
Large-scale Data Classification based on the Integrated Fusion of
Fuzzy Learning and Graph Neural Network
Václav Snášela,∗, Martin Štěpničkab,∗, Varun Ojhac,∗, Ponnuthurai Nagaratnam Suganthand,∗,
Ruobin Gaoe,∗ and Lingping Konga,∗∗

aDepartment of Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic
bCE IT4Innovations – IRAFM, University of Ostrava, Ostrava, Czech Republic, Ostrava, Czech Republic
cSchool of Computing, Newcastle University, Newcastle, United Kingdom
dKINDI Center for Computing Research, College of Engineering, Qatar University, Doha, Qatar
eSchool of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore

A R T I C L E I N F O
Keywords:
Graph neural networks
Fuzzy inference systems
Graph transformers
Sub-Space regression.

A B S T R A C T
Deep learning and fuzzy models provide powerful and practical techniques for solving large-
scale deep-learning tasks. The fusion technique on deep learning and fuzzy system are gen-
erally classified into ensemble and integrated modes and materializes in information fusion,
model fusion, and feature fusion. In an ensemble-based fusion, the fuzzy model either acts
as an activation function or is operated as a separate process aggregating/preprocessing the
information. Some early attempts in the field have successfully fused deep neural networks
and fuzzy modeling concepts in ensemble mode. However, no effective attempts were made
to fuse fuzzy models as an integrated feature-level fusion learning with graph neural networks
(GNNs). This is mainly due to two challenges related to this fusion: (1) the number of fuzzy
rules grows exponentially with the number of features that causes computational inefficiency,
and (2) the solution space created by this fusion of fuzzy rules becomes complex due to multiple
regression relations between inputs and outputs. Additionally, a simple linear regression at
the output space would not be sufficient to model deep learning tasks. Therefore, this paper
addresses these challenges by proposing a feature-level fusion method to fuse deep learning and
fuzzy modeling where the latter technique is for integrated feature learning, called fuzzy forest
graph neural network (FuzzyGNN), which creates a fuzzy learning forest fusing the linear graph
transformers for deep learning tasks. We conducted experiments on fourteen machine learning
datasets to test and validate the efficiency of the proposed FuzzyGNN model. Compared to state-
of-the-art methods, our algorithm achieves the best results on four out of five machine learning
datasets. The source code will be available at https://github.com/lingping-fuzzy/ and
https://github.com/P-N-Suganthan.

1. Introduction
Deep neural networks (DNNs) have become a natural choice for solving large-scale data tasks. They learn from large

amounts of data by uncovering intricate patterns in the data and permitting large-scale task-specific feature learning
from data. However, most real-world raw data are often defined in terms of connections from one piece of information
to another. Hence, data in the form of graphs benefit data analysis and modeling as a natural and flexible way to capture
all the possible information and relation between data points encoded in graphs. A graph neural network (GNN) is a
class of neural networks for processing data that can be represented as graphs, i.e., a GNN is a DNN architecture applied
to graph data. Graph data and GNNs have become popular as a natural choice for representing and solving real-world
problems in recent years; as a result, several GNN models are being designed [1]. They offer either state-of-the-art
(SOTA) results on benchmark machine learning problems/datasets or new mechanisms embedded into the model [1].

⋆This document is the results of the research project funded by Czech Science Foundation through the grant 20-07851S; furthermore, we
announce the support of DST/ INT/ Czech/ P-12/ 2019, by the Czech Republic Ministry of Education, Youth and Sports in the project META
MO-COP.

∗Corresponding author
∗∗Principal corresponding author

vaclav.snasel@vsb.cz (. Václav Snášel); martin.stepnicka@osu.cz (M. Štěpnička); varun.ojha@newcastle.ac.uk (.V.
Ojha); p.n.suganthan@qu.edu.qa (.P.N. Suganthan); gaor0009@e.ntu.edu.sg (.R. Gao); lingping_kong@yahoo.com (L. Kong)

ORCID(s): 0000-0002-9600-8319 (. Václav Snášel); 0000-0002-0285-075X (M. Štěpnička); 0000-0002-9256-1192 (.V. Ojha);
0000-0003-0901-5105 (.P.N. Suganthan); 0000-0003-0781-1482 (.R. Gao); 0000-0002-6825-1469 (L. Kong)

authors et al.: Preprint submitted to Elsevier Page 1 of 22

https://github.com/lingping-fuzzy/
https://github.com/P-N-Suganthan

FuzzyGNN

Despite massive progress in Neural Networks (NNs) and DNNs, they have been found to be sensitive to training
data; for instance, missing or noisy data influence the performance of NNs, which results in unreliable models [2]. In
general, Fusion [3] is an approach that integrates data or features and enhances the forecast based on the hybridized
system that can benefit each other. In order to improve the tolerance and robustness of NNs based models to missing
and noisy data, researchers have attempted to fuse NNs with various fuzzy modeling techniques on raw or processed
data, features, or methods, leading this fusion designs into information fusion, feature fusion, and model fusion under
a framework known as neuro-fuzzy systems (NFS) [4, 5]. Due to the computational power of NNs and the robustness
of fuzzy techniques, such fusion-based methods have provided potential improvement to model sensitivity in solving
problems with instances of noisy and missing data [6, 7].

This improvement by NFS systems is also largely attributed to the fusion of human-like reasoning, robustness,
and interpretability of fuzzy systems with the learning structure of neural networks [8]. Therefore, NFS benefits from
the approximation ability of NNs and the interpretability ability of the fuzzy (if-then) rules. One of the most popular
NFS models is the adaptive neuro-fuzzy inference system (ANFIS) [9, 10]. However, to the best of our knowledge, the
successes of the model-based fusion method rely on fuzzy systems with NNs have not been replicated in the GNN field,
i.e., applications of the efficient GNN model with fuzzy systems have not been thoroughly studied in the large-scale
data domain.

There are exceptions to the above-mentioned lack of fusion; however, the approaches that model fusion of the two
only do so from the perspective of transforming the representation to membership values by a fuzzy system, considered
ensemble-based fusion. Examples of such approaches are as follows: Deng et al. [11] explore the image segmentation in
an ensemble model with a fuzzy system that transforms input by a Gaussian-shaped fuzzy set; Tong et al. [12] presented
a model incorporating a fuzzy system with a GNN on the so-called few-shot learning task; their model deduces the
link relation degree between two nodes by using fuzzy systems.

The works in the literature on neuro-fuzzy hybrids are performed either in an ensemble mode fusion pattern [13, 14]
or by applying the typical ANFIS model. Among the ensemble model fusion, some integrate fuzzy inference techniques
as activation functions, and some adopt fuzzy inference for data-level fusion, such as pre-processing or post-processing
[15, 16] data. Still, the processing results of these approaches are not integral to feature-level fusion learning procedure.
Table 1 shows a brief research summary including the applications, data usage, and fusion types and if they adopt the
ANFIS model. From the list in Table 1, we observe that most of the works apply fuzzy modules for ensemble purposes
from a data-level fusion, and where there is an integrated model fusion, the model is applied to small data with non-deep
neural networks. The main difference in applying the fuzzy system of the proposed model with the listed ones is shown
in Fig. 1, where we integrate the fuzzy system with the neural learning instead of applying a membership function
only. As mentioned, two challenges need to be solved for the integrated fusion techniques: (1) avoid the exponentially
growing number of fuzzy rules to reduce the computational cost, and (2) create adaptive fuzzy division subspaces to
fit complex regression relations between inputs and outputs. Hence, to the best of our knowledge, currently, no work
can genuinely be classified as an integrated fusion of fuzzy-neural models for large dataset applications, i.e., for the
DL application. In this paper, we present a novel integrated fusion model that utilizes a fuzzy system as an integral
part of the representation vector learning mechanism assisting GNN learning to mitigate these two limitations, where
the fuzzy-based learning mechanism helps improve the expressibility of vector representation on feature-level fusion.
We adopt the graph transformers (GT) [17] with an attention mechanism for better communication between the nodes
in a graph.

The main aspects of our contribution are as follows.
• We present an integrated fusion model that fuses a fuzzy system as a part of the representation vector learning

mechanism assisting GNN learning; This work is different from existing works that merge fuzzy systems with
GNN in the sense that they take a fuzzy system as a training weight transformation tool. In contrast, our work
facilitates neural network learning in feature-level fusion by a fuzzy system mechanism.

• We propose representation sampling methods to address fuzzy rules exponentially explosion problem for
reducing trainable parameters and computational cost required to deal with large-scale machine learning datasets.

• We create a consequent layer in each subspace formed by the fuzzy system by generalizing a polynomial function
that simulates the relationship between independent and dependent variables. This method is aimed at decreasing
the fitting error between observation and fitting prediction.

authors et al.: Preprint submitted to Elsevier Page 2 of 22

FuzzyGNN

Figure 1: Four classic cooperative neural fuzzy systems, where ensemble model (SP) belongs to type-1 or type-2; FFDN
and FGNN are in type-3, the proposed model follows type-4.

• We experimentally justify the performance of the proposed FuzzyGNN model by conducting experiments on
five standard machine learning benchmark datasets, including CIFAR10, MNIST, PATTER, CLUSTER, and
ZINC, and compare them with SOTA methods.

The structure of this paper is as follows. We review the preliminaries and related works in Section 2, and then we
present the proposed model in Section 3. The experimental justification and discussions on the results are in Section 4.
Lastly, we conclude the paper in Section 5.

2. Background and Related Work
In this section, we discuss the working mechanism of graph-neural networks (GNNs) and highlight the research

works that attempt to fuse fuzzy systems and deep neural networks, especially works that integrate fuzzy systems with
GNNs and their potential problems.

Generally, a GNN model consists of a sequence of layers transmitting a vector representation (embedding variables)
through layers to update features of nodes (or edges). Each layer delivers updated representation vectors by message
passing mechanism (MPM) to the next layer, which then processes these representations as inputs and produces outputs
for the next layer [28]. In other words, in GNN, an MPM is a process of iteratively updating a node feature 𝐱(𝓁)𝑣 in layer
𝓁 for a node 𝑣 ∈ in a graph = (,) by aggregating localized information from their neighbors 𝑤 ∈ (𝑣) using
some user-defined aggregation function 𝑔 specific to each GNN model. The node feature 𝐱(𝓁)𝑣 is updated as:

𝐱(𝓁+1)𝑣 = 𝑔
(

𝐱(𝓁)𝑣 ,
{

𝐱(𝓁)𝑤 ∶ 𝑤 ∈ (𝑣)
})

,

where the aggregation function 𝑔 takes the node feature 𝑥𝓁𝑣 and a set of node features of neighbors {𝐱(𝓁)𝑤 ∶ 𝑤 ∈ (𝑣)}
as inputs and outputs an updated node feature 𝐱𝓁+1𝑣 to be an input for layer 𝓁 + 1. The number of intermediates (also
hidden) layers placed between the input and output layer of a given network determines the depth of the NN architecture
and directly impacts its complexity and power.

authors et al.: Preprint submitted to Elsevier Page 3 of 22

FuzzyGNN

Table 1
Comparison of existing Fuzzy-based NN models. Type: ensemble model works as an activation function, ensemble model
(separate process: SP) performs fuzzy inference, but the whole process is separate, working on data-level fusion/ output-level
fusion, such as preprocess or post-process; Integrated : the fuzzy inference performs the learning process in a combined
neural model on feature-level fusion. MLP: multi-layer perception.

Paper/Year Type Data Application ANFIS NN
[11] FFDN ensemble model image, time-series categorization, data prediction, No DNN

MRI segmentation
[18] 2018 ensemble model (SP) traffic data incident detection No MLP
[12] FGNN ensemble model miniImageNet, tieredImageNet Few-Shot Learning No GNN
[19] 2022 ensemble model (SP) Small Movie and eBook review recommendation No DNN
[20] 2022 ensemble model (SP) image tuberculosis detection No DNN
[21] 2019 ensemble model (SP) Hypersonic Vehicles data trajectory planning No DNN
[22] 2021 ensemble model (SP) tweets prediction No DNN
[23] 2020 ensemble model (SP) image classification No DNN
[24] 2020 ensemble model (SP) time-series data prediction No DNN
[25] 2020 ensemble model (SP) time-series data, image weather forecast No DNN
[26] 2017 ensemble model (SP) industrial Accident data Early warning No DNN
[27] 2017 ensemble model (SP) Monthly Inflow Prediction Yes
Our Integrated graph data, image classification/regression No DNN

Neuro-Fuzzy is a fuzzy inference system implemented in the framework of NN that plays a vital role in the neuro-
fuzzy controller field. For example, the adaptive node contains parameters associated with learning through links by
the gradient-based or recursive least square-based procedure under given training data. Furthermore, ANFIS [9] adopts
Takagi-Sugeno rules [29], which is a compact and computationally efficient representation. The inference of a single
rule can be viewed as a linear combination of the firing degree with the consequent functional (constant) term, i.e., the
relation/fitting curve between input and output is limited to linear mapping.

In Section 1, we discussed the fundamental problems with using DNNs, GNNs, and fuzzy systems alone and the
need for alternative methods to resolve these fundamental limitations to improve the performance and robustness.
These alternative methods are fusion-based models that integrate NN with an appropriately chosen fuzzy system.
There are various ways to combine a fuzzy system with a NN system, including ensemble models in a sequential or
parallel pattern [20, 27]; or integrated models [19]. The ensemble models either preprocess the representation vector
using specific fuzzy systems or deep learning (DL), and the fuzzy system transforms the given representation vector
in parallel. On the contrary, the integrated models fuze a fuzzy system as a part of the learning mechanism. Many
investigations have proven that using a fuzzy system with DL can improve the robustness and efficiency of the models
where data are biased, noisy, or vague [2, 30, 31].

In recent decades, diverse real-world applications have adopted data-driven fuzzy models identified by distinct
learning algorithms [22, 24, 32]; we refer to, for example, applications in computer vision and image processing [23],
device control [33], and data management [25]. Combining usage with fuzzy logic systems improves the situation,
which allows for dealing with uncertainties and ambiguities of real-world data [4].

Furthermore, to address the drawbacks of DL, such as lack of interpretability and tedious learning for distinct tasks
[2], many researchers proposed models that adapt the fuzzy systems for DL. For example, in [34], the authors suggested
using fuzzy numbers to present the training weights of network nodes in so-called fuzzy restricted Boltzmann machines
that were used in applications, such as airline passenger profiling [35] and early warning systems for industrial accidents
[26]. A similar approach to NFS is based on implementing an integration model that replaces the perceptrons in the
network with fuzzy logic units [36]. El and Boumhidi [18] implemented a fuzzy system to train part of the controllable
parameters of a deep neural network. Apart from these examples, researchers attempted to use a fuzzy system to address
large-scale dataset training problems. Muhammad et al. [37] worked on the information fusion by employing (fuzzy)
Choquet integral, which performs a nonlinear aggregation function as a multi-layer NN. However, this Choquet integral

authors et al.: Preprint submitted to Elsevier Page 4 of 22

FuzzyGNN

was not embedded in the DL architecture. It worked as an extra process aggregating the multiple outputs from several
individual neural networks.

However, only a few works studied made fusion on a fuzzy model with a graph neural network. Tong [12] proposed
a novel meta-learning combining a GNN and a fuzzy system in few-shot learning termed FGNN. In this work, DL acted
as a feature extractor and a message-passing mechanism, and the collaborating fuzzy systems acted as the relational
representation learner by performing the edge connection with node features. This representation learner was designed
with the help of Gaussian-shaped fuzzy sets. Finally, Deng et al. [11] proposed a hierarchical DL network architecture,
FFDN, that derives parallel representations from a fuzzy channel and a neuro-channel. The fuzzy channel transforms a
𝐷-dimensional input vector into a 𝐷-dimensional vector of membership values using the Gaussian-shaped fuzzy sets.

GT, which we will adopt in our model, is currently one of the best-performing NN architectures for handling
long-term sequential datasets such as sentences in natural language processing [17]. Deep learning modules of GT
adopt the self-attention mechanism, differentially weight the significance of individual input data, and relieve these
limitations (e.g., over-smoothing [38], expressiveness bounds) by allowing nodes to observe all other nodes in a graph
in a global attention way [8]. We, therefore, get a more expressive model by adding more layers, which may lead to a
model that treats all nodes as indistinguishable vectors, and simultaneously, with suppressed adverse effects of the high
number of layers. Although various GT models improve the performance of DL, the mentioned challenges in this field
remain unresolved. For example, GT models depend on structured graph data for learning [39], yet the real-world data
is far more complex than the simplified aligned graph [40], and benchmarks are not sufficiently representative [41].
Thus to deal with a slight variation in a problem, a GNN model would require retraining entirely.

Despite successful research, fuzzy systems have not been extensively studied and applied in up-to-date GNN archi-
tectures. The challenges are the growth of potentially required training parameters that may cause high computational
costs and the difficulties of simulating nonlinear systems that build relations between independent and dependent
variables. This paper proposes an integrated model incorporating GNN and fuzzy systems for large-scale datasets. The
proposed feature-level fusion model assisting feature learning adopts the representation sampling method to reduce the
number of training parameters and uses various regression functions to simulate the relations between the input and
the output.

3. Integrated Fusion of Fuzzy Learning and Graph Neural Network
This section introduces our proposed feature-level fusion of fuzzy learning and graph neural network: fuzzy

forest-based graph neural network (FuzzyGNN). This feature-level fusion in FuzzyGNN assists the feature learning.
FuzzyGNN adopts a fuzzy forest-based mapping layer, which has an extension architecture of ANFIS and comprises
two sub-parts: forest sampling representation and fuzzy-based input-output mapping, where learned features by the
fuzzy system will be fused with a neural network architecture for task-specific layer.

The framework of the proposed FuzzyGNN is shown in Fig. 2. FuzzyGNN starts processing the input data (either
graph or image data) by encoding the data to node representations. For example, an atom of molecular data or one
row of pixels of image data is represented by a single node. The original node embedding is a �̂�-dimensional vector
denoted by a = (𝑎1, 𝑎2,… , 𝑎�̂�). The node embedding is updated with positional and structural encoding, improving
the expressivity and becoming the node representation. The 𝑣-th node representation at the current (initial) stage is
denoted by 𝐡0𝑣 = (𝑥1, 𝑥2,… , 𝑥𝐷), where 𝑣 = 1, 2,… , 𝑉 , and 𝑉 denotes the number of nodes in the given graph NN.
Then the GT is applied to update the node representation 𝐡0𝑣 in GNN layers. The output of GNN layers is denoted by 𝐡𝓁𝑣presenting the 𝑣-th node representation at 𝓁-th layer. Next, the node representation is updated by the fuzzy forest-based
mapping layer, which will be introduced in detail in the subsequent sub-section. Finally, the task-specific layer analyzes
the node representation for the final output.

The fundamental idea of the GNN is to learn the node representation that conveys the expressive and instinctive
information in structured graph data, also known as representation learning [42]. The node representation is also the
node feature. Two key issues related to integrating a fuzzy system into a GNN are (1) the curse of dimensionality
leading to the exponential growth of fuzzy rules and (2) the potential inaccuracy in capturing the functional relationship
between inputs and output. The first one is addressed by decomposing representation vectors of a long length into
sub-vectors, dramatically reducing the number of the needed fuzzy rules. The latter issue involves various regression
functions to model the input-output relationship. Such a fuzzy system integration pattern is applied to the node
representation learning and the edge representation as well. The following sections address the hybrid learning rule,
the solutions adopted to address the two problems mentioned above, and elaborate on the process.

authors et al.: Preprint submitted to Elsevier Page 5 of 22

FuzzyGNN

Figure 2: The proposed FuzzyGNN framework with its main component and NFS module. Vector (𝑥𝓁
1 ,… , 𝑥𝓁

𝐷) is the node
representation in a hidden layer, {�̂�} denotes the sampled node features (sub-set of node representation), y = (𝑦1,… , 𝑦𝑀)
is the output vector produced by the fuzzy output layer for a single sample.

3.1. Hybrid Learning Rule
The principle of ANFIS is not to simulate the dependent variables function. Instead, it learns the input space by

dividing it into subspaces to make the output function linear. For example, Fig. 3 (left) presents the data points that are
challenging to create a function that relates 𝐗 and 𝑌 . In contrast, each subspace of a circle shows linear, parabola, or
exponential relations on the right side of Fig. 3, which decreases the complexity of the problem.

The concept of fuzzy membership function from ANFIS is similar to a kernel function that maps the dependent
variables to a new coordinate system facilitated for analysis. The critical part of this mapping is to choose a relation
𝐘 = 𝐹 (𝐗) for the dataset (x𝑘, y𝑘) denoting attributes and labels, where 𝑘 = 1,… , 𝑛. And this relation may not be linear,
as shown in Fig. 3 (right). The hybrid learning rule for ANFIS adopts least squares estimate to identify parameters that
optimize/minimize the fitting error 𝜀, which is defined as:

authors et al.: Preprint submitted to Elsevier Page 6 of 22

FuzzyGNN

Figure 3: Sample data (left) and Corresponding fuzzy subspaces division (right) indicated by circles and linear, parabola,
or exponential functions.

𝜀(𝐴,𝐵, x𝑘, y𝑘) =

√

√

√

√

1
𝑛

𝑛
∑

𝑘=1
‖𝑓 (x𝑘) − y𝑘‖2, 𝑓 (x𝑘) = 𝐴x𝑘 + 𝐵 (1)

or alternatively, we could re-write it as follows:

𝜀(𝐴,𝐵, x𝑘, y𝑘) =

√

√

√

√

1
𝑛

𝑛
∑

𝑘=1
((𝐴x𝑘 + 𝐵) − y𝑘)2 , (2)

where x𝑘 denotes the 𝑘-th point in the space and 𝑓 (x𝑘) is the fitted corresponding output, y𝑘 is the observation output.
Here 𝐴 and 𝐵 are the parameters/weights/solutions to the optimal fitting of the data.

The goal of the fitting learning curve is to minimize 𝜀, with respect to the attributes A and B.

min
𝐴,𝐵

𝜀(𝐴,𝐵, x𝑘, y𝑘) = min
𝐴,𝐵

𝑛
∑

𝑘=1
‖𝐴x𝑘 + 𝐵 − y𝑘‖2 . (3)

The optimal solution (coefficient, element of a fitting curve function) is obtained by setting the partial derivative
of the above function to zero, as follows:

𝜕𝜀
𝜕𝐴

= 0 and 𝜕𝜀
𝜕𝐵

= 0 ,

then we obtain the equations as follows:

𝑛
∑

𝑘=1
2(𝐴x𝑘 + 𝐵 − y𝑘)x𝑘 = 0 and

𝑛
∑

𝑘=1
2(𝐴x𝑘 + 𝐵 − y𝑘) = 0 .

By simplifying the above equations, we get the following linear equation form:
(
∑

x2𝑘
∑

x𝑘
∑

x𝑘 𝑛

)(

𝐴
𝐵

)

=
(
∑

y𝑘x𝑘
∑

y𝑘

)

, (4)

which is a classical problem of solving linear equations where 𝐴,𝐵 are two unknowns that produce the optimal weights
𝐴,𝐵 to fit the equations (fitting curve) in order to minimize 𝜀 of Eq. (1).

If we apply the same principle and fit a parabola verse to a line where 𝑓 (x𝑘) = 𝐴x2𝑘 + 𝐵𝑥𝑘 + 𝐶 then the problem
turns into the following minimization problem:

min
𝐴,𝐵,𝐶

𝜀(𝐴,𝐵, 𝐶, x𝑘, y𝑘) = min
𝐴,𝐵,𝐶

𝑛
∑

𝑘=1
‖𝐴x2𝑘 + 𝐵𝑥𝑘 + 𝐶 − y𝑘‖2

authors et al.: Preprint submitted to Elsevier Page 7 of 22

FuzzyGNN

The optimal solution to this minimization problem can be written as follows:
⎛

⎜

⎜

⎝

∑

x4𝑘
∑

x3𝑘
∑

x2𝑘
∑

x3𝑘
∑

x2𝑘
∑

x𝑘
∑

x2𝑘
∑

x𝑘 𝑛

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝐴
𝐵
𝐶

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

∑

y𝑘x2𝑘
∑

y𝑘x𝑘
∑

y𝑘

⎞

⎟

⎟

⎠

, (5)

which is similar to Eq. (4) is a classical problem of solving linear equations with three unknowns 𝐴,𝐵, 𝐶 , and
which produces the optimal weights to the parabola curve fitting. This polynomial curve fitting can be generalized
for polynomial functions of any degree (power) 𝑚: 𝑓𝐶1,…,𝐶𝑚

(x𝑘). For this polynomial function of degree 𝑚, the
minimization of 𝜀 with respect to the attributes 𝐶1,… , 𝐶𝑚 take the the follows form:

min
𝐶1,…,𝐶𝑚

𝜀(𝐶1,… , 𝐶𝑚, x𝑘, y𝑘) = min

√

√

√

√

𝑛
∑

𝑘=1
‖𝑓 (x𝑘, 𝐶1,… , 𝐶𝑚) − y𝑘‖2 .

The optimal solution of this minimization problem is obtained as follows:
𝜕𝜀
𝜕𝐶𝑗

= 0, 𝑗 = 1, 2,… , 𝑚 ,

∑

2(𝑓 (x𝑘, 𝐶1, 𝐶2,… , 𝐶𝑚) − y𝑘)
𝜕𝜀
𝜕𝐶𝑗

= 0 .

However, taking higher degrees of polynomials does not always improve the curve-fitting accuracy. This is typically
known as the polynomial wiggle problem [43]. Therefore, we only test the power of 2 polynomial functions as the
division subspace is set to be a smaller value in the experiment.
3.2. Representation Sampling

The reason for proposing representation sampling is to decrease the number of fuzzy rules determining the number
of trainable parameters in the NFS module. The representation sampling operates after the GNN layers on the GNN
output node representation 𝐡𝓁𝑣 . And then, 𝐡𝓁𝑣 serves as the input to the representation sampling. The representation
sampling comprises two steps. In particular, it starts with a representation division that divides a long vector into
multiple sub-vectors; then, each sub-vector is mapped into a representation sample.

First, let us consider a situation where the node representation is being updated without being divided into several
sub-sectors. For the sake of simplicity, let us consider only a two-dimensional representation vector and let two fuzzy
sets of two sub-areas cover each axis (dimension). Then the given NFS model creates four fuzzy rules dividing the
two-dimensional input space into a “grid” (in a broader sense) of four subareas with unsharp (fuzzy) boundaries [44].
Generally, if the input is a 𝐷-dimensional vector 𝐡𝓁𝑣 = (𝑥𝓁1 , 𝑥

𝓁
2 ,… , 𝑥𝓁𝐷), and the number of fuzzy sets on each axis is

𝑁 (user-defined parameter) then there will be 𝑁𝐷 of fuzzy rules for dividing the 𝐷-dimensional input space into
𝑁𝐷 subareas. As a single rule covers each subarea, we talk about the so-called curse of dimensionality or exponential
explosion of rules, and it is the primary source of the computational complexity burden. Indeed, relevant works focus
on this issue, e.g., [45]. However, paper [45] adopts an adaptive number of rules during processing, which is quite
challenging to be used in NN.

As stated above, the inference of a single rule can be viewed as a linear combination of the firing degree with
the consequent functional term, which is usually a linear function, so we need, in general, 𝐷 + 1 parameters for each
consequent, respectively. However, as we consider the output to be a more-dimensional vector and not a single value,
the overall output for a single input sample can be denoted by y = (𝑦1,… , 𝑦𝑚,… , 𝑦𝑀) where 𝑀 is the fixed parameter
denoting the required output dimensionality chosen by the user based on the complexity of the problem, see Fig. 2. As
a result, the number of parameters in the consequent layer is 𝑁𝐷 × (𝐷+ 1) ×𝑀 , which determines the computational
burden for this FuzzyGNN and demonstrates that the exponential explosion makes the system most sensitive to the
parameters 𝑁 and 𝐷.

In order to deal with this large number of parameters issue in the NFS, the fuzzy forest-based mapping layer
adopts the representation sampling, which divides a node representation into multiple sub-set representations that are
called samples. This sampling is similar to the multi-head scheme in the graph transformer attention mechanism. The
difference between our sampling and multiple heads lies in the division pattern, in which we provide uniform sampling
and random sampling options.
authors et al.: Preprint submitted to Elsevier Page 8 of 22

FuzzyGNN

Figure 4: Proposed neuro-fuzzy fusion. In this NFS module, the blue window introduces a parameterized polynomial
function that models the relationship between independent and dependent variables in the consequent layer.

Suppose we are given a 𝐷-dimensional vector node representation 𝐡𝓁𝑣 = (𝑥𝓁1 , 𝑥
𝓁
2 ,… , 𝑥𝓁𝐷) and the division number

is set (user’s choice) to 𝑃 ∈ ℕ. We define the representation division in the uniform sampling as follows:
Division 1 contains {𝑥𝓁1 , 𝑥𝓁2 ,… , 𝑥𝓁𝐷

𝑃

}.

Division 2 contains {𝑥𝓁𝐷
𝑃 +1

, 𝑥𝓁𝐷
𝑃 +2

,… , 𝑥𝓁
2𝐷
𝑃

}.
… ,… ,
Division 𝐷

𝑃 contains {𝑥𝓁
𝐷−𝐷

𝑃 +1
,… , 𝑥𝓁𝐷−1, 𝑥

𝓁
𝐷};

where division number 𝑃 has been chosen in such a way that fraction 𝐷
𝑃 is an integer.

When the random sampling is considered, we randomly divide the node representation into 𝑃 subsets. The
representation division may contain a discontinued feature sequence in such a case. For example, such a sample may
be a vector (𝑥𝓁2 , 𝑥𝓁5 ,… , 𝑥𝓁𝐷) or any other assuming it is of the length 𝐷

𝑃 .
After the division, the second step of representation sampling consists of passing each division into a dimension-

transforming mapping to obtain the required sample. This mapping function serves as the dimensional conversion;
it maps a 𝐷

𝑃 dimensional division vector to the input vector of the subsequent NFS with a required dimensional. In
particular, if the NFS input dimension �̃� (user-specified parameter) equals 𝐷

𝑃 , the mapping becomes an identity
mapping. Otherwise, there will be a mapping that will remove a number of (𝐷𝑃 − �̃�) randomly chosen elements from
the given division. This mapping requires �̃� ≤ 𝐷

𝑃 . The output of the sampling is called a sample and it is a vector
x̂ consisting of �̃� components �̂�𝑑 , where 𝑑 = 1,… , �̃�. The sample passes to the neuro-fuzzy system module that is
described in detail in the subsequent subsection and depicted in Fig. 4.

It is worth mentioning that there can be an optional linear mapping layer between the input 𝐡𝓁𝑣 and the representation
sampling. When 𝐷

𝑃 is not an integer, this optional layer is used to convert the 𝐷-dimensional vector to a vector whose
dimension can be divided by the sampling size 𝑃 .

authors et al.: Preprint submitted to Elsevier Page 9 of 22

FuzzyGNN

3.3. Proposed Neuro-fuzzy System Module (FuzzyGNN Architecture)
This module assists feature learning by fusing the fuzzy system learned features with features in neural archi-

tectures. The neuro-fuzzy system module (i.e., NFS module) transforms each of provided 𝑃 samples into a vector
y = (𝑦1, 𝑦2,… , 𝑦𝑀), where 𝑀 is a user-defined neuro-fuzzy module output parameter. Finally, all results samples
are concatenated into a single representation that is a (𝑃 ×𝑀)-dimensional vector denoted by 𝐡𝓁+1𝑣 , see Fig. 4.

Firstly, the input x̂ = (�̂�1, �̂�2,… , �̂��̃�) from the sampling is passed to the premise layer. Then each element �̂�𝑑 is
transformed into a membership value by a fuzzy set 𝜆𝑑𝑛 . There are 𝑁 ⋅ �̃� antecedent fuzzy sets denoted by 𝜆𝑑𝑛 , where 𝑁
and �̃� are user-defined parameters, fuzzy sets in each axis, and input data dimension to NFS, respectively. The fuzzy
sets 𝜆𝑑𝑛 is defined as follows:

𝜆𝑑𝑛 (�̂�𝑑) = 𝑒𝑥𝑝

(

−
(�̂�𝑑 − 𝜇𝑑

𝑛)
2

2(𝜎𝑑𝑛)2

)

, (6)

where 𝑑 = 1, 2,… , �̃� and 𝑛 = 1,… , 𝑁 .
This layer encodes a number of 𝑁 �̃� antecedents of fuzzy rules that are given by the Cartesian product of �̃� fuzzy

sets, one on each axis. For instance, Π1 = 𝜆11 × 𝜆21 × ⋯ × 𝜆�̃�1 , Π2 = 𝜆12 × 𝜆21 × ⋯ × 𝜆�̃�1 , and so on until the last
Π𝑁�̃� = 𝜆1𝑁 ×𝜆2𝑁 ×⋯×𝜆�̃�𝑁 . The firing degree of a particular rule for a given input is then obtained as the membership
degree of this input in the antecedent of rule, for example, Π1(x̂) = 𝜆11(�̂�1) × 𝜆21(�̂�2) ×⋯×𝜆�̃�1 (�̂��̃�) which can be easily
computed using formula (6).

Secondly, a consequent layer models the relation between the input and the output in each “subarea” that is
determined by the particular �̃�-tuple of antecedent fuzzy sets from their Cartesian product.

The task for the consequent layer is to capture or approximate a given relationship between the input variables
x̂ = (�̂�1, �̂�2,… , �̂��̃�) and the consequent functional expressions 𝑓𝑚

𝑘 = 𝐹 (w̃𝑚
𝑘 , x̂, 𝑐

𝑚
𝑘) for 𝑘 = 1,… , 𝑁 �̃�;𝑚 = 1,… ,𝑀 ,

and so, each 𝑓𝑚
𝑘 corresponds to a particular rule, where w̃𝑚

𝑘 = (�̃�𝑚
1,𝑘,… , �̃�𝑚

�̃�,𝑘
). Then the function 𝐹 is defined as a

parameterized polynomial function defined as follows:
𝐹 = 𝐙(𝐗⊙ 𝐁) ,
𝐙 = (�̃�𝑚

1,𝑘�̂�1, ..., �̃�
𝑚
𝑑,𝑘

�̂�𝑑 , ..., �̃�
𝑚
�̃�,𝑘

�̂��̃�, 𝑐
𝑚
𝑘)

where ⊙ is element-wise multiplication of vectors, 𝐙 is a vector derived from trainable weight w̃𝑚
𝑘 and x̂, 𝐗 is an

extension of x̂ given by 𝐗 = (�̂�1, �̂�2,… , �̂��̃�, 1), and 𝐁 = (𝑏1, 𝑏2,… , 𝑏𝑑 ,… , 𝑏�̃�, 1) with its components 𝑏𝑑 ∈ { 1
�̂�𝑑
, 1}.

The user specifies function 𝐹 by changing the vector 𝐁, which is determined by elements 𝑏𝑑 that are equal to ‘1’ or
to 1

�̂�𝑑
. For example, if 𝑏𝑑 = 1

�̂�𝑑
for any 𝑑 = 1,… , �̃�, i.e., we get 𝐁 = (1

�̂�1̃
,… , 1

�̂�𝑑
,… , 1

�̂��̃�
, 1), then 𝐗 ⊙ 𝐁 = 𝕀 (a

vector with all elements of ‘1’), and consequently, we get 𝐹 = 𝐙𝕀 = �̃�𝑚
1,𝑘�̂�1 + ... + �̃�𝑚

𝑑,𝑘
�̂�𝑑 + ... + �̃�𝑚

�̃�,𝑘
�̂��̃� + 𝑐𝑚𝑘 .

On the other hand, if 𝑏𝑑 = 1 for any 𝑑 = 1,… , �̃� then we get 𝐹 = 𝐙𝐗 which produced the following function
𝐹 = �̃�𝑚

1,𝑘�̂�
2
𝑘 + ... + �̃�𝑚

𝑑,𝑘
�̂�2
𝑑
+ ... + �̃�𝑚

�̃�,𝑘
�̂�2
�̃�
+ 𝑐𝑚𝑘 .

Note that the linear consequent function, i.e., the polynomial, is given 𝐗⊙𝐁 = 𝕀 = (1,… , 1) for 𝐹 = 𝐙𝕀, that is, the
traditional ANFIS method, may not be sufficiently powerful to capture highly non-linear relationships between inputs
and outputs. Indeed, though as proclaimed in [45] that linear regressions hold on very small subareas determined by
the antecedents of the rules and the overall output is non-linear, this view requires the sufficient size reduction of the
subareas and consequently the increase of the total number of rules, which is exactly in the opposite direction of our
intention to reduce the already high complexity. We have to take into account that whenever ANFIS is used to deal with
graph NN, its dimensionality is much higher than in standard regression problems; therefore, we apply the sampling
beforehand. Generally, we write the output of the 𝑘-th rule as given by 𝑓𝑚

𝑘 = 𝐹 (w̃𝑚
𝑘 , x̂, 𝑐

𝑚
𝑘) and the total number of

trainable parameters is 𝑁 �̃� × (�̃� + 1).
As soon as the individual outputs of rules 𝑓𝑚

𝑘 are determined, the NFS module in its output layer generates the final
output vector (𝑦1,… , 𝑦𝑀) with its components given by the following formula:

𝑦𝑚 =
𝑁�̃�
∑

𝑘=1
�̄�𝑘𝑓

𝑚
𝑘 , for 𝑚 = 1, 2,… ,𝑀, (7)

authors et al.: Preprint submitted to Elsevier Page 10 of 22

FuzzyGNN

Table 2
The machine learning dataset description, abbreviations: class. – classification; regr. – regression; MAE – mean absolute
error.

Dataset Task – Prediction class# Evaluation Description
MNIST class.– graph 10 Accuracy 70K graph
CIFAR10 class. – graph 10 Accuracy 60K graph
ZINC regr. – graph - MAE 12K graph
PATTERN class. – node 2 Accuracy 14K graph
CLUSTER class. – node 6 Accuracy 12K graph

where the weight values are determined as follows:

�̄�𝑘 =
Π𝑘

∑𝑁�̃�

𝑘=1 Π𝑘

in order to ensure their normalization �̄�1 + �̄�2 + ... + �̄�𝑁�̃� = 1.
The impact on the computational complexity is as follows. The function 𝐹 determines the output 𝑓𝑚

𝑘 using the
linear combination of the components of the input vector �̂� and of the weight vector �̃�𝑚

𝑘 . Consider a hypothetical yet
real example with a 52-dimensional node representation and three fuzzy sets on each axis that would lead to 352 rules.
The curse of dimensionality would lead to 352×53 = 3.4×1025 parameters for the consequent layer of the NFS module
without apriori applied to split the vector representations. If we use splitting of the vectors to 13 samples of the length
4, the total number of the parameters of the consequent layer of the NFS module would be given by 𝑁 �̃� × (�̃�+1)×𝑃
that is 34 × (4 + 1) × 13 = 5265.

4. Experiments and Results
The section conducts experiments on five diverse machine learning datasets to evaluate the proposed FuzzyGNN

model’s effectiveness and compares the SOTA results.
4.1. Training related setting

We take three graph datasets, ZINC, PATTERN, CLUSTER, and two image datasets, CIFAR10 and MNIST, from
Benchmarking GNNs [46][47] by torch_geometric [48]. The details of the machine learning datasets are shown in
Table 2. The dataset splits follow the standard provision defined for train/valid/test data splits. The experiments execute
ten runs with the same parameter setting and random seed. Afterward, we calculate the average performance (Avg.)
and its standard deviation (Sd.) from these 10 runs for the global performance evaluation. The parameter size follows
a 500K budget for ZINC, PATTER, and CLUSTER; and a 100K budget for image datasets MNIST and CIFAR10. The
AdamW optimizer [49] with the ‘warm-up’ strategy for learning rate in default parameters are used in all experiments,
i.e., 𝛽1, 𝛽2, 𝜖 are 0.9, 0.999, and 1e-8, respectively. The learning rate is set to the initial value of 0.001 and the ’Weight
decay’ value of 1e-5. The learning rate starts with an initial value at the early stage; then, it is modified in a cosine
trend. The maximal number of epochs is set to 2000 for ZINC and 100 for the other dataset. The batch size is set to
32 for ZINC and PATTERN and 16 for the rest of the datasets. The feature dimension hyperparameters follow the
adjusted suggestions from GPS [47] and GraphTransformer [50]. The warm-up setting follows the hyperparameters
choices in [47]. FuzzyGNN is implemented under the framework of GPS with PyG, and its GraphGym [51] module
supports Python under an MIT license. All experiments were conducted in a mixed computing environment, a cluster
of 4 NVIDIA GeForce GPU 8GB Memory, 2 Tesla V100-PCIE 32GB GPU with intel Xeon GOLD-6154 CPU.

FuzzyGNN provides two representation samplings, Random and Uniform. For each dataset, We experiment with
three different 𝐹 consequent functions with first-order, mixed-order, and second-order equations, which leads to six
combinations as Random- first-order (R(0)), Random-second-order(R(1)), Random-mixed-order (R(0.5)), Uniform-
first-order(U(0)), Uniform-second-order(U(1)), and Uniform-mixed-order(U(0.5)). Finally, we summarize all of the
experiment results and present them in the next subsection.

authors et al.: Preprint submitted to Elsevier Page 11 of 22

FuzzyGNN

Table 3
FuzzyGNN hyperparameters in five machine learning datasets. GTF-Graph transformer

Parameter PATTER CLUSTER ZINC MNIST CIFAR10
Frame GTF GTF GTF GTF GTF

Hidden dim 64 48 64 52 52
Sample (𝑃) 10 12 16 13 13

�̃� 4 4 4 4 4
𝑀 2 2 2 2 2
𝑁 3 3 3 3 3

Table 4
The parameters and GNN-related setting, GlobAttn-global attention technique, GateGCN [52], GINE [53], Transformer
[50, 54, 55].

Model Parameter PATTERN CLUSTER ZINC MNIST CIFAR10
GPS # Epochs 100 100 2000 100 100

FuzzyGNN 100 100 2000 100 100
GPS MPNN GatedGCN GatedGCN GINE GatedGCN GatedGCN

FuzzyGNN GatedGCN GatedGCN GINE GatedGCN GatedGCN
GPS GlobAttn Transformer Transformer Transformer Transformer Transformer

FuzzyGNN Transformer Transformer Transformer Transformer Transformer
GPS # Parameters 337,201 502,054 423,717 115,394 112,726

FuzzyGNN 347971 515350 438,813 127352 124,756

4.2. Technical details of the experimental justification
We provide the GNN training-related setting in Table 4. We only count the number of trainable parameters and

ignore the non-trainable parameters. For example, during the representation sampling process, the parameter on the
selection of random variables for creating samples is set to be fixed when initializing the model, which means it is a
non-trainable parameter. Likewise, the parameter required in the selection of variables for the mixed-order regression
function is also non-trainable. Table 4 shows that FuzzyGNN uses slightly more parameters than the baseline GPS
model. We choose graph isomorphism network with edges (GINE) [53] as the message-passing updating technique on
the ZINC molecular dataset, and we apply gated graph convolutional network [52] as the message-passing updating
technique to the other dataset. Those MPNN settings follow GPS. The global attention technique adopts graph
transformer [50, 54, 55]. The parameters required for the NFS module of the FuzzyGNN are presented in Table 3. The
parameter of vector dimension in node representation follows the suggestions from [50, 47]. The number of samples
𝑃 varies in different datasets, and we set the output vector dimension 𝑀 to be equal to 2; the number of fuzzy sets
used on each axis is set to 3 for all datasets. Other activation function-related parameters and the parameter dropout
are provided in Appendix.
4.3. Results and Analysis on large dataset

We compare FuzzyGNN with a set of benchmark GNNs, namely with GCN [56], GAT [57], GatedGCN [52], GT
[50], and with several SOTA methods, namely with DGN [58], EGT [60], ARGNP [61], and GPS [47]. The results
with the best performance out of the six settings (R(0), R(0.5), R(1), U(0), U(0.5), U(1)) of FuzzyGNN is provided in
Table 5, where each result runs ten times independently (Avg.± Sd. are provided).

FuzzyGNN performs the best on the data CLUSTER and CIFAR10, producing 78.25%, and 74.79% accuracy,
respectively. There is an obvious accuracy outperformance of the baseline model GPS of 0.3%, 2.49% on CLUSTER
and CIFAR10. The performance of FuzzyGNN on ZINC data does not show a significant privilege. As a result, it is
equal to the one provided by GPS. On the PATTERN and MNIST datasets, there is a slight accuracy increase in favor
of the FuzzyGNN. Though this tiny accuracy increase can be neglected, the very low standard deviation provides a
strong argument in favor of the FuzzyGNN justified by very high robustness and, consequently, the reliability/stability
of the FuzzyGNN approach.
authors et al.: Preprint submitted to Elsevier Page 12 of 22

FuzzyGNN

Table 5
Performance on Test data in five datasets from [46] Shown as Avg./Sd. of 10 runs. The results (compared) are taken from
[46, 47]. The best results are highlighted in boldface numbers, and the second-best results are highlighted in italics. The
results by FuzzyGNN are the best-performed ones by using different consequent functions 𝐹 .

Model PATTERN CLUSTER ZINC MNIST CIFAR10
Accuracy ↑ Accuracy ↑ MAE ↓ Accuracy ↑ Accuracy ↑

GCN [56] 71.89 ± 0.33 68.50 ± 0.97 0.37 ± 0.01 90.70 ± 0.22 55.71 ± 0.38
GAT [57] 78.27 ± 0.186 70.59 ± 0.45 0.38±0.007 95.53 ± 0.20 64.22 ± 0.45
GatedGCN [52] 85.57 ± 0.09 73.84 ± 0.33 0.28 ± 0.01 97.34 ± 0.14 67.31 ± 0.31
Graphormer [55] - - 0.12 ± 0.01 - -
DGN [58] 86.68 ± 0.03 - 0.17 ±0.003 - 72.84 ± 0.42
GT [50] 84.81 ± 0.07 73.17 ± 0.62 0.23 ± 0.01 - -
CIN [59] 85.39± 0.14 64.72 ± 1.55 0.53 ± 0.05 96.48± 0.25 55.25 ± 1.53
EGT [60] 86.82 ± 0.03 79.23 ± 0.35 0.11 ± 0.01 - -
ARGNP [61] - 77.35± 0.05 - - 73.90± 0.15
GPS [47] 90.32 ± 0.13 77.95 ± 0.30 0.07 ± 0.004 98.05 ± 0.13 72.30 ± 0.36
FuzzyGNN (ours) 90.42 ± 7.7e-4 78.25 ± 0.18 0.07 ± 0.003 98.07 ± 0.001 74.79 ± 0.35

Table 6
Performance on Test data in five datasets from [46] by FuzzyGNN. The best results are highlighted by boldface letters.
The results are the Avg./Sd. of 10 runs.

Algorithms
PATTERN CLUSTER ZINC MNIST CIFAR10
Accuracy ↑ Accuracy ↑ MAE ↓ Accuracy ↑ Accuracy ↑

FuzzyGNN (R(0)) 90.37 ± 2.17E-03 78.17 ± 0.23 0.0704 ± 0.003 98.06 ± 1.09E-03 74.62 ± 3.25E-03
FuzzyGNN (R(0.5)) 90.35 ± 8.80E-04 78.25 ± 0.18 0.0729 ± 0.002 98.01 ± 1.15E-03 74.35 ± 0.51
FuzzyGNN (R(1)) 90.33 ± 3.22E-03 78.14 ± 0.12 0.0709 ± 0.003 98.07 ± 1.15E-03 74.79 ± 0.35
FuzzyGNN (U(0)) 90.29 ± 1.39E-03 78.16 ± 0.21 0.0756 ± 0.004 98.04 ± 1.47E-03 74.60 ± 2.57E-03
FuzzyGNN (U(0.5)) 90.31 ± 1.30E-03 78.21 ± 0.12 0.0707 ± 0.002 98.04 ± 4.77E-04 74.43 ± 0.52
FuzzyGNN (U(1)) 90.42 ± 7.66E-04 78.21 ± 0.14 0.0722 ± 0.004 97.99 ± 1.48E-03 74.52 ± 0.26

Table 7
The training time costs by FuzzyGNN with different consequent functions 𝐹 , in particular, ‘Avg Epoch Time cost/Total
Time cost.’

FuzzyGNN
Data R(0.5) R(0) R(1) U(0.5) U(0) U(1)

CLUSTER Time 276.59s/7.69h 262.76s / 7.30h 262.79s/7.3h 265.97s/7.39h 267.85s/7.44h 267.82s/7.44
PATTERN epoch/total 473.43s/13.15h 437.64s/12.16h 473.90s/13.17h 473.87s/13.16h 446.20s/12.39h 466.52s/12.959h

Furthermore, we present the detailed six experiments with different 𝐹 functions of FuzzyGNN for five datasets.
All the results are run with the same experimental setting. Table 6 shows the results for R(0), R(0.5), R(1), U(0),
U(0.5), and U(1) of FuzzyGNN, where all sets of experiment were run ten times independently. Table 6 shows on
ZINC data that the R(0) setting performs the best, and U(0.5) and R(1) are the second and third best. The setting with
random sampling type (R(0.5)) demonstrates the best accuracy on the CLUSTER dataset, followed by the second best
of uniform sampling by the (U(0.5)) and (U(1)). Lastly, the best-performing one on both MNIST and CIFAR10 datasets
is the R(1) with parameter. In general, the function with regression performs slightly better than other values in most
instances.

Table 7 presents the experiments on the computational time requirements. All the experiments were performed
on the same hardware configuration. The presented time requirements represent the average time consumption of ten

authors et al.: Preprint submitted to Elsevier Page 13 of 22

FuzzyGNN

(a) Fuzzy set for MNIST (b) Fuzzy set for CIFAR10 (c) Fuzzy set for CLUSTER

(d) Fuzzy set for PATTERN (e) Fuzzy set for ZINC

Figure 5: The trained fuzzy sets for each dataset provided by the corresponding best-performing variant (see Table 6), each
subfigure plots the fuzzy sets for four different variables of one (representation) sample, where MFs denotes the number
of fuzzy sets.

runs of the experiments. From Table 7 we can conclude that there is no huge difference in computational time costs on
various regression functions 𝐹 .
4.4. Ablation study

This section conducts the ablation study to compare the performance of the baseline model with the one fused
with the proposed neuro-fuzzy module. The baseline model is the Graph attention network (GAT), the basis of the
Transformer, part of a module in our proposed FuzzyGNN.

Confusion Matrix =
(True Positives(𝑇𝑃) False Positives(𝐹𝑃)

False Negatives (𝐹𝑁) True Negatives(𝑇𝑁)

)

authors et al.: Preprint submitted to Elsevier Page 14 of 22

FuzzyGNN

Table 8
Graph dataset attributes

Name Graphs Classes# Avg. Nodes Avg. Edges Evaluation
DD 1178 2 284.32 715.66 Accuracy
NCI1 4110 2 29.87 32.30 Accuracy
OHSU 79 2 82.01 199.66 Accuracy
Peking_1 85 2 39.31 77.35 Accuracy
PROTEINS 1113 2 39.06 72.82 Accuracy
IMDB-BINARY 1000 2 19.77 96.53 Accuracy
IMDB-MULTI 1500 3 13.00 65.94 Accuracy
SYNTHETIC 300 2 100.00 196.00 Accuracy
SYNTHETICnew 300 2 100.00 196.25 Accuracy

Table 9
Ablation study results of average, max, standard deviation Accuracy in % (avg-acc ↑, max-acc ↑, std-acc ↓), Precision ↑,
F1 ↑, recall ↑ and AUC ↑ on eight datasets by baseline model ACAT and the AGAAT with the proposed fuzzy module as
AGAT+Our. The bold text denotes the better result.

Dataset Method time-epoch params avg-acc max-acc std-acc Precision recall F1 AUC

DD AGAT 4.12E-01 5.01E+03 74.20 76.30 2.54E-02 74.70 54.20 62.10 80.30
AGAT+Our 7.65E-01 7.59E+03 78.00 82.00 2.89E-02 79.90 61.00 68.70 83.00

IMDB-BINARY AGAT 3.45E-01 3.60E+03 63.50 66.80 1.93E-02 63.60 63.60 63.50 64.50
AGAT+Our 5.46E-01 6.18E+03 65.10 67.20 1.77E-02 66.60 61.20 63.60 69.70

IMDB-MULTI AGAT 4.92E-01 3.64E+03 36.90 41.60 2.74E-02 - - 32.00 57.80
AGAT+Our 8.11E-01 6.22E+03 38.90 46.90 4.82E-02 - - 32.80 55.70

NCI1 AGAT 2.97E-01 4.18E+03 73.20 73.60 3.57E-03 72.90 72.90 72.80 80.20
AGAT+Our 2.27E+00 6.76E+03 74.20 74.80 5.52E-03 73.70 74.30 73.90 81.00

OHSU AGAT 2.31E-01 6.63E+03 57.50 65.00 5.59E-02 45.80 40.00 42.30 60.80
AGAT+Our 5.76E-02 9.21E+03 60.00 65.00 3.54E-02 63.20 62.50 60.00 63.50

Peking_1 AGAT 4.01E-01 6.63E+03 58.00 63.60 7.45E-02 33.00 50.00 39.30 56.00
AGAT+Our 8.25E-02 8.31E+03 65.90 72.70 6.82E-02 53.00 78.10 62.60 73.40

PROTEINS AGAT 8.46E-02 3.64E+03 72.00 74.90 2.53E-02 69.70 54.30 60.10 76.60
AGAT+Our 1.03E+00 5.32E+03 73.80 74.90 1.66E-02 71.30 57.70 63.60 77.50

SYNTHETIC AGAT 3.34E-01 3.72E+03 49.70 50.70 5.78E-03 12.70 25.00 16.80 49.20
AGAT+Our 4.91E-01 6.30E+03 50.00 50.70 6.67E-03 25.30 50.00 33.60 51.90

SYNTHETICnew AGAT 1.47E-01 3.59E+03 54.00 60.00 4.85E-02 52.90 44.10 46.30 57.70
AGAT+Our 4.75E-01 5.35E+03 55.00 60.00 4.46E-02 42.10 57.90 48.20 58.10

Accuracy = (number of correct predictions)∕(total number of predictions)

Precision = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑃)

recall = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁)

F1 = 2 × (Precision × recall)∕(Precision + recall)
The baseline model architecture starts with one layer of feature encoder with a Laplacian positional encoding, then

forwards to one layer of GAT with extra BatchNorm and dropout operations, and ends with one task-specific layer
of MLP. This baseline model is a standard lightweight three-layer network termed Ablation-GAT (AGAT). The fused
model is to add the proposed fuzzy inference module before the task-specific layer making it a four-layer network,
termed Ablation-GAT-fuzzy (AGAT+Our). The experimental setting is set the same for the two compared models.
The positional encoding dimension is set two. The activation function uses Relu, the aggregation mode uses the Mean
function, and the dimension of the feature node is set to 18 for all of the tested datasets. The attention dropout rate is
authors et al.: Preprint submitted to Elsevier Page 15 of 22

FuzzyGNN

0.5, and the number of heads in GAT is two. We use Adam with a base learning rate of 0.001 for the optimizer, and
the max epoch for training is 100.

Dataset introduction: The dataset is chosen from TUDatasets https://chrsmrrs.github.io/datasets/,
which collects datasets in fields of bioinformatics, Social networks, and Synthetic for graph classification and
regression. Specifically, the detailed information of the dataset is shown in Table 8. The experiment runs four
independent times by AGAT and AGAT+Our model on each dataset and calculates the average, best, and Sd accuracy
results. Additionally, we choose datasets with two classes to easily measure the F1, AUC (Area Under the Receiver
Operating Characteristic Curve), Precision, and recall metrics; a confusion matrix for measuring two classification
classes is shown below. As Accuracy is particularly useful when the classes are balanced. In our unbalanced cases, F1,
AUC, Precision, and recall metrics can give good overall assessments of the model’s performance. A perfect model
would have an AUC of 1, an Accuracy of 1, and with high value for F1 and recall, while a lower value for these metrics
would mean a poor model.

Table 9 shows the ablation study result. AGAT presents the baseline results, and AGAT+Our presents the AGAT
model embedded with one layer of our proposed fuzzy inference module. In Table 9, AGAT+Our out-performed
AGAT on all datasets by average accuracy, with the largest accuracy increase of 7.9 % on Peking_1 data and the
smallest accuracy increase of 1% on two datasets. There are 20%, 17.4%, and 12.6%, Precision increase on Peking_1,
HSU, and SYNTHETIC datasets, respectively. There are 28%, 22.5%, 13.8%, and 25%, recall metric measurements
increase on Peking_1, HSU, SYNTHETICnew, and SYNTHETIC datasets, respectively. We can observe that on F1
and AUC, there is also a large performance improvement on seven datasets out of eight. From the above results, we can
conclude that the proposed fuzzy module has promising performance that can improve the overall model in Accuray
and other metrics.
4.5. Comparison with FFDN

In this section, we compare the performance of the proposed model with the existing fuzzy model, FFDN [11].
Let us remind you that FFDN adopts a fuzzy inference module while it belongs to type-3 cooperative neural fuzzy
systems; refer to Fig. 1. We did not compare FGNN [12] as this model is tailored to a few-shot-learning problem.

The torch source code of FFDN was downloaded from https://github.com/phamtheanhphu/FFDN_torch
(original invalid) OR https://github.com/Zhangxy8244/FFDN_torch (valid), implementation of Tensorflow/Keras
version https://github.com/sam-nayak/SynthNet. And we adapted the code into our framework to work on
the chosen dataset. We did not run FFDN on large datasets, such as MINIST, as this implementation is slow. The
environment settings on datasets of Table 8 are the same for the compared algorithms.

Table 10 shows the comparison results of FFDN with the proposed model. From Table 10, we observe that
FFDN operates slowly in an epoch time and obtains worse accuracy results on seven instances out of eight datasets.
FFDN performs well on SYNTHETIC data with 50.33% accuracy, slightly better than the proposed method with 50%
accuracy. FFDN achieves 60% accuracy on the DD dataset, while the proposed method gets an increase of up to 18%
accuracy. On NCI1 data, the increase is up to around 25% achieved by the proposed method than FFDN. Meanwhile,
the proposed method performs better than FFDN on the rest of the datasets.
4.6. Parameter analysis

Three parameters affect the performance of the proposed fuzzy inference module, the sample size 𝑃 , �̃� is the
NFS input dimension parameter, and 𝑀 is a user-defined neuro-fuzzy module output parameter, which is set to
𝑀 = 𝑓𝑙𝑜𝑜𝑟(�̃�∕2). 𝑁 is the number of fuzzy sets on each axis. We experiment with two parameter sets, i.e.,
𝑃 = 6; �̃� = 3;𝑁 = 4 termed Parm2 and 𝑃 = 3; �̃� = 4;𝑁 = 3 termed Parm1, additionally we test the performance
of with U(0.5) and U(1). In this analysis, we did not fine-tune the parameters largely due to the reasons 1). The node
feature dimension is 18 for all tested small datasets, and there is little space for parameter 𝑃 change. 2). The total
number of parameter sizes increases exponentially by the size of �̃� and 𝑁 , so �̃� and 𝑁 should be set to a small value.

The results of two different parameter sets, Parm1 and Parm2, are shown in Table 11. The performance of the
proposed model is affected largely by dataset OHSU with around 7.5% accuracy up and down. The best-performed
parameter sets are Parm1-U(0.5) and Parm2-U(1) with uniform sampling. For datasets IMDB-BINARY, NCI1, the
model configured with Parm1-U(0.5) performs the best, while the overall performance configured with other parameter
sets is competitive. For datasets, Peking_1 and SYNTHETIC, there is 6% and 1.1% accuracy up and down, respectively.
And the best-performed configuration set is Parm2-U(0.5). The results presented in Table 11 can be interpreted as
follows: a big value of �̃� improves the performance with a low number of average edges in graph data.

authors et al.: Preprint submitted to Elsevier Page 16 of 22

https://chrsmrrs.github.io/datasets/
https://github.com/phamtheanhphu/FFDN_torch
https://github.com/Zhangxy8244/FFDN_torch
https://github.com/sam-nayak/SynthNet

FuzzyGNN

Table 10
Comparison results of average, max, standard deviation Accuracy in % (avg-acc, max-acc, std-acc), Precision, F1, recall
and AUC on eight datasets by FFDN [11] and our proposed model.

Dataset Method time-epoch params avg-acc max-acc std-acc Precision recall F1 AUC

DD FFDN 8.01E+01 4.98E+03 60.00 60.00 0.0E+00 0.00 0.00 0.00 52.61
Our 7.65E-01 7.59E+03 78.00 82.00 2.89E-02 79.90 61.00 68.70 83.00

IMDB-BINARY FFDN 1.18E+01 3.86E+03 50.00 50.00 0.0E+00 0.00 0.00 0.00 56.51
Our 5.46E-01 6.18E+03 65.10 67.20 1.77E-02 66.60 61.20 63.60 69.70

IMDB-MULTI FFDN 1.16E+01 3.90E+03 30.67 30.67 0.0E+00 0.00 0.00 15.65 49.46
Our 8.11E-01 6.22E+03 38.90 46.90 4.82E-02 0.00 0.00 32.80 55.70

NCI1 FFDN 2.56E+01 4.14E+03 49.22 49.22 0.0E+00 49.22 100.00 65.97 40.72
Our 2.27E+00 6.76E+03 74.20 74.80 5.52E-03 73.70 74.30 73.90 81.00

OHSU FFDN 9.82E-03 6.47E+03 50.00 50.00 0.0E+00 37.50 75.00 50.00 48.75
Our 5.76E-02 9.21E+03 60.00 65.00 3.54E-02 63.20 62.50 60.00 63.50

Peking_1 FFDN 8.33E-03 6.47E+03 63.64 63.64 0.0E+00 0.00 0.00 0.00 47.66
Our 8.25E-02 8.31E+03 65.90 72.70 6.82E-02 53.00 78.10 62.60 73.40

PROTEINS FFDN 8.82E+00 3.60E+03 60.21 60.21 0.0E+00 0.00 0.00 0.00 55.00
Our 1.03E+00 5.32E+03 73.80 74.90 1.66E-02 71.30 57.70 63.60 77.50

SYNTHETIC FFDN 1.75E+01 3.97E+03 50.33 50.67 5.78E-03 38.00 75.00 50.44 50.00
Our 4.91E-01 6.30E+03 50.00 50.70 6.67E-03 25.30 50.00 33.60 51.90

SYNTHETICnew FFDN 8.21E+00 3.85E+03 50.00 50.67 6.67E-03 25.33 50.00 33.63 48.83
Our 4.75E-01 5.35E+03 55.00 60.00 4.46E-02 42.10 57.90 48.20 58.10

Table 11
Parameter analysis results by the proposed model FuzzyGNN, where the dimension of node feature is 18, and Parm1
denotes the parameter set (𝑃 = 3; �̃� = 4;𝑁 = 3) and Parm2 with (𝑃 = 6; �̃� = 3;𝑁 = 4), please refer Table 9 for result
symbol description.

Dataset Method time-epoch params avg-acc max-acc std-acc Precision recall F1 AUC

IMDB-BINARY

Pam1-U(0.5) 5.46E-01 6.18E+03 65.1% 67.2% 1.77E-02 66.6% 61.2% 63.6% 69.7%
Pam1-U(1) 5.63E-01 6.18E+03 61.0% 68.4% 8.86E-02 62.5% 60.0% 60.7% 64.8%
Pam2-U(0.5) 8.98E-01 5.29E+03 57.5% 64.4% 7.64E-02 58.9% 58.0% 58.0% 61.7%
Pam2-U(1) 8.42E-01 5.29E+03 64.8% 67.6% 1.94E-02 66.5% 60.0% 62.7% 69.0%

NCI1

Pam1-U(0.5) 2.27E+00 6.76E+03 74.2% 74.8% 5.52E-03 73.7% 74.3% 73.9% 81.0%
Pam1-U(1) 2.30E+00 6.76E+03 73.6% 74.4% 5.69E-03 72.2% 75.6% 73.8% 80.7%
Pam2-U(0.5) 4.03E+00 5.87E+03 73.7% 75.7% 1.17E-02 72.0% 76.3% 74.1% 81.0%
Pam2-U(1) 3.37E+00 5.87E+03 73.1% 73.6% 3.11E-03 71.6% 75.2% 73.4% 80.7%

OHSU

Pam1-U(0.5) 5.76E-02 9.21E+03 60.0% 65.0% 3.54E-02 63.2% 62.5% 60.0% 63.5%
Pam1-U(1) 4.45E-01 9.21E+03 52.5% 60.0% 4.33E-02 40.0% 50.0% 44.2% 58.0%
Pam2-U(0.5) 4.68E-01 8.31E+03 56.3% 60.0% 4.15E-02 44.4% 47.5% 44.1% 60.0%
Pam2-U(1) 4.76E-01 8.31E+03 60.0% 70.0% 7.07E-02 47.6% 52.5% 49.2% 59.5%

Peking_1

Pam1-U(0.5) 5.26E-01 9.21E+03 61.4% 63.6% 2.27E-02 35.5% 53.1% 42.3% 69.0%
Pam1-U(1) 5.26E-01 9.21E+03 59.1% 63.6% 5.57E-02 34.2% 53.1% 41.0% 71.4%
Pam2-U(0.5) 8.25E-02 8.31E+03 65.9% 72.7% 6.82E-02 53.0% 78.1% 62.6% 73.4%
Pam2-U(1) 8.32E-02 8.31E+03 63.6% 68.2% 7.87E-02 50.0% 56.3% 52.9% 68.1%

SYNTHETIC

Pam1-U(0.5) 6.15E-01 6.22E+03 73.2% 74.2% 6.89E-03 69.0% 59.2% 63.7% 78.2%
Pam1-U(1) 6.27E-01 6.22E+03 72.7% 73.8% 1.12E-02 69.0% 57.0% 62.2% 77.8%
Pam2-U(0.5) 1.03E+00 5.32E+03 73.8% 74.9% 1.66E-02 71.3% 57.7% 63.6% 77.5%
Pam2-U(1) 9.46E-01 5.32E+03 72.6% 74.2% 1.44E-02 71.0% 53.6% 60.3% 76.4%

4.7. Technical details of the trained NFS module
As stated above, the NFS module in FuzzyGNN deals with Gaussian fuzzy sets with two trainable parameters

(𝜇 and 𝜎) in the premise layer. Apart from that, NFS also contains parameters related to the regression function in a
consequent layer. A 𝐷-dimensional node representation is sampled into 𝑃 sub-vectors of the length �̃� each, and these

authors et al.: Preprint submitted to Elsevier Page 17 of 22

FuzzyGNN

sub-vectors are taken as the input to the NFS modules. Then in each NFS module input layer, there are 𝑁 fuzzy sets
to which the membership degree of the input sub-vector components are determined.

After the training periods, the resulting antecedent fuzzy sets are presented in Fig. 5. Let us mention three important
notes related to this figure: (1) Fig. 5 presents the trained fuzzy sets for all the 𝑃 inference modules for every single
dataset (the parameters 𝜇 and 𝜎 are the same for all modules); (2) each fuzzy set relates to the particular input variable
which is transformed by the previous GNN layers, in our case, we use the identical domain [-5, 5] for all variables
which leads to the same plots in Fig. 5; (3) independently on the just stated fact that the fuzzy sets are identical for
all 𝑃 inference modules assuming the same dataset is considered, the representation sampling is necessary as the
parameters of regression functions for each sample are different.

From the applicability point of view, the most significant limitation is the training time and, consequently, the
training costs that are comparably higher than those needed by the benchmark models. On the other hand, if the
training time is not such an issue for the particular problem (data set), this disadvantage is compensated by the higher
consistency (robustness) and, consequently, reliability of the performance of FuzzyGNN. Indeed, the performance of
FuzzyGNN was the best one in 4 out of 5 data sets (the first place was shared with GPS for the ZINC data set), and it
kept the second-best result for the CLUSTER data set. It is necessary to mention that the superiority of FuzzyGNN was
not significant in the case of PATTERN and MNIST data sets. On the other hand, no other method showed a similar
consistency in the results over all 5 data sets.

Let us focus on the computational complexity of the NFS module in FuzzyGNN, a unique module that makes this
approach different from other GNN models. The number of floating point operations (FLOPs) is a standard complexity
measure for neural networks, and it counts the number of computational operations. In our case, we count the number
of multiplications and additions as the FLOPs.

Within the premise layer, the FLOPs value generated comes from creating 𝑁 �̃� rules. Each rule has (�̃� − 1)
multiplication operations. Hence, the total FLOPs in this layer are given as follows:

𝐹𝐿𝑂𝑃𝑠𝑝𝑟𝑒 = (�̃� − 1) ×𝑁 �̃� × 𝑃 .

In the consequent layer, many regression functions involve multiplication and addition operations. The number of
multiplication operations equals the number of addition operations plus one. The number of FLOPs in the consequent
layer is then given by:

𝐹𝐿𝑂𝑃𝑠𝑐𝑜𝑛 = 𝑀 × (2𝑁 �̃� − 1) × (�̃� + 1) × 𝑃 .

The output layer performs the weighted-sum operation and the number of FLOPs is determined as follows:
𝐹𝐿𝑂𝑃𝑠𝑜𝑢𝑡 = 𝑀 × (2𝑁 �̃� − 1) × 𝑃

and hence, the total FLOPs of the NFS module is
𝐹𝐿𝑂𝑃𝑠 = 𝐹𝐿𝑂𝑃𝑠𝑝𝑟𝑒 + 𝐹𝐿𝑂𝑃𝑠𝑐𝑜𝑛 + 𝐹𝐿𝑂𝑃𝑠𝑜𝑢𝑡 .

5. Conclusion
This work presents an integrated fusion model fuzzy forest graph neural network (FuzzyGNN) that integrates the

neuro-fuzzy system with the GNN for the large-scale dataset through feature-level fusion assisting the features learning.
This model fusion differs from the ensemble model that works as an activation function or processes fuzzy modules
in a separate block (data-level fusion). The purpose of the proposed model is to interpret the node representation
in a way that enables to use of the power of the inherent fuzzy regression model. Two components of the whole
FuzzyGNN are necessary for correctly implementing the NFS module; in particular, the node representation sampling
precedes the NFS module and the fuzzy inference component that models the regression function. The generalized
consequent functions model the dependencies of output variables on the input variables on distinct subareas of the input
space defined by the Cartesian products of antecedent fuzzy sets. In order to verify the efficiency and effectiveness
of FuzzyGNN fusion model, we tested it on five benchmark machine learning datasets. The experimental results
justified the proposed FuzzyGNN approach by demonstrating its best performance on two out of five datasets, while
another two are equal ranks one. FuzzyGNN is designed for the large-scale dataset to improve the performance of the
authors et al.: Preprint submitted to Elsevier Page 18 of 22

FuzzyGNN

deep NN model. We used a small value for the 𝑁 and 𝑀 parameters on all experiments, which may eliminate the
exploitation of the potential usage of the designed NFS module. We argue that the experimental analysis provided a
strong justification for considering the proposed FuzzyGNN as a basis for fusing fuzzy modules with deep learning
that improves performance. A more extensive parameter dig is the most natural step of our future research that can
potentially lead to the progress of the results.

6. Future work and Limitation
• This work only divides the node representation into multiple samples, aiming to decrease the required training

parameters. However, we only explored with𝑁 = 3 �̃� = 4 scenario to the large dataset, making the fuzzy-related
training parameter number small in the total number of training parameters. This unbalanced training parameter
ratio between fuzzy-related and regular parameters causes no significant differences in the performance of large
datasets and may limit the inference of the potential capability of the proposed fuzzy-assisted module. We plan
to balance the parameters (fuzzy and non-fuzzy parameters) and test them on the large dataset using an advanced
high-performance device.

• The proposed fuzzy-assisted module is implemented at the end operation of GNN. This proposed module can be
plugged into a middle process of GNN architecture, which may enhance the learning ability of each layer instead
of assisting the learning for the last layer. Further, we implement the model in Pytorch, making it possible to
apply public tool https://captum.ai/ for the interpretability of the model.

• We analyzed the complexity of the proposed model, which is acceptable and low. However, the expectation time
is higher than a model with the same number of FLOPs because the matrix-vector multiplication operations are
Streamlined, which is quicker in GPU than fuzzy-related exponential operation.

References
[1] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, X. Sun, Measuring and relieving the over-smoothing problem for graph neural networks from the

topological view, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 3438–3445.
[2] R. Das, S. Sen, U. Maulik, A survey on fuzzy deep neural networks, ACM Computing Surveys (CSUR) 53 (3) (2020) 1–25.
[3] A. Thakkar, K. Chaudhari, Fusion in stock market prediction: a decade survey on the necessity, recent developments, and potential future

directions, Information Fusion 65 (2021) 95–107.
[4] P. V. de Campos Souza, Fuzzy neural networks and neuro-fuzzy networks: A review the main techniques and applications used in the literature,

Applied soft computing 92 (2020) 106275.
[5] W. Dong, L. Yang, R. Gravina, G. Fortino, Anfis fusion algorithm for eye movement recognition via soft multi-functional electronic skin,

Information Fusion 71 (2021) 99–108.
[6] Y. Zhang, G. Wang, X. Huang, W. Ding, Tsk fuzzy system fusion at sensitivity-ensemble-level for imbalanced data classification, Information

Fusion 92 (2023) 350–362.
[7] V. Ojha, A. Abraham, V. Snášel, Heuristic design of fuzzy inference systems: A review of three decades of research, Engineering Applications

of Artificial Intelligence 85 (2019) 845–864.
[8] M. Stojčić, Application of anfis model in road traffic and transportation: a literature review from 1993 to 2018, Operational Research in

Engineering Sciences: Theory and Applications 1 (1) (2018) 40–61.
[9] J.-S. Jang, Anfis: adaptive-network-based fuzzy inference system, IEEE transactions on systems, man, and cybernetics 23 (3) (1993) 665–685.

[10] C. Pramod, G. N. Pillai, K-means clustering based extreme learning anfis with improved interpretability for regression problems, Knowledge-
Based Systems 215 (2021) 106750.

[11] Y. Deng, Z. Ren, Y. Kong, F. Bao, Q. Dai, A hierarchical fused fuzzy deep neural network for data classification, IEEE Transactions on Fuzzy
Systems 25 (4) (2016) 1006–1012.

[12] T. Wei, J. Hou, R. Feng, Fuzzy graph neural network for few-shot learning, in: 2020 International joint conference on neural networks (IJCNN),
IEEE, 2020, pp. 1–8.

[13] T. Zhao, J. Xu, R. Chen, X. Ma, Remote sensing image segmentation based on the fuzzy deep convolutional neural network, International
Journal of Remote Sensing 42 (16) (2021) 6264–6283.

[14] Q. Chong, J. Xu, F. Jia, Z. Liu, W. Yan, X. Wang, Y. Song, A multiscale fuzzy dual-domain attention network for urban remote sensing image
segmentation, International Journal of Remote Sensing 43 (14) (2022) 5480–5501.

[15] P.-C. Chang, C.-H. Liu, C.-Y. Fan, Data clustering and fuzzy neural network for sales forecasting: A case study in printed circuit board industry,
Knowledge-Based Systems 22 (5) (2009) 344–355.

[16] T. Qu, J. Xu, Q. Chong, Z. Liu, W. Yan, X. Wang, Y. Song, M. Ni, Fuzzy neighbourhood neural network for high-resolution remote sensing
image segmentation, European Journal of Remote Sensing 56 (1) (2023) 2174706.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, Advances in
neural information processing systems 30 (2017).

authors et al.: Preprint submitted to Elsevier Page 19 of 22

https://captum.ai/

FuzzyGNN

[18] C. El Hatri, J. Boumhidi, Fuzzy deep learning based urban traffic incident detection, Cognitive systems research 50 (2018) 206–213.
[19] L. Subhashini, Y. Li, J. Zhang, A. S. Atukorale, Integration of fuzzy logic and a convolutional neural network in three-way decision-making,

Expert Systems with Applications 202 (2022) 117103.
[20] S. Dey, R. Roychoudhury, S. Malakar, R. Sarkar, An optimized fuzzy ensemble of convolutional neural networks for detecting tuberculosis

from chest x-ray images, Applied Soft Computing 114 (2022) 108094.
[21] R. Chai, A. Tsourdos, A. Savvaris, Y. Xia, S. Chai, Real-time reentry trajectory planning of hypersonic vehicles: a two-step strategy

incorporating fuzzy multiobjective transcription and deep neural network, IEEE Transactions on Industrial Electronics 67 (8) (2019) 6904–
6915.

[22] M. Z. Asghar, F. Subhan, H. Ahmad, W. Z. Khan, S. Hakak, T. R. Gadekallu, M. Alazab, Senti-esystem: A sentiment-based esystem-using
hybridized fuzzy and deep neural network for measuring customer satisfaction, Software: Practice and Experience 51 (3) (2021) 571–594.

[23] P. Hurtík, V. Molek, J. Hůla, Data preprocessing technique for neural networks based on image represented by a fuzzy function, IEEE
Transactions on Fuzzy Systems 28 (7) (2020) 1195–1204.

[24] G. Sideratos, A. Ikonomopoulos, N. D. Hatziargyriou, A novel fuzzy-based ensemble model for load forecasting using hybrid deep neural
networks, Electric Power Systems Research 178 (2020) 106025.

[25] G. Manogaran, P. M. Shakeel, S. Baskar, C.-H. Hsu, S. N. Kadry, R. Sundarasekar, P. M. Kumar, B. A. Muthu, Fdm: Fuzzy-optimized data
management technique for improving big data analytics, IEEE Transactions on Fuzzy Systems 29 (1) (2020) 177–185.

[26] Y.-J. Zheng, S.-Y. Chen, Y. Xue, J.-Y. Xue, A pythagorean-type fuzzy deep denoising autoencoder for industrial accident early warning, IEEE
Transactions on Fuzzy Systems 25 (6) (2017) 1561–1575.

[27] H. Moeeni, H. Bonakdari, I. Ebtehaj, Integrated sarima with neuro-fuzzy systems and neural networks for monthly inflow prediction, Water
Resources Management 31 (7) (2017) 2141–2156.

[28] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, G. E. Dahl, Message passing neural networks, in: Machine learning meets quantum physics,
Springer, 2020, pp. 199–214.

[29] T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE transactions on systems, man, and
cybernetics 1 (1985) 116–132.

[30] Z. Jiang, S. Gao, M. Li, An improved advertising ctr prediction approach based on the fuzzy deep neural network, PloS one 13 (5) (2018)
e0190831.

[31] Z. Zhang, L. Ning, Z. Liu, Q. Yang, W. Ding, Mining and reasoning of data uncertainty-induced imprecision in deep image classification,
Information Fusion 96 (2023) 202–213.

[32] W. M. Shaban, A. H. Rabie, A. I. Saleh, M. Abo-Elsoud, Detecting covid-19 patients based on fuzzy inference engine and deep neural network,
Applied soft computing 99 (2021) 106906.

[33] J. Mar, H.-T. Lin, A car-following collision prevention control device based on the cascaded fuzzy inference system, Fuzzy sets and systems
150 (3) (2005) 457–473.

[34] C. P. Chen, C.-Y. Zhang, L. Chen, M. Gan, Fuzzy restricted boltzmann machine for the enhancement of deep learning, IEEE Transactions on
Fuzzy Systems 23 (6) (2015) 2163–2173.

[35] Y.-J. Zheng, W.-G. Sheng, X.-M. Sun, S.-Y. Chen, Airline passenger profiling based on fuzzy deep machine learning, IEEE transactions on
neural networks and learning systems 28 (12) (2016) 2911–2923.

[36] S. Park, S. J. Lee, E. Weiss, Y. Motai, Intra-and inter-fractional variation prediction of lung tumors using fuzzy deep learning, IEEE journal
of translational engineering in health and medicine 4 (2016) 1–12.

[37] M. A. Islam, D. T. Anderson, A. J. Pinar, T. C. Havens, G. Scott, J. M. Keller, Enabling explainable fusion in deep learning with fuzzy integral
neural networks, IEEE Transactions on Fuzzy Systems 28 (7) (2019) 1291–1300.

[38] K. Oono, T. Suzuki, Graph neural networks exponentially lose expressive power for node classification, arXiv preprint arXiv:1905.10947, The
International Conference on Learning Representations, ICLR (2019).

[39] J. Palowitch, A. Tsitsulin, B. Mayer, B. Perozzi, Graphworld: Fake graphs bring real insights for gnns, arXiv preprint arXiv:2203.00112,
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (2022).

[40] J. Halcrow, A. Mosoi, S. Ruth, B. Perozzi, Grale: Designing networks for graph learning, in: Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2020, pp. 2523–2532.

[41] Q. Zhu, N. Ponomareva, J. Han, B. Perozzi, Shift-robust gnns: Overcoming the limitations of localized graph training data, Advances in Neural
Information Processing Systems 34 (2021) 27965–27977.

[42] D. Zhang, J. Yin, X. Zhu, C. Zhang, Network representation learning: A survey, IEEE transactions on Big Data 6 (1) (2018) 3–28.
[43] C. Runge, Über empirische funktionen und die interpolation zwischen äquidistanten ordinaten, Zeitschrift für Mathematik und Physik 46 (224-

243) (1901) 20.
[44] J. Platoš, J. Nowaková, P. Krömer, V. Snášel, Space-filling curves based on residue number system, in: Advances in Intelligent Networking

and Collaborative Systems: The 9th International Conference on Intelligent Networking and Collaborative Systems (INCoS-2017), Springer,
2018, pp. 53–61.

[45] E. Lughofer, E. Hüllermeier, E.-P. Klement, Improving the interpretability of data-driven evolving fuzzy systems., in: EUSFLAT Conf.,
Citeseer, 2005, pp. 28–33.

[46] V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, X. Bresson, Benchmarking graph neural networks, arXiv preprint arXiv:2003.00982, Journal
of Machine Learning Research 23 (2020) 1–48.

[47] L. Rampášek, M. Galkin, V. P. Dwivedi, A. T. Luu, G. Wolf, D. Beaini, Recipe for a general, powerful, scalable graph transformer, 36th
Conference on Neural Information Processing Systems (NeurIPS 2022) (2022).

[48] M. Fey, J. E. Lenssen, Fast graph representation learning with pytorch geometric, arXiv preprint arXiv:1903.02428, International Conference
on Learning Representations, ICLR (2019).

[49] L. Ilya, H. Frank, Decoupled weight decay regularization, Proceedings of International Conference on Learning Representations, ICLR (2019).

authors et al.: Preprint submitted to Elsevier Page 20 of 22

FuzzyGNN

[50] V. P. Dwivedi, X. Bresson, A generalization of transformer networks to graphs, AAAI 21 workshop on Deep learning on graphs: methods and
applications (2020).

[51] J. You, R. Ying, J. Leskovec, Design space for graph neural networks, 2020.
[52] Y. Li, D. Tarlow, M. Brockschmidt, R. Zemel, Gated graph sequence neural networks, arXiv preprint arXiv:1511.05493, International

Conference on Learning Representations, ICLR (2016).
[53] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, J. Leskovec, Strategies for pre-training graph neural networks, arXiv preprint

arXiv:1905.12265, The International Conference on Learning Representations, ICLR (2019).
[54] D. Kreuzer, D. Beaini, W. Hamilton, V. Létourneau, P. Tossou, Rethinking graph transformers with spectral attention, Advances in Neural

Information Processing Systems 34 (2021) 21618–21629.
[55] C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, T.-Y. Liu, Do transformers really perform badly for graph representation?, Advances

in Neural Information Processing Systems 34 (2021) 28877–28888.
[56] T. N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, 5th International Conference on Learning

Representations, Toulon, France (2016).
[57] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph attention networks, stat 1050 (2017) 20.
[58] D. Beaini, S. Passaro, V. Létourneau, W. Hamilton, G. Corso, P. Liò, Directional graph networks, in: International Conference on Machine

Learning, PMLR, 2021, pp. 748–758.
[59] K. Xu, W. Hu, J. Leskovec, S. Jegelka, How powerful are graph neural networks?, The International Conference on Learning Representations,

ICLR (2018).
[60] M. S. Hussain, M. J. Zaki, D. Subramanian, Edge-augmented graph transformers: Global self-attention is enough for graphs, arXiv preprint

arXiv:2108.03348, Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (2021).
[61] S. Cai, L. Li, X. Han, J. Luo, Z.-J. Zha, Q. Huang, Automatic relation-aware graph network proliferation, in: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2022, pp. 10863–10873.

A. Appendix
In Section 3, we describe the neuro-fuzzy system module layer and briefly introduce the combination with GNN.

Alg 1 shows the main flowchart of FuzzyGNN. Here we list the precise GNN layer connections and formalize the NFS
process.

Symbol notations: 𝐡𝓁 , 𝐸𝓁 represents the node representation vector, edges at 𝑙𝑡ℎ layer. A denotes the adjacency
matrix of data; ∪ is the union of all node representation. MLP is short for a multi-perceptron layer.

GNN layer connections with 𝐡𝓁 ,E𝓁 and A as:

m_�̂�𝓁+1,E𝓁+1 = MPNN(𝐡𝓁 ,E𝓁 ,A) (8)

ga_�̂�𝓁+1 = Transformer(∪(𝐡𝓁)) (9)

m_𝐡𝓁+1 = BatchNorm
(

Dropout(m_�̂�𝓁+1) + 𝐡𝓁
)

(10)

ga_𝐡𝓁+1 = BatchNorm
(

Dropout(ga_�̂�𝓁+1) + 𝐡𝓁
)

(11)

𝐡𝓁+1 = MLP (ga_𝐡𝓁+1 + m_𝐡𝓁+1) (12)
A NFS module starts with a 𝐡𝓁 , Sample -node Representation sampling, Regression- Regression function 𝐹 ;

For differentiate the 𝐡𝓁+1𝑣 as the 𝑣𝑡ℎ node presentation, we use 𝑣ℎ𝓁+1 as the 𝑣𝑡ℎ sampling intermediate result. The
hyperparameters used in FuzzyGNN are shown in Table 12.

x̂𝓁𝑝 = Sample (𝐡𝓁) where 𝑝 = 1,… , 𝑃 ; (13)

authors et al.: Preprint submitted to Elsevier Page 21 of 22

FuzzyGNN

Algorithm 1: FuzzyGNN model (An example process, we omit basics operations, such as Norm, activation,
weighted mean, process to make it simple.)

Input: Graph data or Image data
Output: Classification/regression output
/* –– Pre-processing –- */
/* ‘embeddings’ of a graph represent tensor data. Each node has an embedding, which is a vector. */

1 embeddings ← Node encoding (raw data) ;
2 embeddings ← structural encoding (embeddings);

/* ‘representation’ is another name for embeddings used in a neural network, it is also tensor data */
3 (representation) ← positional encoding (embeddings);

/* –– Graph neural network process –- */
4 for 𝐿 = 1 → 𝓁 do

/* For each node 𝑣 in a graph with its representation 𝐱(𝐿)𝑣 at layer 𝐿-th */

5 𝐱(𝐿)𝑣 = 𝐖(𝐿)∑
𝑤∈ (𝑣) ∪ {𝑣}

1
𝑐𝑤,𝑣

⋅ 𝐱(𝐿−1)𝑤 ;
/* 𝐖(𝐿) is learnable weights, (𝑣) is the neighbor node set of node 𝑣, 𝑐𝑤,𝑣 is scale value, obtained

by attention mechanism. */
/* In our experiments, we perform Eq 8-12 with a basic BatchNorm activation function process. */

6 end
/* –– Fuzzy-assisted module process –- */

7 for For each node 𝑣 with its representation 𝐱(𝓁)𝑣 do
8 (Samples) �̂� ← Representation Sampling(𝐱(𝓁)𝑣);

/* each sample is a vector of size 𝐷
𝑃 , 𝐷 dimension of node representation, 𝑃 number of samples. */

9 end
10 for For all nodes in a graph do

/* the fuzzy-assisted module operates parallel for all samples of a node representation */
11 (a sample) {𝑦} ← Fuzzy-inference module(�̂�) (a sample);

/* Concatenate all {𝑦} of all samples from a node */
12 representation ← Concatenation(∀{𝑦})
13 end

/* ––Task-specific layer process –- */
14 for For all nodes in a graph do

/* Classification or Regression */
15 regression output ← MLP(representation);
16 classification output ← Softmax(MLP(representation));
17 end

w̄𝓁
𝑝 = Normalize

(

Fuzzy_rule(x̂𝓁+1𝑝 , 𝜇, 𝜎)
)

; (14)

f𝓁𝑝 = Regression
(

x̂𝓁𝑝 , �̃� ,𝑀
)

(15)

𝑣𝐡𝓁+1𝑝 = Weighted_sum
(

f𝓁𝑝 , w̄
𝓁
𝑝

)

(16)

𝐡𝓁+1 = Concatenation
(

Π 𝑣𝐡𝓁+1𝑝

)

where 𝑝 = 1,… , 𝑃 ; (17)
where, 𝐡𝓁 is an input vector for NFS module and �̂�𝓁𝑝 is one of �̃�-dimensional the sample results; w̄𝓁

𝑝 is a 𝑁 �̃�-
dimensional vector; w̄𝓁

𝑝 = {�̄�𝓁
𝑘} and 𝑘 = 1, 2,… , 𝑁 �̃�; �̃� denotes the trainable parameters with size of 𝑁 �̃� × (�̃� + 1).

authors et al.: Preprint submitted to Elsevier Page 22 of 22

FuzzyGNN

Table 12
FuzzyGNN related hyperparameters used in the experiments.

Parameter PATTER CLUSTER ZINC MNIST CIFAR10
dropout(GNN) 0.0 0.03 0.0 0.0 0.0
act(GNN) relu relu relu relu relu
agg(GNN) mean mean mean mean mean
attn_drop(GT) 0.5 0.5 0.5 0.5 0.5
dropout(GT) 0.0 0.06 0.05 0.0 0.03
n_heads(GT) 4 8 4 4 4
layer (GT) 6 16 10 3 3

authors et al.: Preprint submitted to Elsevier Page 23 of 22

