In a real-life scenario, you can only trade that single

trend once (you can only spend money once), therefore when traded, accuracy would be less than

claimed.

Whilst computationally expensive, hyperparameters and therefore overall model performance was

optimised using Genetic Algorithm. This is rarely performed in the literature for forecasting financial

markets, possible due to the sheer amount of computation time required. Despite the drawbacks,

hyperparameter optimisation is highly beneficial and can lead to surprising results, such as our

surprisingly high dropout rate in our most optimal models.

In agreeance with a number of existing studies, we found that a lower forecast period does not

necessarily lead to higher classification accuracy. As an example, Madan et al found dramatically high

accuracy when predicting daily price movements over 10-minute price movements. This is likely due

to the high amount of noise found in financial markets at lower timeframes.

4.4 Challenges

There were several challenges that this study faces. Identifying these challenges can help us overcome

these challenges in future work.

Firstly, as a precaution, it is entirely possible that some of the findings cannot be generalised to all

situations, only to the base parameters chosen. For example, higher sequence lengths did not elicit

significant changes in the predictive accuracy of the model. Despite this, higher sequence lengths may

have worked better with LSTM just as Gao et al [21] stated, though GRU was used in the base

parameters for our experimentation. Further generalisation of findings may require additional

experimentation.

Our results showed us that indicators did not lead to improvements in overall accuracy. The literature

is in fierce debate about the predictive ability of technical indicators in financial markets. While we

concluded here that indicators did not lead to increases in accuracy, there is potential that a different

indicator selection method could have led us to a different conclusion. For example, Demir et al [13]

approached this by handpicking indicators that highlighted oscillations or trends in prices and found

noteworthy improvements in accuracy as a result.

Throughout this study, predictions were made using 1-minute price data for Bitcoin. We achieved

respectable accuracy, though it is possible that accuracy could be further increased by using price data

from high timeframes (such as daily price data). This is precisely what Madan et al found [9]. There

are drawbacks and challenges to using this approach, however. Firstly, using lower timeframes allows

38

the use of larger datasets; there is more data when recorded every minute as opposed to every day.

Additionally, the Adaptive Markets Hypothesis [27] may mean that daily price data from far in the past

may have little relevance to today’s price movements. The benefit gained in predictive accuracy may

outweigh the drawbacks of this approach, however.

While we can see that our implementation of Genetic Algorithm led to an increase in final model

accuracy, there is potential that providing the algorithm with more hyperparameters and additional

model customisability could have led to a further improved model. For example, the algorithm may

have discovered a vastly different set of hyperparameters if each layer could have a different number

of neurons (rather than each layer having the same number of neurons). This does further complicate

implementation, however.

Lastly, the results found using our final regression model were overshadowed by the overwhelmingly

positive results found for the final classification model. The regression model tended towards

predicting mean prices, consequently leading to a lack of directional accuracy. A regression problem

has a much larger scope for error than a two-class classification problem, therefore a much more

complex architecture could be required to more accurately predict prices.

4.5 Summary
There were many surprising discoveries elicited from our experimentation. Firstly, and most

importantly, the use of a classification model reduced the scope for error, and thus led to an increase

in accuracy when predicting future market direction.

When using base hyperparameters picked using recommendations from literature, for this specific

problem, bidirectional RNN architectures did not perform significantly better than unidirectional

variants, thus it did not make sense to utilise them in the final model (due to less optimal training

times). Additionally, GRU architectures performed better than LSTM architectures, despite using a

reasonably large sequence length (for our base parameters) of 200.

The addition of technical indicators in our dataset did not increase the accuracy of the model. The

increased dataset dimensions when using technical indicators increased VRAM usage therefore

technical indicators were not used in the final model.

The lower forecast periods intriguingly did not result in the highest accuracies. We can infer that lower

forecast periods may be difficult to predict because the price of financial markets is generally quite

noisy on lower time scales.

Hyperparameter optimisation provided some unexpected results. While most hyperparameters were

close to our predicted optimal hyperparameters (recommended from literature), the dropout rate

was fairly large (0.471), while the literature recommended 0.2 to 0.3 [43]. This may have been due to

the high complexity of the problem.

Lastly, our final classification model (which used the near-optimal hyperparameters from Genetic

Algorithm) managed to achieve a classification accuracy of 59.2% (when using the top 20% of

predictions), increase the balance by 38.94% over 565 trades in our trading simulation (trading the

correct direction 60.11% of the time), and achieved an expected profit of 0.079% of the account

balance per trade. These results are astounding, especially given the prominence of automated

trading for Bitcoin in today’s climate.

39

Chapter 5

Conclusions and Future Work

5.1 Conclusions
The main aim of the study was to discover whether Recurrent Neural Networks can be trained to

predict future price direction using price and volume data alone. This was explored by creating two

final RNN models that predicted future Bitcoin prices and prices directions, a regression model and a

classification model. The final classification model performed significantly better than the regression

model, likely due to the reduced scope for error. The classification model managed to achieve a

classification accuracy of 54.8%. This accuracy increased to 59.2% when only the top 20% of

predictions were selected. This accuracy rivals and is superior in most cases to existing literature.

McNally et all achieved a final classification accuracy of 52% on Bitcoin [8] while Madan et al predicted

future price direction of Bitcoin with 50-55% accuracy for 10-minute intervals [9].

When placed into a trading simulator, the classification model managed to increase the starting

balance by 38.94% over 565 simulated trades. 60.11% of trades were correct, and the expected profit

per trade was 0.079% of the current account balance. Our confusion matrix suggested that the model

was biased towards predicting future price would decrease, despite Bitcoins overall uptrend between

2017 and mid-2020 (the approximate time period of our dataset). Regardless, simulated balance

increased in a stable fashion.

A secondary aim involved discovering how changes to the dataset and model architecture affected

overall accuracy when predicting future price direction. This was tested by using a base set of dataset

and model parameters, and modifying these parameters individually while measuring validation

accuracy metrics after training. We discovered that GRU architecture performed better than LSTM

architecture despite the high sequence length of 200, contrary to the suppositions of Gao et al [21],

who stated LSTM may be more accurate at higher sequence lengths. We also discovered that

bidirectional variants did not significantly increase accuracy, despite the favour of bidirectional

variants literature. Additionally, we concluded the addition of technical indicators in the dataset and

drastically increasing the sequence length provided no noticeable benefits. Lastly, to our surprise, a

shorter forecast period did not necessarily result in higher accuracy, likely due to the larger amounts

of noise and unpredictability in markets at lower timeframes.

The final secondary aim includes the discovery of optimal hyperparameters. We approached this by

using Genetic Algorithm to progressively discover near-optimal hyperparameters for our regression

and classification model. The majority of resulting hyperparameters turned out to be near those

recommended in literature, though dropout was exceptionally high (0.471) likely due to the

complexity of the problem

5.2 Future Work

40

Though our study provided engaging results and achieved significant accuracy, it can still further be

extended to improve accuracy and extend or verify findings.

Firstly, a large portion of manual traders attempt to recognise common and popular patterns in

market price data in order to predict future prices direction and market sentiment [47]. In future work,

we could incorporate pattern recognition algorithms such as Dynamic Time Warping [48]. Data related

to the patterns extracted using the pattern recognition algorithms could be added to the dataset.

Additionally, while price and volume history tells a story about the markets, and may drive a portion

of the future movement, markets are also heavily influenced by news and world events. Oncharoen

et al [49] found that the predictive accuracy of their machine learning models was improved by

combining both technical (price) aspects and fundamental (news) aspects. Implementing this

multidisciplinary approach into future work will likely result in superior model capabilities.

While this study focussed on the use of Recurrent Neural Network architectures to predict time series

data, additional (recent) approaches for predicting time series data exist and rival their predictive

capabilities. A number of studies merit the use of Convolutional Neural Networks (CNNs) for predicting

time-series data such as market price prediction. Selvin et al [50] discovered that a Convolutional

Neural Network architecture resulted in higher predictive accuracy than LSTM architecture for

predicting future stock price (regression). While CNNs may result in increases in accuracy, their

increased number of hyperparameters may increase the complexity and difficulty of finding optimal

hyperparameters, though the benefits may outweigh the challenges.

While our technical indicator selection method had merit (increasing variance of data by reducing

correlations between indicators) it is possible that the use of other methods could have led to different

results. Demir et al [13] approached selection by handpicking indicators that highlighted oscillations

or trends and found noteworthy improvements in accuracy as a result.

Lastly, our dataset includes short-term one-minute price and volume data, which limited us to mainly

predicting short term price movements. Studies have often found greater difficulty in predicting

shorter time fluctuations in price using machine learning approaches [9]. Collecting longer-term data

(such as hourly or daily data) and attempting to forecast days or weeks into the future could result in

higher model accuracy.

41

Chapter 6

Reflection
Before the creation of this project, my machine learning knowledge was limited. My interest in the

field made me eager to learn more; this project was the perfect opportunity. At this present day, my

knowledge in the field has drastically improved. I not only understand how Recurrent Neural Networks

work, but I am also able to use that knowledge to practically implement models that can be used to

forecast time-series data. Moreover, through learning TensorFlow, the machine learning framework

provided by Google, I can extend this knowledge to a variety of other machine learning algorithms,

such as Convolutional Neural Networks or Random Forest.

Additionally, my ability to navigate literature has drastically improved. This project has also taught me

the value of checking existing literature before undergoing a large project. Existing discoveries from

state-of-the-art literature greatly influenced the direction of this project and helped me avoid arriving

at dead-ends.

The experimental aspect of this project also taught me to value self-discovery. In other words, not all

results from the literature are axiomatic, and results may not generalise to your own application,

therefore you may find different results.

Throughout this project, there were a vast number of difficulties faced. One was already detailed;

learning a new and seemingly complex machine learning framework. Another challenge was obtaining

impressive accuracy for the final model. Initially, a regression model was used, though this did not

generate the results desired. These results were later overshadowed by the results elicited by the

adoption of a classification model.

Another major pain point in this project was training times. Generally, in software development, the

development process is relatively quick; you can add code, recompile, and run the software to test

the effect of new code. In machine learning, you may have to wait for the model to finish training

before you notice that something isn’t quite right, or that an optimisation had no effect (or even a

negative effect). This was especially true when using Genetic Algorithm to optimise model

hyperparameters since Genetic Algorithm required numerous models to be trained (150 to be precise,

10 per population and 15 generations). On the first couple of runs, the implementation of Genetic

Algorithm was not quite right (and elitism was not implemented). This was not evident until the results

were generated, and the code was analysed. The algorithm later had to be rerun.

The project initiation document was titled “Time Series Modelling using Machine Learning”. While

technically nothing has changed, and this is exactly what my project has broadly detailed, the project

and project title became more focused as time progressed. Initially, I had planned to forecast future

market price on stock data, and the dataset was originally gathered manually. Despite this, difficulties

throughout the project lead to change from stock price data to cryptocurrency data. This was due to

the wide and free availability of cryptocurrency price data. Additionally, the model had difficulties in

training on the stock dataset gathered since the stock data had “gap ups” and “gap downs”. These are

essentially periods where there is no data or trading activity since the stock market trading is not open

24/7 (while cryptocurrency trading is).

42

Some of the initial difficulties in this project stemmed from attempts to traverse such a complex field

alone, therefore, if I could do this project a second time, I would have first looked at the approaches

used in existing literature. Doing this first would have saved precious time (rather than creating a

model alone, finding unsatisfactory results, then looking to literature).

Overall, this project has taught me invaluable skills in an expanding field (machine learning) that is

currently in its infancy. These skills are becoming increasingly desirable among employers and

innovators. I will continue to learn and refine my machine learning knowledge in the future such that

I can innovate beyond the scope of this project.

Git Repository (Full Code)
Full code can be found in the git repository hosted on CSGitLab (the University of Reading’s privately

hosted GitLab). This includes the dataset used.

This can be found at:

https://csgitlab.reading.ac.uk/ann-price-prediction-final-year-project/bi-lstm-gru-bitcoin-forecasting

https://csgitlab.reading.ac.uk/ann-price-prediction-final-year-project/bi-lstm-gru-bitcoin-forecasting

43

References

[1] C. D. K. II and J. A. Dahlquist, Technical Analysis: The Complete Resource for Financial Market

Technicians. FT Press, 2010, pp. 3–4.

[2] C.-H. Park and S. H. Irwin, ‘What Do We Know About the Profitability of Technical Analysis?’,

J. Econ. Surv., vol. 21, no. 4, pp. 786–826, 2007, doi: https://doi.org/10.1111/j.1467-

6419.2007.00519.x.

[3] B. Huang, Y. Huan, L. D. Xu, L. Zheng, and Z. Zou, ‘Automated trading systems statistical and

machine learning methods and hardware implementation: a survey’, Enterp. Inf. Syst., vol. 13, no. 1,

pp. 132–144, Jan. 2019, doi: 10.1080/17517575.2018.1493145.

[4] A. Shewalkar, D. Nyavanandi, and S. Ludwig, ‘Performance Evaluation of Deep Neural

Networks Applied to Speech Recognition: RNN, LSTM and GRU’, J. Artif. Intell. Soft Comput. Res., vol.

9, pp. 235–245, Oct. 2019, doi: 10.2478/jaiscr-2019-0006.

[5] Y. Bengio, ‘Gradient-Based Optimization of Hyperparameters’, Neural Comput., vol. 12, no. 8,

pp. 1889–1900, Aug. 2000, doi: 10.1162/089976600300015187.

[6] J. Smit, ‘Binance Full History’, Kaggle, Feb. 01, 2021. https://kaggle.com/jorijnsmit/binance-

full-history (accessed Apr. 05, 2021).

[7] J. Brownlee, Machine Learning Mastery With Python: Understand Your Data, Create Accurate

Models, and Work Projects End-to-End. Machine Learning Mastery, 2016, p. 16.

[8] S. McNally, J. Roche, and S. Caton, ‘Predicting the Price of Bitcoin Using Machine Learning’, in

2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing

(PDP), Mar. 2018, pp. 339–343, doi: 10.1109/PDP2018.2018.00060.

[9] I. Madan, S. Saluja, and A. Zhao, ‘Automated Bitcoin Trading via Machine Learning Algorithms’,

p. 5, 2015.

[10] A. Greaves and B. Au, ‘Using the Bitcoin Transaction Graph to Predict the Price of Bitcoin’,

2015. /paper/Using-the-Bitcoin-Transaction-Graph-to-Predict-the-Greaves-

Au/a0ce864663c100582805ffa88918910da89add47 (accessed Apr. 28, 2021).

[11] Y. Bodyanskiy and S. Popov, ‘Neural network approach to forecasting of quasiperiodic financial

time series’, Eur. J. Oper. Res., vol. 175, no. 3, pp. 1357–1366, Dec. 2006, doi:

10.1016/j.ejor.2005.02.012.

[12] M.-W. Hsu, S. Lessmann, M.-C. Sung, T. Ma, and J. E. V. Johnson, ‘Bridging the divide in

financial market forecasting: machine learners vs. financial economists’, Expert Syst. Appl., vol. 61, pp.

215–234, Nov. 2016, doi: 10.1016/j.eswa.2016.05.033.

[13] S. Demir, K. Mincev, K. Kok, and N. G. Paterakis, ‘Introducing Technical Indicators to Electricity

Price Forecasting: A Feature Engineering Study for Linear, Ensemble, and Deep Machine Learning

Models’, Appl. Sci., vol. 10, no. 1, Art. no. 1, Jan. 2020, doi: 10.3390/app10010255.

44

[14] S. Boonprong, C. Cao, W. Chen, X. Ni, M. Xu, and B. K. Acharya, ‘The Classification of Noise-

Afflicted Remotely Sensed Data Using Three Machine-Learning Techniques: Effect of Different Levels

and Types of Noise on Accuracy’, ISPRS Int. J. Geo-Inf., vol. 7, no. 7, Art. no. 7, Jul. 2018, doi:

10.3390/ijgi7070274.

[15] S. Badillo et al., ‘An Introduction to Machine Learning’, Clin. Pharmacol. Ther., vol. 107, Mar.

2020, doi: 10.1002/cpt.1796.

[16] Z. Dai, H. Zhu, and J. Kang, ‘New technical indicators and stock returns predictability’, Int. Rev.

Econ. Finance, vol. 71, pp. 127–142, Jan. 2021, doi: 10.1016/j.iref.2020.09.006.

[17] L. Yin and Q. Yang, ‘Predicting the oil prices: Do technical indicators help?’, Energy Econ., vol.

56, pp. 338–350, May 2016, doi: 10.1016/j.eneco.2016.03.017.

[18] B. G. Malkiel and E. F. Fama, ‘Efficient Capital Markets: A Review of Theory and Empirical

Work*’, J. Finance, vol. 25, no. 2, pp. 383–417, 1970, doi: https://doi.org/10.1111/j.1540-

6261.1970.tb00518.x.

[19] D. A. Lesmond, M. J. Schill, and C. Zhou, ‘The illusory nature of momentum profits’, J. Financ.

Econ., vol. 71, no. 2, pp. 349–380, Feb. 2004, doi: 10.1016/S0304-405X(03)00206-X.

[20] K. A. Althelaya, E. M. El-Alfy, and S. Mohammed, ‘Stock Market Forecast Using Multivariate

Analysis with Bidirectional and Stacked (LSTM, GRU)’, in 2018 21st Saudi Computer Society National

Computer Conference (NCC), Apr. 2018, pp. 1–7, doi: 10.1109/NCG.2018.8593076.

[21] S. Gao et al., ‘Short-term runoff prediction with GRU and LSTM networks without requiring

time step optimization during sample generation’, J. Hydrol., vol. 589, p. 125188, Oct. 2020, doi:

10.1016/j.jhydrol.2020.125188.

[22] S. Yang, X. Yu, and Y. Zhou, ‘LSTM and GRU Neural Network Performance Comparison Study:

Taking Yelp Review Dataset as an Example’, in 2020 International Workshop on Electronic

Communication and Artificial Intelligence (IWECAI), Jun. 2020, pp. 98–101, doi:

10.1109/IWECAI50956.2020.00027.

[23] G.-B. Zhou, J. Wu, C.-L. Zhang, and Z.-H. Zhou, ‘Minimal gated unit for recurrent neural

networks’, Int. J. Autom. Comput., vol. 13, no. 3, pp. 226–234, Jun. 2016, doi: 10.1007/s11633-016-

1006-2.

[24] L. Qi, M. Khushi, and J. Poon, ‘Event-Driven LSTM For Forex Price Prediction’, ArXiv210201499

Q-Fin, Jan. 2021, Accessed: Apr. 06, 2021. [Online]. Available: http://arxiv.org/abs/2102.01499.

[25] Z. Cui, R. Ke, Z. Pu, and Y. Wang, ‘Stacked bidirectional and unidirectional LSTM recurrent

neural network for forecasting network-wide traffic state with missing values’, Transp. Res. Part C

Emerg. Technol., vol. 118, p. 102674, Sep. 2020, doi: 10.1016/j.trc.2020.102674.

[26] M. Schuster and K. K. Paliwal, ‘Bidirectional recurrent neural networks’, IEEE Trans. Signal

Process., vol. 45, no. 11, pp. 2673–2681, Nov. 1997, doi: 10.1109/78.650093.

[27] A. W. Lo, ‘Adaptive Markets and the New World Order (corrected May 2012)’, Financ. Anal. J.,

vol. 68, no. 2, pp. 18–29, Mar. 2012, doi: 10.2469/faj.v68.n2.6.

45

[28] J. Sola and J. Sevilla, ‘Importance of input data normalization for the application of neural

networks to complex industrial problems’, IEEE Trans. Nucl. Sci., vol. 44, no. 3, pp. 1464–1468, Jun.

1997, doi: 10.1109/23.589532.

[29] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, ‘Speeding Up Distributed

Machine Learning Using Codes’, IEEE Trans. Inf. Theory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018, doi:

10.1109/TIT.2017.2736066.

[30] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, ‘Dropout: a simple

way to prevent neural networks from overfitting’, J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,

Jan. 2014.

[31] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, ‘How Does Batch Normalization Help

Optimization?’, ArXiv180511604 Cs Stat, Apr. 2019, Accessed: Apr. 14, 2021. [Online]. Available:

http://arxiv.org/abs/1805.11604.

[32] R. Tutunov, M. Li, A. I. Cowen-Rivers, J. Wang, and H. Bou-Ammar, ‘Compositional ADAM: An

Adaptive Compositional Solver’, ArXiv200203755 Cs Math Stat, Apr. 2020, Accessed: Apr. 14, 2021.

[Online]. Available: http://arxiv.org/abs/2002.03755.

[33] T. K. Leen, T. G. Dietterich, and V. Tresp, Advances in Neural Information Processing Systems

13: Proceedings of the 2000 Conference. MIT Press, 2001, pp. 402–403.

[34] S. N. Sivanandam and S. N. Deepa, Genetic Algorithms. Berlin, Heidelberg: Springer, 2008, pp.

16–19.

[35] W. Spears and K. De Jong, On the Virtues of Parametrized Uniform Crossover. 1991.

[36] Chang Wook Ahn and R. S. Ramakrishna, ‘Elitism-based compact genetic algorithms’, IEEE

Trans. Evol. Comput., vol. 7, no. 4, pp. 367–385, Aug. 2003, doi: 10.1109/TEVC.2003.814633.

[37] M. Laumanns, E. Zitzler, and L. Thiele, ‘On The Effects of Archiving, Elitism, And Density Based

Selection in Evolutionary Multi-Objective Optimization’, in In, 2001, pp. 181–196, doi:

https://doi.org/10.1007/3-540-44719-9_13.

[38] Z. H. Khan, T. S. Alin, and A. Hussain, ‘Price Prediction of Share Market using Artificial Neural

Network (ANN)’, International Journal of Computer Applications, vol. 22, no. 2, 2011, doi:

10.5120/2552-3497.

[39] D. G. Mayer and D. G. Butler, ‘Statistical validation’, Ecol. Model., vol. 68, no. 1, pp. 21–32, Jul.

1993, doi: 10.1016/0304-3800(93)90105-2.

[40] A. J. Thomas, M. Petridis, S. Walters, S. M. Gheytassi, and R. E. Morgan, ‘Two Hidden Layers

are Usually Better than One’, 2017, doi: 10.1007/978-3-319-65172-9_24.

[41] D. Stathakis, ‘How many hidden layers and nodes?’, Int. J. Remote Sens., vol. 30, no. 8, pp.

2133–2147, Apr. 2009, doi: 10.1080/01431160802549278.

[42] J. Heaton, ‘The Number of Hidden Layers’, Heaton Research, Jun. 01, 2017.

https://www.heatonresearch.com/2017/06/01/hidden-layers.html (accessed Apr. 11, 2021).

46

[43] G. Cheng, V. Peddinti, D. Povey, V. Manohar, S. Khudanpur, and Y. Yan, An Exploration of

Dropout with LSTMs. 2017, p. 1590.

[44] G. Rao, W. Huang, Z. Feng, and Q. Cong, ‘LSTM with sentence representations for document-

level sentiment classification’, Neurocomputing, vol. 308, pp. 49–57, Sep. 2018, doi:

10.1016/j.neucom.2018.04.045.

[45] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, ‘Opposition versus randomness in soft

computing techniques’, Appl. Soft Comput., vol. 8, no. 2, pp. 906–918, Mar. 2008, doi:

10.1016/j.asoc.2007.07.010.

[46] H. Ghoddusi, G. G. Creamer, and N. Rafizadeh, ‘Machine learning in energy economics and

finance: A review’, Energy Econ., vol. 81, pp. 709–727, Jun. 2019, doi: 10.1016/j.eneco.2019.05.006.

[47] J.-L. Wang and S.-H. Chan, ‘Stock market trading rule discovery using pattern recognition and

technical analysis’, Expert Syst. Appl., vol. 33, no. 2, pp. 304–315, Aug. 2007, doi:

10.1016/j.eswa.2006.05.002.

[48] D. J. Berndt and J. Clifford, ‘Using dynamic time warping to find patterns in time series’, in

Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, Seattle,

WA, Jul. 1994, pp. 359–370, Accessed: Apr. 27, 2021. [Online].

[49] P. Oncharoen and P. Vateekul, ‘Deep Learning for Stock Market Prediction Using Event

Embedding and Technical Indicators’, in 2018 5th International Conference on Advanced Informatics:

Concept Theory and Applications (ICAICTA), Aug. 2018, pp. 19–24, doi:

10.1109/ICAICTA.2018.8541310.

[50] S. Selvin, R. Vinayakumar, E. A. Gopalakrishnan, V. K. Menon, and K. P. Soman, ‘Stock price

prediction using LSTM, RNN and CNN-sliding window model’, in 2017 International Conference on

Advances in Computing, Communications and Informatics (ICACCI), Sep. 2017, pp. 1643–1647, doi:

10.1109/ICACCI.2017.8126078.

47

Appendices
Appendix Chapter 1 – Regression Model Results

1.1 RNN Architecture
 LSTM GRU

 R Square MAE Train Time

(Minutes)

R Square MAE Train Time

(Minutes)

Test 1 -0.0325 0.001040 6.0 -0.0335 0.001042 4.1

Test 2 -111.7242 0.009462 1.3 -0.0313 0.001041 5.8

Test 3 -0.0311 0.001040 5.3 -0.0305 0.001039 4.8

Test 4 -0.0325 0.001039 6.1 -0.0315 0.001041 6.2

Test 5 -0.0319 0.001040 5.3 -0.0308 0.001039 6.0

Average -0.0320 0.001040 5.7 -0.0315 0.001040 5.4

 LSTM (Bidirectional) GRU (Bidirectional)

 R Square MAE Train Time

(Minutes)

R Square MAE Train Time

(Minutes)

Test 1 -0.0340 0.001042 10.7 -0.0329 0.001043 13.0

Test 2 -0.0338 0.001043 13.7 -0.0315 0.001041 12.6

Test 3 -0.0365 0.001045 10.4 -0.0328 0.001041 10.7

Test 4 -0.0370 0.001046 11.7 -0.0331 0.001042 12.9

Test 5 -0.0331 0.001040 12.0 -0.0356 0.001044 9.8

Average -0.0349 0.001043 11.7 -0.0332 0.001042 11.8

1.2 Indicators versus no Indicators
 Indicators No Indicators

 R Square MAE Train Time

(Minutes)

R Square MAE Train Time

(Minutes)

Test 1 -0.0351 0.001061 10.1 -0.0354 0.001049 10.7

Test 2 -0.0352 0.001062 13.0 -0.0338 0.001050 14.9

Test 3 -0.0347 0.001060 12.3 -0.0362 0.001051 9.8

Test 4 -0.0351 0.001062 13.0 -0.0377 0.001053 12.0

Test 5 -0.0351 0.001060 12.0 -0.0356 0.001051 11.7

Average -0.0350 0.001061 12.1 -0.0357 0.001051 11.8

1.3 Effect of Sequence Length

 R Square MAE Train Time (Minutes)

Length 50 -0.03413 0.001046 3.458199

Length 100 -0.03441 0.001059 6.780635

Length 150 -0.03575 0.001053 10.6208

Length 200 -0.03896 0.001047 12.71089

Length 250 -0.03417 0.001059 15.34224

Length 300 -0.03379 0.001046 16.98044

Length 350 -inf 0.001049 19.14106

Length 400 -0.03482 0.001045 23.0904

48

1.4 Effect of Forecast Period
 R Square MAE Train Time (Minutes)

Forward 1 -0.03692 0.001051 11.6846

Forward 5 -0.03401 0.002374 9.431959

Forward 10 -16.5155 0.013472 2.639607

Forward 20 -0.03187 0.004631 10.41841

Forward 30 -0.02834 0.005606 10.42984

Appendix Chapter 2 – Code Snippets

2.1 Trading Simulation Code (Regression Model)

def do_reg_simulation(predictions: np.ndarray, test_y: np.ndarray,
forecast_period: int, percentile = 100.0):
 balance = 10000.0
 balances = [balance]
 wins, losses = [], []
 spread = 0.000122 # As fraction of price
 leverage = 2.0
 upper = np.percentile(predictions, 100.0 - percentile / 2)
 lower = np.percentile(predictions, percentile / 2)
 last_trade_index = -np.inf

 print(f"\n\nStart Balance: {balance}")
 for index, prediction in enumerate(predictions):
 prediction = prediction[0]
 actual = test_y[index]
 if prediction > upper or prediction < lower:
 spread_cost = leverage * balance * spread
 should_buy = prediction > 0 # Buy if positive, sell if negative
 can_trade = index > last_trade_index + forecast_period # Cant
trade if already in a trade
 if not can_trade:
 continue
 if should_buy:
 new_balance = balance * (1 + (leverage * actual)) -
spread_cost
 else: # We are selling
 new_balance = balance * (1 - (leverage * actual)) -
spread_cost
 if new_balance > balance:
 wins.append(abs(leverage * actual))
 else:
 losses.append(abs(leverage * actual))
 last_trade_index = index
 balance = new_balance
 balances.append(balance)

 print(f"Final Balance: {balance: .2f}")
 print("Showing plot for final balance:")
 print(f"{len(balances)} trades executed")

49

 print(f"{len(predictions)} total predictions")
 print(f"Percentage wins: {len(wins) / (len(balances) - 1) * 100: .2f}%")
 print(f"Average win % of acc: {np.average(wins): .4f}")
 print(f"Average loss % of acc: {np.average(losses): .4f}")
 print(f"Wins: {len(wins)} --- Losses: {len(losses)} ---
{len(wins)/(len(wins) + len(losses)) * 100: .2f}% wins")
 print(f"% Predictions < 0: {len(predictions[predictions < 0]) /
len(predictions) * 100: .4f}%")

 plt.plot(balances)
 plt.xlabel("Trade Number")
 plt.ylabel("Balance (£)")
 plt.title("Balance Over Simulated Trades")
 plt.draw()

2.2 Trading Simulation Code (Classification Model)

def do_simulation(predictions: np.ndarray, test_y: np.ndarray, percentages:
np.ndarray, forecast_period = 0, percentile = 0.0):
 balance = 10000.0
 balances = [balance]
 wins, losses = [], []
 spread = 0.000122 # As fraction of price
 leverage = 2.0
 last_trade_index = -np.inf

 difs = [abs(x - y) for x, y in predictions]
 min_dif = np.percentile(difs, 100.0 - percentile)

 print(f"\n\nStart Balance: {balance}")
 for index, confidences in enumerate(predictions):
 prediction = np.argmax(confidences)
 confidence = abs(confidences[prediction])
 actual = test_y[index]
 percent = percentages[index]
 dif = abs(confidences[0] - confidences[1])
 can_trade = index > last_trade_index + forecast_period # Cant trade if
already in a trade
 if dif >= min_dif and can_trade:
 spread_cost = leverage * balance * spread
 new_balance = 0
 if prediction == actual: ## Correct direction
 new_balance = balance + (balance * abs(percent) * leverage) -
spread_cost
 wins.append(abs(percent) * leverage)
 else: ## Incorrect direction
 new_balance = balance - (balance * abs(percent) * leverage) -
spread_cost
 losses.append(abs(percent) * leverage)
 last_trade_index = index
 balance = new_balance
 balances.append(balance)

50

 print(f"Final Balance: {balance: .2f}")
 print("Showing plot for final balance:")
 print(f"{len(balances)} trades executed")
 print(f"{len(predictions)} total predictions")
 print(f"Percentage wins: {len(wins) / (len(balances) - 1) * 100: .2f}%")
 print(f"Average win % of acc: {np.average(wins) * 100: .2f}%")
 print(f"Average loss % of acc: {np.average(losses) * 100: .2f}%")
 print(f"Wins: {len(wins)} --- Losses: {len(losses)} ---
{len(wins)/(len(wins) + len(losses)) * 100: .2f}% wins")

 plt.plot(balances)
 plt.xlabel("Trade Number")
 plt.ylabel("Balance (£)")
 plt.title("Balance Over Simulated Trades")
 plt.draw()

2.3 Full Model Class Code

from datetime import datetime
import time
import tensorflow as tf
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense, Dropout, BatchNormalization,
LSTM, GRU, CuDNNLSTM, CuDNNGRU, Bidirectional
from tensorflow.python.keras.callbacks import TensorBoard, EarlyStopping
from tensorflow.python.client import device_lib
import numpy as np
import os

from app.parameters import Architecture
from .RSquaredMetric import RSquaredMetric, RSquaredMetricNeg

class Model():
 def __init__(self, train_x, train_y,
 validation_x , validation_y, seq_info:str,
 *,
 max_epochs = 100, batch_size = 1024, hidden_layers = 2,
 neurons_per_layer = 64, architecture = Architecture.LSTM.value,
 dropout = 0.1, is_bidirectional = False, initial_learn_rate = 0.001,
 early_stop_patience = 6, is_classification=False):

 ## Param member vars
 self.max_epochs = max_epochs
 self.batch_size = batch_size
 self.hidden_layers = hidden_layers
 self.neurons_per_layer = neurons_per_layer
 self.architecture = architecture
 self.dropout = dropout
 self.is_bidirectional = is_bidirectional
 self.initial_learn_rate = initial_learn_rate

51

 self.seq_info = seq_info
 self.is_classification = is_classification
 self.early_stop_patience = early_stop_patience
 self.train_time = 0

 self.train_x = train_x
 self.train_y = train_y
 self.validation_x = validation_x
 self.validation_y = validation_y

 ## Other member vars
 self.model = Sequential()
 self.training_history = None
 self.score: dict = {}

 self._create_model()

 ### PUBLIC FUNCTIONS

 def get_model(self):
 return self.model

 def train(self):
 start = time.time()
 early_stop = EarlyStopping(monitor='val_loss',
patience=self.early_stop_patience, restore_best_weights=True)
 tensorboard =
TensorBoard(log_dir=f"{os.environ['WORKSPACE']}/logs/{self.seq_info}__{self.ge
t_model_info_str()}__{datetime.now().timestamp()}")

 # Train model
 self.training_history = self.model.fit(
 self.train_x, self.train_y,
 batch_size=self.batch_size,
 epochs=self.max_epochs,
 validation_data=(self.validation_x, self.validation_y),
 callbacks=[tensorboard, early_stop],
 shuffle=True
)

 # Score model
 self.score = self.model.evaluate(self.validation_x, self.validation_y,
verbose=0)
 self.score = {out: self.score[i] for i, out in
enumerate(self.model.metrics_names)}
 print('Scores:', self.score)
 end = time.time()
 self.train_time = end - start

 def save_model(self):
 self._save_model_config()
 self._save_model_weights()

 def get_model_info_str(self):

52

 return f"{'Bi' if self.is_bidirectional else
''}{self.architecture.__name__}-HidLayers{self.hidden_layers}-
Neurons{self.neurons_per_layer}-Bat{self.batch_size}-Drop{self.dropout}"

 ### PRIVATE FUNCTIONS

 def _create_model(self):
 """
 Creates and compiles the model
 """
 self._use_gpu_if_available()

 ##### Create the model ####
 self.model = Sequential()

 if self.is_bidirectional:

self.model.add(Bidirectional(self.architecture(self.neurons_per_layer,
input_shape=(self.train_x.shape[1:]), return_sequences=True)))
 else:
 self.model.add(self.architecture(self.neurons_per_layer,
input_shape=(self.train_x.shape[1:]), return_sequences=True))
 self.model.add(Dropout(self.dropout))
 self.model.add(BatchNormalization())

 for i in range(self.hidden_layers):
 return_sequences = i != self.hidden_layers - 1 # False on last
iter
 if self.is_bidirectional:

self.model.add(Bidirectional(self.architecture(self.neurons_per_layer,
return_sequences=return_sequences)))
 else:
 self.model.add(self.architecture(self.neurons_per_layer,
return_sequences=return_sequences))
 self.model.add(Dropout(self.dropout))
 self.model.add(BatchNormalization())

 if self.is_classification:
 self.model.add(Dense(2, activation="sigmoid"))
 else:
 self.model.add(Dense(1))

 adam = tf.keras.optimizers.Adam(learning_rate=self.initial_learn_rate)

 if self.is_classification:
 self.model.compile(
 loss="sparse_categorical_crossentropy",
 optimizer=adam,
 metrics=["sparse_categorical_crossentropy", "accuracy"]
)
 else:
 self.model.compile(
 loss=RSquaredMetricNeg,
 optimizer=adam,

53

 metrics=["mae", RSquaredMetric]
)

 def _use_gpu_if_available(self):
 ## Utilise GPU if GPU is available
 local_devices = device_lib.list_local_devices()
 gpus = [x.name for x in local_devices if x.device_type == 'GPU']
 if len(gpus) != 0:
 if self.architecture == GRU:
 self.architecture = CuDNNGRU
 elif self.architecture == LSTM:
 self.architecture = CuDNNLSTM

 def _save_model_weights(self):
 file_path = ""
 if self.is_classification:
 file_path =
f"{os.environ['WORKSPACE']}/models/final/{self.seq_info}__{self.get_model_info
_str()}__{self.max_epochs}-
{self.score['sparse_categorical_crossentropy']:.3f}.h5"
 else:
 file_path =
f"{os.environ['WORKSPACE']}/models/final/{self.seq_info}__{self.get_model_info
_str()}__{self.max_epochs}-{self.score['RSquaredMetric']:.3f}.h5"
 self.model.save_weights(file_path)
 print(f"Saved model weights to: {file_path}")

 def _save_model_config(self):
 json_config = self.model.to_json()
 file_path =
f'{os.environ["WORKSPACE"]}/model_config/{self.get_model_info_str()}.json'
 with open(file_path, "w+") as file:
 file.write(json_config)
 print(f"Saved model config to: {file_path}")

2.4 Indicator Correlation Reduction

def reduce_correlation_matrix(correlations: pd.DataFrame, reduction_size:
int):
 best_indicators: List[str] = []

 correlations = correlations.abs()
 correlations_original = correlations.copy()

 cor = correlations.to_numpy()
 row_sums = np.sum(cor, axis=1)
 min_row = np.argmin(row_sums)
 best_indicators.append(correlations.columns[min_row])

 correlations.drop(correlations.index[min_row], axis="index", inplace=True)

54

 correlations.drop(correlations.columns[min_row], axis="columns",
inplace=True)

 while len(best_indicators) < reduction_size:
 row_sums = []
 for index, row in correlations.iterrows():
 row_sums.append(correlations_original.loc[index,
best_indicators].sum())
 min_row = np.argmin(row_sums)
 ind = correlations.columns[min_row]
 if ind not in best_indicators:
 best_indicators.append(ind)
 correlations.drop(correlations.index[min_row], axis="index",
inplace=True)
 correlations.drop(correlations.columns[min_row], axis="columns",
inplace=True)

 ret = correlations_original.loc[best_indicators, best_indicators]
 return ret

